理论力学期末考试试卷(含答案)
大学期末考试理论力学试卷(含答案详解)

一、选择题(每题2分,共20分)1.若平面力系对一点A 的主矩等于零,则此力系( )。
A .不可能合成为一个力 B .不可能合成为一个力偶C .一定平衡D .可能合成为一个力偶,也可能平衡2.刚体在四个力的作用下处于平衡,若其中三个力的作用线汇交于一点,则第四个力的作用线( )。
A .一定通过汇交点B .不一定通过汇交点C .一定不通过汇交点3.将平面力系向平面内任意两点简化,所得主矢相等,主矩也相等,且主矩不为零,则该力系简化的最后结果为( )。
A .一个力 B .一个力偶 C .平衡4.图1中,已知P =60kN ,F =20kN静摩擦系数f s =0.5,动摩擦系数f d =0.4,则物体所受 摩擦力的大小为( )。
A .25kN B .20kN C .17.3kN5.一点做曲线运动,开始时的速度s m v /100=,恒定切向加速度2/4s m a =τ,则2s 末该点的速度大小为( )。
A .2m/sB .18m/sC .12m/sD .无法确定6.圆轮绕某固定轴O 转动,某瞬时轮缘上一点的速度v 和加速度a 如图2所示,试问哪些情况下是不可能的?( ) A .(a )、(b )运动是不可能的 B .(a )、(c )运动是不可能的 C .(b )、(c )运动是不可能的 D .均不可能7.如图3所示平行四边形机构,在图示瞬时,杆O 1A以角速度ω转动,滑块M 相对AB 杆运动,若取M 动点,动系固联在AB 上,则该瞬时动点M 的牵连速度与杆AB 间的夹角为( )。
A .00 B .300 C .600图28.平面机构如图4所示,选小环M 为动点,动系固联 在曲柄OCD 杆上,则动点M 的科氏加速度的方向( )。
A .垂直于CD B .垂直于AB C .垂直于OM D .垂直于纸面9.如图5所示,两物块A 、B ,质量分别为A m 和B m 初始静止。
如A 沿斜面下滑的相对速度为r v ,设B 向左运动的速度为v ,根据动量守恒定律理有(A .v m v mB r A =θcos B.v m v m B r A=C.v m v v m B r A =+)cos (θD. v m v v m B r A =-)cos (θ10.已知刚体质心C 到相互平行的z '、z 轴之间的距离分别为a 、b ,刚体的质量为m ,对z 轴的转动惯量为z J ,则'z J 的计算公式为( )。
理论力学期末考试试题(卷)(试题(库)带答案解析)

理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向作用力F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不D计,求各杆的力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
已知板与斜面的静滑动摩擦因数s f =0.1。
理论力学期末考试试卷(含答案)

同济大学课程考核试卷〔A卷〕2006—2007学年第一学期命题教师签名:审核教师签名:课号:课名:工程力学考试考察:此卷选为:期中考试( )、期终考试( )、重考( )试卷年级专业学号姓名得分题号一二三四五六总分题分301015151515100得分一、填空题〔每题5分,共30分〕1刚体绕O Z轴转动,在垂直于转动轴的某平面上有A,B两点,O Z A=2O Z B,某瞬时a A=10m/s2,方向如下图。
那么此时B点加速度的大小为__5m/s2;〔方向要在图上表示出来〕。
及O z B成60度角。
2刻有直槽OB的正方形板OABC在图示平面内绕O轴转动,点M以r=OM=50t2〔r以mm计〕的规律在槽内运动,假设t 2=ω〔以rad/s 计〕,那么当t =1s 时,点M 的相对加速度的大小为_0.1m/s 2_;牵连加速度的大小为__2__。
科氏加速度为_22.0m/s 2_,方向应在图中画出。
方向垂直OB ,指向左上方。
3质量分别为m 1=m ,m 2=2m 的两个小球M 1,M 2用长为L 而重量不计的刚杆相连。
现将M 1置于光滑水平面上,且M 1M 2及水平面成︒60角。
那么当无初速释放,M 2球落地时,M 1球移动的水平距离为___〔1〕___。
〔1〕3L;〔2〕4L ;〔3〕6L ;〔4〕0。
4OA =AB =L ,=常数,均质连杆AB 的质量为m ,曲柄OA ,滑块B 的质量不计。
那么图示瞬时,相对于杆AB 的质心C 的动量矩的大小为__,〔顺时针方向〕___。
5均质细杆AB 重P ,长L ,置于水平位置,假设在绳BC 突然剪断瞬时有角加速度,那么杆上各点惯性力的合力的大小为_,〔铅直向上〕_,作用点的位置在离A 端_32L_处,并在图中画出该惯性力。
6铅垂悬挂的质量--弹簧系统,其质量为m ,弹簧刚度系数为k ,假设坐标原点分别取在弹簧静伸长处与未伸长处,那么质点的运动微分方程可分别写成_0=+kx xm _与_mg kx x m =+ _。
理论力学期末考试试题题库带答案

理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不计,作用力D求各杆的内力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
理论力学期末试卷1(带答案)

一.选择题(每题3分,共15分。
请将答案的序号填入划线内。
)1.空间同向平行力系1F 、2F 、3F 和4F ,如图所示。
该力系向O 点简化,主矢为'R F,主矩为OM ,则 (B )(A) 主矢主矩均不为零,且'R F 平行于O M(B) 主矢主矩均不为零,且'RF 垂直于O M(C) 主矢不为零,而主矩为零 (D) 主矢为零,而主矩不为零2.已知点M 的运动方程为ct b s +=,其中b 、c 均为常数,则( C )。
(A) 点M 的轨迹必为直线 (B) 点M 必作匀速直线运动 (C) 点M 必作匀速运动 (D) 点M 的加速度必定等于零3.如图所示若尖劈两侧与槽之间的摩擦角均为m ϕ,则欲使尖劈被打入后不致自动滑出,θ角应为( C )(A) θ≤m ϕ (B) θ≥m ϕ(C) θ≤2m ϕ (D) θ≥2m ϕ4.若质点的动能保持不变,则( D )。
(A) 该质点的动量必守恒 (B)(C) 该质点必作变速运动 (D) 5.直管AB 以匀角速度ω绕过点O 且垂直于管子轴线的定轴转动,小球M 在管内相对于管子以匀速度r v 运动,在如图所示瞬时,小球M 正好经过轴O 点,则在此瞬时小球M 的绝对速度a v 和绝对加速度a a 大小是( D )。
(A)a v =,a a = (B) a rv v =,0a a =(C) 0a v =,2a r a v ω= (D) a r v v =,2a ra v ω=二.填空题(每空2分,共30分。
请将答案填入划线内。
)1.平面汇交力系平衡的几何条件是 各力构成的力多边形自行封闭 ;平面汇交力系平衡的解析条件是0x F =∑、0y F =∑。
2.空间力偶的三个要素是 力偶矩的大小 、 力偶作用面的方位 和 力偶的转向 。
3.如图所示,均质长方体的高度30h cm =,宽度20b cm =,重量600G N =,放在粗糙水平面上,它与水平面的静摩擦系数0.4s f =。
理论力学__期末考试试题(题库_带答案)

理论⼒学__期末考试试题(题库_带答案)理论⼒学期末考试试题1-1、⾃重为P=100kN 的T 字形钢架ABD,置于铅垂⾯内,载荷如图所⽰。
其中转矩M=20kN.m ,拉⼒F=400kN,分布⼒q=20kN/m,长度l=1m 。
试求固定端A 的约束⼒。
解:取T 型刚架为受⼒对象,画受⼒图.1-2 如图所⽰,飞机机翼上安装⼀台发动机,作⽤在机翼OA 上的⽓动⼒按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作⽤⼒偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的⼒。
解:1-3图⽰构件由直⾓弯杆EBD以及直杆AB组成,不计各杆⾃重,已知q=10kN/m,F=50kN,M=6kN.m,各尺⼨如图。
求固定端A处及⽀座C的约束⼒。
1-4 已知:如图所⽰结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束⼒.解:1-5、平⾯桁架受⼒如图所⽰。
ABC 为等边三⾓形,且AD=DB 。
求杆CD 的内⼒。
1-6、如图所⽰的平⾯桁架,A 端采⽤铰链约束,B 端采⽤滚动⽀座约束,各杆件长度为1m 。
在节点E 和G 上分别作⽤载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内⼒。
解:2-1 图⽰空间⼒系由6根桁架构成。
在节点A上作⽤⼒F,此⼒在矩形ABDC平⾯内,且与铅直线成45o⾓。
ΔEAK=ΔFBM。
等腰三⾓形EAK,FBM和NDB在顶点A,B和D处均为直⾓,⼜EC=CK=FD=DM。
若F=10kN,求各杆的内⼒。
2-2 杆系由铰链连接,位于正⽅形的边和对⾓线上,如图所⽰。
在节点D沿对⾓线LD⽅向F。
在节点C沿CH边铅直向下作⽤⼒F。
如铰链B,L和H是固定的,杆重不计,作⽤⼒D求各杆的内⼒。
2-3 重为1P =980 N ,半径为r =100mm 的滚⼦A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
完整版理论力学期末考试试题题库带答案

理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。
期末理论力学试题及答案

期末理论力学试题及答案期末理论力学试题及答案解析试题一:1. 一个物体以初速度v0自由下落,垂直下拉力下滑同一个垂直塔壁的高度为h,又该物体以速度v1向右飞出塔壁。
已知物体的质量为m,请问下列哪个式子成立?A) mv0^2 = mv1^2 - 2mg | B) mv0^2 = mv1^2 | C) m(v0^2 - v1^2) =2mg | D) mv0^2 = 2mg - mv1^2答案:A解析:根据题意,物体在塔壁处获得了向右的动量,所以向右的动量等于离开之前的动能减去重力做的功。
由动能定理可得A 选项成立。
2. 一个质量为m的物体以速度v做圆周运动,其半径为r。
已知圆周运动的角频率为ω,那么任意时间t物体的加速度大小是多少?A) ω^2r | B) ωv | C) ω^2r^2 | D) ωr答案:A解析:加速度是速度对时间的导数,而速度的大小是v = ωr,所以加速度的大小为a = ωv = ω(ωr) = ω^2r。
因此 A 选项成立。
3. 力学中,牛顿第一定律描述了物体的运动状态。
请问以下哪个选项是牛顿第一定律的陈述?A) 作用力等于物体的质量乘以加速度 | B) 物体的加速度等于作用力除以质量 | C) 物体的运动状态保持不变除非受到外力作用 | D) 物体间作用的力总是相互作用答案:C解析:牛顿第一定律又称为惯性定律,它表明物体的运动状态在没有外力作用时保持不变,也就是物体静止或匀速直线运动。
因此 C 选项是牛顿第一定律的陈述。
4. 一物体质量为m1,速度为v1,另一物体质量为m2,速度为v2。
两物体之间发生弹性碰撞后,物体1速度变为v1',物体2速度变为v2'。
已知碰撞前后两物体的动量相等且碰撞前两物体相向而行,请问以下哪个选项是正确的?A) m1v1 + m2v2 = m1v1' + m2v2' | B) m1v1 = m2v2' | C) v1 + v2 = v1' + v2' | D) m1v1' + m2v2' = 0答案:A解析:根据动量守恒定律,碰撞前后系统动量的总和保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同济大学课程考核试卷(A卷)2006—2007学年第一学期命题教师签名:审核教师签名:课号:课名:工程力学考试考查:此卷选为:期中考试( )、期终考试( )、重考( )试卷年级专业学号姓名得分题号一二三四五六总分题分30 10 15 15 15 15 100 得分一、填空题(每题5分,共30分)1刚体绕O Z轴转动,在垂直于转动轴的某平面上有A,B两点,已知O Z A=2O Z B,某瞬时a A=10m/s2,方向如图所示。
则此时B点加速度的大小为__5m/s2;(方向要在图上表示出来)。
与O z B成60度角。
2刻有直槽OB的正方形板OABC在图示平面内绕O轴转动,点M以r=OM=50t2(r以mm计)的规律在槽内运动,若(ω以rad/s计),则当t=1s时,点M的相对加速度的大小为_0.1m/s2_;牵连加速度的大小为__1.6248m/s2__。
科氏加速度为_m/s2_,方向应在图中画出。
方向垂直OB,指向左上方。
3质量分别为m1=m,m2=2m的两个小球M1,M2用长为L而重量不计的刚杆相连。
现将M1置于光滑水平面上,且M1M2与水平面成角。
则当无初速释放,M2球落地时,M1球移动的水平距离为___(1)___。
(1);(2);(3);(4)0。
4已知OA=AB=L,ω=常数,均质连杆AB的质量为m,曲柄OA,滑块B的质量不计。
则图示瞬时,相对于杆AB的质心C的动量矩的大小为__,(顺时针方向)___。
5均质细杆AB重P,长L,置于水平位置,若在绳BC突然剪断瞬时有角加速度α,则杆上各点惯性力的合力的大小为_,(铅直向上)_,作用点的位置在离A端__处,并在图中画出该惯性力。
6铅垂悬挂的质量--弹簧系统,其质量为m,弹簧刚度系数为k,若坐标原点分别取在弹簧静伸长处和未伸长处,则质点的运动微分方程可分别写成__和__。
二、计算题(10分)图示系统中,曲柄OA以匀角速度ω绕O轴转动,通过滑块A带动半圆形滑道BC作铅垂平动。
已知:OA = r = 10 cm,ω = 1 rad/s,R = 20 cm。
试求ϕ = 60°时杆BC的加速度。
解:动点:滑块A,动系:滑道BC,牵连平动由正弦定理得:[5分] 向方向投影:[10分]三、计算题(15分)图示半径为R的绕线轮沿固定水平直线轨道作纯滚动,杆端点D沿轨道滑动。
已知:轮轴半径为r,杆CD长为4R,线段AB保持水平。
在图示位置时,线端A的速度为,加速度为,铰链C处于最高位置。
试求该瞬时杆端点D的速度和加速度。
解:轮C平面运动,速度瞬心P点(顺钟向)(顺钟向)[3分]选O为基点杆CD作瞬时平动,[8分]选C为基点:得(方向水平向右)[15分]四、计算题(15分)在图示机构中,已知:匀质轮C作纯滚动,半径为r,质量为m3 ,鼓轮B的内径为r,外径为R,对其中心轴的回转半径为ρ,质量为m 2,物A的质量为m 1 。
绳的CE段与水平面平行,系统从静止开始运动。
试求:(1)物块A下落距离s时轮C中心的速度与加速度;(2)绳子AD段的张力。
解:研究系统:T 2-T 1= Σ W i+ J Cω2 +J Bω2 + = m 1g s [5分]式中:,代入得:v C = [7分] ○1式两边对t求导得:a C =[10分]对物A:m= Σ,即:m 1a A = m 1g -F ADF AD = m1g -m 1a A = m 1g-[15分]五、计算题(15分)在图示桁架中,已知:F,L。
试用虚位移原理求杆CD的内力。
解:去除CD杆,代以内力和,且,设ACHE构架有一绕A之虚位移δθ,则构架BDGF作平面运动,瞬时中心在I,各点虚位移如图所示,且:,[4分] 由虚位移原理有:[8分]由δθ 的任意性,得:(拉力) [11分][15分]六、计算题(15分)在图示系统中,已知:匀质圆柱A的质量为m1,半径为r,物块B质量为m2,光滑斜面的倾角为β,滑车质量忽略不计,并假设斜绳段平行斜面。
试求:(1)以θ 和y为广义坐标,用第二类拉格朗日方程建立系统的运动微分方程;(2)圆柱A的角加速度 和物块B的加速度。
解:以θ 和y为广义坐标,系统在一般位置时的动能和势能[8分],,,,[12分] 代入第二类拉格朗日方程得系统的运动微分方程由上解得:物块B的加速度圆柱A的角加速度 [15分]理论力学试卷1理论力学试卷2理论力学3试卷参考答案及评分标准( 卷)一、判断题(下列论述肯定正确的打√,否则打×):(本题共10小题,每小题1分,共10分)1、(×)2、(×)3、(√)4、(√)5、(√)6、(×)7、(√)8、(×)9、(×)10、(√)二、单项选择题:(本题共8小题,每小题1.5分,共12分)1、(D)2、(B)3、(D)4、(A)5、(D)6、(C)7、(C)8、(C)三、填空题:(本题共3小题,10个填空,每空2分,共20分)1、, , , , , 。
2、17.5 。
3、, , 。
四、作图题:(本题共2小题,共10分)1、(4分)2、(6分)BFCF BF C ’M A五、计算题:(本题共3小题,共48分)1、(12分)解: (6分)(3分)动量方向水平向左(3分)2、(12分) 解:(1)正确求出滑块A 速度和杆AB 的角速度 (4分)(2)正确求出滑块A 加速度和杆AB 的角加速度 (8分) (1),而且与AB 连线也不垂直杆AB 做瞬时平移运动,故(2)30BBa Aa ABaBa3、(24分)(1)用动静法正确求出剪断绳子瞬时杆的角加速度和铰链A 处的约束力 (12分)X:Y:重力惯性力主矢,惯性力主矩(2)用动量矩定理正确求出剪断绳子后,AB 杆转过角度时杆的角加速度 (6分)(3)用动能定理正确求出=90度时AB 杆的角速度 (6分)理论力学期终试题(一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。
A 静止(非临界平衡)状态B 临界平衡状态C 滑动状态第1题图 第2题图2. 图(a)、(b)为两种结构,则( )。
A 图(a)为静不定的,图(b)为为静定的B 图(a)、(b)均为静不定的C 图(a)、(b)均为静定的D 图(a)为静不定的,图(b)为为静定的(二) 填空题(每题3分,共12分)1. 沿边长为的正方形各边分别作用有,,,,且====,该力系向B 点简化的结果为:主矢大小为=____________,主矩大小为=____________ 向D 点简化的结果是什么? ____________。
第1题图 第2题图2. 图示滚轮,已知,,,作用于B 点的力,求(a)(b)P Qo 30DCABF 1F 2F 3F 4RrABO力F 对A 点之矩=____________。
3. 平面力系向O 点简化,主矢与主矩如图。
若已知,,求合力大小及作用线位置,并画在图上。
第3题图 第4题图4. 机构如图,与均位于铅直位置,已知,,,则杆的角速度=____________,C 点的速度=____________。
(三) 简单计算题(每小题8分,共24分)1. 梁的尺寸及荷载如图,求A 、B 处的支座反力。
2. 丁字杆ABC 的A 端固定,尺寸及荷载如图。
求A 端支座反力。
3. 在图示机构中,已知,,杆的角速度,角加速度,求三角板C 点的加速度,并画出其方向。
(四) 图示结构的尺寸及载荷如图所示,q =10kN/m ,q 0=20kN/m 。
求A 、C 处约OR F 'OMO 2O 1CAB2O Bωq 0=6kN/m P =6kN M =4kN·m C A BO1O CAB ωα 1m 1m 2m q 0=2kN/mM =4kN·mP =2kN A B束反力。
(五) 多跨静定梁的支撑、荷载及尺寸如图所示。
已知q =20kN/m ,l =2m ,求支座A 、D 、E 处的约束反力。
(六) 复合梁的制成、荷载及尺寸如图所示,求1、2杆的内力以及固定端A 处的约束反力。
(七) 图示机构中,曲柄OA =r ,以角速度绕O 轴转动。
,O 1C =O 2D =r ,求杆O 1C 的角速度。
4.5m3m qq 0CAB q DC A B E 2m 2m 2m 2mo60G B A C HD12l l qE qo30B A r rr O 1O O 2CD五 理论力学(A Ⅰ)期终试题解答01级土木(80学时类)用(一) 单项选择题1. A2. B (二) 填空题1. 0 ; ;2.3. 合力,合力作用线位置(通过)4. ; (三) 简单计算1. 取梁为研究对象,其受力图如图所示。
有2. 取丁字杆为研究对象,其受力图如图所示。
有3. 三角板ABC 作平动,同一时刻其上各点速度、加速度均相同。
故(四) 解: (1) 以BC 为研究对象。
其受力图如图(a) 合力Q =22.5kN(2) 以整体为研究对象。
其受力图如图(b)所示。
F d=2mO 1OR 'RF OM4q 0=6kN/mP =6kNM =4kN·mC ABAxF AyF AM 1.5m1.5mmkN/m B 1m1m2mq 0=2M =4kN·mP =2kNAx F AyFABF Q=3kN(五) 解: (1) 以BC 部分为研究对象,其受力图如图(b)所示。
(2) 以CD 部分为研究对象,其受力图如图(c)(3) 以AB 部分为研究对象,其受力图如图(d)所示。
(六) 解: (1)取BC 部分为研究对象,其受力图如图(b)所示。
(2)取ED D qCABE 2m2m2m 2mq =20kN/mB CCx F CyF 2m Bx F ByF (a)(b)2m F F D C E2mDF EF Cx'Cy'Q=40kNq (c)AB q =20kN/m2m AxF Ay F AM BxF 'ByF '(d)1F 2F DEq =20kN/mExF Ey F l =2m (c)60EoGB ACHD12llq q(a)CBq =20kN/mBxF ByF 1F l =2m (b)(3)取ABC 部分为研究对象,其受力图如图(d)所示。
(七) 解:杆AB 作平面运动,A 、B 两点的速度方向如图。
由速度投影定理,有杆O 1C 的角速度为2002~2003学年 第一学期 五 理论力学(A Ⅰ)期终试题 01级土木(80学时类)用(一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。