8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析
自控例题解析

·43·第8章 非线性控制系统的分析例题解析例8-1 设非线性系统具有典型结构,试用等效增益概念分析具有死区的三位置理想继电特性(见图8-1(a))对系统稳定性的影响。
图8-1 稳定性分析解:由等效增益定义x y K /=知,等效增益曲线如图8-1(b)所示,其中∆=/M K m 。
设系统不存在非线性时,临界稳定增益为K c ,于是① 若K c >K m ,如图8-1(b)所示,则因实际增益小于临界增益K c ,所以系统稳定 ② 若K c <K m ,如图8-1(c )所示,其中x 0=M./K c ,则当x<x 0时,因m K K >,系统不稳定,x 发散;当x 增加至使x >x 0时,此时m K K <,系统稳定,x 收敛;当x 减小至使x <x 0时,重复上述过程。
可见,在这种情况下,系统将出现以x 0为振幅的自激振荡。
③ 原系统加入具有死区的理想三位置继电特性后,改善了系统的稳定性。
不论原系统是否发散,现系统都不会发散,但可能产生一个以x 0为振幅的自激振荡。
例8-2 试求图8-2所示非线性环节的描述函数。
(a ) (b )·44·图 8-2 非线性环节解:(1)对于图8-2(a ),因为t X x x y ωsin ,3==且单值奇对称,故A1=03204320432043sin 4sin 1sin 11X t td X t d t X t td y B ====⎰⎰⎰πππωωπωωπωωπ21143)(X X A j X B X N =+=图 8-3(2)对于图8-2(b ),因为图示非线性可以分解为图8-3所示两个环节并联,所以 K XMX N X N X N +=+=π4)()()(21 例8-3 试将图8-4(a ),(b )所示系统归化为一个非线性部分和一个线性部分串联的典型结构。
(a ) (b )图 8-4解:(1)G 1与G 2是小回路的负反馈,则2111G G G G +=从而得典型结构,见图8-5。
自动控制原理习题及答案(冯巧玲)

第二章习题及答案2-1 试建立题2-1图所示各系统的微分方程 [其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数]。
解(a )以平衡状态为基点,对质块m 进行受力分析(不再考虑重力影响),如图解2-1(a)所示。
根据牛顿定理可写出22)()(dtyd m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dtt y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。
对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++ (c) 应用复数阻抗概念可写出)()(11)(11s U s I csR cs R s U c r ++= (3) 2)()(R s Uc s I =(4) 联立式(3)、(4),可解得:CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为:r r c c u CR dt du u R CR R R dt du 121211+=++ (d) 由图解2-1(d )可写出[]Css I s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7)联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c 微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++ 2-2 试证明题2-2图中所示的力学系统(a)和电路系统(b)是相似系统(即有相同形式的数学模型)。
自动控制原理考试试题第八章习题及答案

所以,可控子系统为:
不可控子系统为:
8-27系统各矩阵同题8-26,试求可观测子系统与不可观测子系统的动态方程。
解:利用9-27的对偶关系实现:
可观子系统:
不可观子系统:
8-28设系统状态方程为 。说明可否用状态反馈任意配置闭环极点,若可以,求状态反馈矩阵,使闭环极点位于 ,并画出状态变量图。
解:
第八章 线性系统的状态空间分析与综合
练习题及答案
8-1已知电枢控制的直流伺服电机的微分方程组及传递函数
+
⑴设状态变量 , , 及输出量 ,试建立其动态方程;
⑵设状态变量 及 ,试建立其动态方程。
解:
(1)由题意可知: ,
由已知
可推导出
由上式,可列动态方程如下
+
y =
(2)由题意可知:
可推导出
可列动态方程如下
取
则
验证:
验证完毕。
故可控标准型实现对应的 阵为:
8-25已知系统传递函数为 ,试写出系统可控、不可观测,可观测,不可控,不可控、不可观测的动态方程。
解:
传递函数有零极点对消,因此不可控或不可观。
可控、不可观方程:
可观测、不可控方程:
不可控、不可观测方程:
8-26已知系统动态方程各矩阵为:
试求可控子系统与不可控子系统的动态方程。
解: =
,系统可控
,系统可观测。
令:
即:
解得:
8-32已知系统动态方程各矩阵为
试判别系统的可观测性;设计 维观测器,并使所有极点配置在 。
解:检查可观测性:
,可观测。设计 维降维观测器:
构造 阵,求 。
经 变换后系统方程为:
精品文档-自动控制原理(王春侠)-第八章

8.2 描 述 函 数 法 8.2.1 描述函数的基本概念
设非线性环节的输入为 x(t)=A sinωt
一般情况下,非线性环节的稳态输出y(t)是非正弦周期信号。 将y(t)用傅氏级数表示为
y t A0 An cos nt+Bn sin nt =A0 Yn sin nt+n
n =1
n =1
kx,
x ≤a
y Msignx, x >a
2
图8-1 饱和非线性特性
3
2. 死区特性
死区又称不灵敏区,如图8-2所示。其输入与输出之间关
系的表达式为
0,
x ≤Δ
y k x Δsignx, x >Δ
式中,Δ为死区范围; k为线性段的斜率。
当输入信号小于Δ时,对系统来说,虽然有输入但无输
出,只有当|x|>Δ时才有输出,这时,输出与输入之间为
第八章 非线性控制系统分析
8.1 非线性系统的基本概念 8.2 描述函数法 8.3 相平面法 8.4 Matlab应用实例
1
8.1 非线性系统的基本概念 8.1.1 典型非线性特性
控制系统中含有本质非线性环节,如果这些本质非线性特 性能用简单的折线来描述,则称为典型非线性特性。
1. 饱和特性 饱和特性是一种常见的非线性特性,如图8-1所示。其数 学表达式为
最后指出,这种方法只适用于单个的非线性元件,如果有 两个以上的非线性元件,则必须把它们合并为一个模块,否则 第二个元件的输入就不会是正弦波。
22
8.2.2 典型非线性特性的描述函数 1. 死区特性 在具有死区的元件中,当输入在死区的幅值范围内时
就没有输出。图8-6所示为死区非线性特性及其输入、输出波 形。
自动控制原理(孟华)第8章习题答案070520

第八章 非线性控制系统习题答案8-1 解:由原方程得:2225.03)5.03(),(x x x x x x x x x x f x--+-=----== ,令0==x x,得:0)1(2=+=+x x x x ,解出奇点为:1,0-=x 。
在0=x 处,特征根为:984.025.02,1j s ±=,显然为不稳定的焦点。
在1-=x 处,特征根为:225.45.02,1±=s ,显然为鞍点。
概略画出奇点附近的相轨迹如下:-1习题8-1相轨迹图8-2解:原方程可改写为:⎩⎨⎧=-+≥=++0II 0Ix x x x x x x x 0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧+-==+±-==++)(618.0,618.1,01II )(2321,01I 2,122,12鞍点-:稳定焦点:s s s js s s 推导等倾线方程:xx dx xd --==1α,则有:x x xβα=+-=11 ,即: ⎪⎪⎩⎪⎪⎨⎧-=≥--=0,11II 0,11I x x βαβα::,画出系统相平面如下:习题8-2相平面图8-3 (1)解:相平面上任一点的相轨迹斜率为:x xxdxx dsin+-=,由=dxx d,得:),2,1,0(±±==kkxπ,因此在相平面的x轴上,),2,1,0(±±==kkxπ的点均为奇点。
在x轴上满足),2,1,0(2±±==kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为稳定焦点。
在x轴上满足),2,1,0()12(±±=+=kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为鞍点。
绘制相轨迹如下图所示:习题8-3(1)相轨迹图(2)解:原方程可改写为:⎩⎨⎧=-≥=+IIIxxxxxx0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧±==±==+)(1,01II)(,01I2,122,12鞍点-:中心点:ssjss推导等倾线方程:⎪⎪⎩⎪⎪⎨⎧≥11xxxxxx,=,-=αα,画出系统相平面如下:习题8-3(2)相轨迹图(3)解:令0==xx,得0sin=x,得出系统的奇点:,2,,0ππ±±=x当,2,1,02±±==kx,κπ时,令2xx+=κπ,可以验证奇点,2,1,02±±==kx,κπ为中心点。
第8章 非线性系统分析 参考答案

参考答案一、填空题1. 非本质;本质2. 自持振荡3. 初始条件;输入信号大小4. 饱和非线性;死区非线性;间隙非线性;继电器非线性5. 不稳定6. 稳定;不稳定;半稳定7. 自左向右;自右向左 二、分析与计算题1. 求3()()y t ax t =的描述函数。
解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得2102330340320320303031()sin 1sin sin 2sin 21cos 2()2212cos 2cos 241cos 412cos 22242311(cos 2cos 4)828231(sin 284B y t td taA t td t aA td t aA t d t aA t t d t tt aA d t aA t t d t aA πππππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-⎰⎰⎰⎰⎰⎰⎰31sin 4)003234t t aA ππωω+=所以32133()44B aA N A aA A A ===2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。
题图8.1解:具有滞环的继电器非线性特性的描述函数为24()j()abN A A a Aπ=≥其描述函数负倒数特性为1j ()()4a A a N A bπ-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4abπ-的直线。
由于10()(21)(0.41)G s s s =++,所以222222222210(j )(2j 1)(0.4j 1)10(12j )(10.4j )(14)(10.16)10(1 2.4j 0.8)(14)(10.16)10824j (14)(10.16)(14)(10.16)G ωωωωωωωωωωωωωωωωω=++--=++--=++-=-++++由以上可知,1()N A -曲线与(j )G ω必有交点,而且交点为稳定的,因此会产生自持振荡。
非线性控制系统的相平面分析法讲解

7-5 非线性控制系统的相平面分析法相平面法在分析非线性系统时是很有用处的。
但是,我们在介绍非线性系统的分析方法之前,先讨论一下相平面法在分析线性二阶系统中的应用是很有好处的。
因为许多非线性元件特性一般都可分段用线性方程来表示,所以非线性控制系统也可以用分段线性系统来近似。
一、线性控制系统的相平面分析1、阶跃响应 设线性二阶控制系统如图7-38所示。
若系统开始处于平衡状态。
试求系统在阶跃函数)(1)(0t R t r ⋅= 作用下,在e e -平面上的相轨迹。
建立系统微分方程式,由图示系统可得Ke c cT =+ 因为c r e -=,代入上式得r r T Ke e e T +=++ (7-31) 对于->⋅=0),(1)(0t t R t r 时,0)()(==t r t r因此上式可写成0=++Ke e e T (7-32)方程(7-32)与(7-22)式相仿。
因为假设系统开始处于平衡状态,所以误差信号的初始条件是0)0(R e =和0)0(=e。
e e -平面上的相轨迹起始于)0,(0R 点,而收敛于原点(系统的奇点)。
当系统特征方程的根是共轭复数根,并且位于左半平面时,其相轨迹如图7-39(a)所示。
根据ee -平面上的相轨迹就可方便的求得c c -平面上系统输出的相轨迹,如图7-39(b)所示。
由图7-39可见,欠阻尼情况下系统的最大超调量P σ及系统在稳态时的误差为零。
因为e e -平面相轨迹最终到原点,即奇点;所以在cc -平面上相轨迹最终到达0R c =的稳态值,则奇点坐标为)0,(0R 。
2、斜坡响应 对于斜坡输入t V t r 0)(=;当0>t 时,)(t r 的导数0)(V t r= 及0)(=t r 。
因此,方程(7-31)可以写成0V Ke e eT =++ 或 0)(0=-++KV e K e e T 令v e K V e =-0,代入上式,则有0V Ke ee T =++ννν (7-33) 在v v ee -平面上,方程(7-33)给出了相平面图与在e e -平面上方程(7-32)给出的相平面图是相同的。
《电力系统分析》第8章习题答案

−
j
900
⎥ ⎥
=
⎢ ⎢0.494e
j 2550
⎥ ⎥
1 ⎥⎦⎢⎣2e j1350 ⎥⎦
⎢⎣0.195e
j1350
⎥ ⎦
8-13 试画出图 8-62 所示电力系统 k 点发生接地短路时的正序、负序和零序等值网络。
图 8-62 习题 8-13 附图
解:正序、负序、零序等值网络见下图 a)、b)、c)。
(3)k 点发生 a、c 两相接地短路时
Ib1
=
j( X 1∑
E1Σ
=
+ X 2∑ // X 0∑ )
j1 j(0.202 + 0.214 // 0.104)
= 3.677
Ib2
=
−
X 0∑ X2∑ + X0∑
Ib1
=
−
0.104 0.214 + 0.104
× 3.677
=
−1.203
Ib0
=
−
X 2∑ X2∑ + X0∑
Ib1
=
− 0.214 × 3.677 0.214 + 0.104
=
−2.474
U b1 = U b2 = U b0 = − jX 2∑ Ib2 = − j0.214 × (−1.203) = j0.257
Ib = 0
Ic = a 2 Ib1 + aIb2 + Ib0 = e j240° × 3.677 − e j120° ×1.203 − 2.474 = 5.624e− j131.29° Ia = aIb1 + a2 Ib2 + Ib0 = e j120° × 3.677 − e j240° ×1.203 − 2.474 = 5.624e j131.29° Ub = 3Ub1 = 3× j0.257 = j0.771 U a = U c = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 习题
8-1已知具有理想继电器的非线性系统如图8-1所示,试用相平面法分析:
图8-1
(1)T d =0时系统的运动;
(2)T d =0.5时系统的运动,并说明比例微分控制对改善系统性能的作用; (3)T d =2,并考虑实际继电器有延迟时系统的运动。
8-2 设三个非线性系统的非线性环节一样,其线性部分分别为 (1)1
();(0.11)
G s s s =
+
(2)2
();(1)G s s s =
+ (3)2(1.51)
()(1)(0.11)
s G s s s s +=
++
用描述函数法分析时,哪个系统分析的准确度高。
8-3某单位反馈系统,其前向通路中有一描述函数4
()j
e
N A A
π-=的非线性元件,
线性部分的传递函数为15
()(0.51)
G s s s =+,试用描述函数法确定系统是否存在
自振?若有,参数是多少?
8-4已知非线性系统的结构图如图8-2所示,图中非线性环节的描述函数
6
()(0),2
A N A A A +=>+试用描述函数法确定:
图8-2
(1)使该非线性系统稳定,不稳定以及产生周期运动时,线性部分的k 值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。
8-5非线性系统如图8-3所示,试用描述函数法分析周期运动的稳定性,并确定系统输出信号振荡的振幅和频率。
图8-3
8-6试用描述函数法说明图8-4所示系统必然存在自振,并确定c 的自振振幅和频率,画出c,x,y 的稳态波形。
图8-4
8-7某线性系统的结构图如图8-5所示,试分别绘制下列三种情况时,变量e 的相轨迹,并根据相轨迹分别作出相应的e(t)曲线。
图8-5
(1)J=1,K 1=1,K 2=2,初始条件e(0)=3, (0)0;(0)1,(0) 2.5e e e ===-
; (2)J=1,K 1=1,K 2=0.5,初始条件e(0)=3, (0)0;(0)3,(0)0e e e ==-=
; (3)J=1,K 1=1,K 2=0,初始条件e(0)=1, (0)1;(0)0,(0)2e e e ===
;
8-8设一阶非线性系统的微分方程为3x x x =-+
试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。
8-9试确定下列方程的奇点及类型,并用等倾线法绘制它们的相平面图: (1)||0x x x ++=
; (2)0x x sign x ++=
; (3)0x sin x
+= ;
(4)||0x x
+= ;
(5)112,
212,2x x x x x x ⎧=+⎪⎨⎪=+⎩
8-10若非线性系统的微分方程为 (1)2(30.5)0x x x x x +-++=
; (2)0x x x x
++=
; (3)20x x x
++= 。
试求系统的奇点,并概略绘制奇点附近的相轨迹。
8-11非线性系统的结构图如图8-6所示,系统开始是静止的,输入信号r(t)=4·1(t),试写出开关线方程,确定奇点的位置和类型,做出该系统的相平面图,并分析系统的运动特点。
图8-6
8-12变增益控制系统的结构图及其中非线性元件G N
的输入输出特性如图8-7
图8-7
所示,设系统开始处于零初始状态,若输入信号r(t)=R ·1(t),且R>e 0;kK<
1
4T
<K ,试绘出系统的平面图,分析采用变增益放大器对系统性能的影响。
8-13图8-8为一带有库仑摩擦的二阶系统,试用相平面法讨论库仑摩擦对系统单
位阶跃响应的影响。
图8-8
8-14设非线性系统如图8-62所示,输入为单位斜坡函数。
试在e e∙-平面上绘制相轨迹。
图8-9。