51单片机C语言中断程序定时计数器

合集下载

51单片机定时器的使用

51单片机定时器的使用

151单片机定时器/计时器的使用步骤:1、 打开中断允许位:对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示:EA : 为0时关所有中断;为1时开所有中断ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开2、 选择定时器/计时器的工作方式:定时器TMOD 格式CPU 在每个机器周期内对T0/T1检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。

因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。

由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。

通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。

方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。

13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。

方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。

2方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。

当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。

方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。

在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。

51单片机定时器c语言

51单片机定时器c语言

51单片机定时器c语言51单片机是一款广泛应用于嵌入式系统中的芯片,其具有强大的功能和较高的性能表现。

在51单片机中,定时器是其中一项非常重要的功能,因为它可以帮助我们完成很多任务。

在51单片机中使用定时器,我们需要编写相应的c语言程序。

接下来,我将为大家介绍一些关于51单片机定时器c语言编程的知识。

首先,我们需要了解51单片机定时器的工作原理。

51单片机中的定时器是一个计数器,它的计数值会随着时间的流逝而增加。

当计数值达到了设定的阈值时,定时器就会产生一个中断信号。

我们可以通过对这个中断信号进行相应的处理,来完成各种任务。

为了使用51单片机的定时器,我们需要用c语言编写相应的程序。

比如,我们可以通过以下代码来初始化定时器:void timer_init(int time) {TMOD &= 0xF0; // 设定计数模式TL0 = time; // 设置定时器初值TH0 = time >> 8; // 设置定时器初值TR0 = 1; // 开始定时器}这段代码中,我们首先设定了计数模式,并且通过设置初值来调节定时器的计数时间。

最后,我们开启了定时器,让它开始进行计时。

除了初始化定时器之外,我们还需要为定时器编写中断处理程序。

比如,下面是一个简单的定时器中断处理程序:void timer_interrupt() interrupt 1 {// 处理中断信号}在这个中断处理程序中,我们可以编写相应的代码来完成各种任务。

比如,我们可以通过判断定时器计数的次数来控制LED的闪烁频率,或者通过定时器中断信号来完成数据发送等任务。

总结来说,51单片机定时器是非常重要的一个功能,它可以帮助我们完成很多任务。

要使用定时器,我们需要首先了解定时器的工作原理,并且编写相应的c语言程序实现。

如果我们掌握了这些技能,就可以开发出更加完善的嵌入式系统。

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理80C51单片机是一种常用的微控制器,其定时器/计数器(Timer/Counter)是实现定时和计数功能的重要组件。

以下简要介绍80C51单片机定时器/计数器的工作原理:1. 结构:定时器/计数器由一个16位的加法器构成,可以自动加0xFFFF(即65535)。

定时器/计数器的输入时钟可以来自系统时钟或外部时钟源。

2. 工作模式:定时模式:当定时器/计数器的输入时钟源驱动加法器不断计数时,可以在达到一定时间后产生中断或产生其他操作。

计数模式:当外部事件(如电平变化)发生时,定时器/计数器的输入引脚可以接收信号,使加法器产生一个增量,从而计数外部事件发生的次数。

3. 定时常数:在定时模式下,定时常数(即定时时间)由预分频器和定时器/计数器的初值共同决定。

例如,如果预分频器设置为1,定时器/计数器的初值为X,那么实际的定时时间 = (65535 - X) 预分频系数输入时钟周期。

在计数模式下,定时常数由外部事件发生的时间间隔决定。

4. 溢出和中断:当加法器达到65535(即0xFFFF)时,会产生溢出,并触发中断或其他操作。

中断处理程序可以用于执行特定的任务或重置定时器/计数器的值。

5. 控制寄存器:定时器/计数器的操作可以通过设置相关的控制寄存器来控制,如启动/停止定时器、设置预分频系数等。

6. 应用:定时器/计数器在许多应用中都很有用,如时间延迟、频率测量、事件计数等。

为了充分利用80C51单片机的定时器/计数器功能,通常需要根据实际应用需求配置和控制相应的寄存器,并编写适当的软件来处理定时器和计数器的操作。

单片机原理及应用教程(C语言版)-第6章 MCS-51单片机的定时器计数器

单片机原理及应用教程(C语言版)-第6章 MCS-51单片机的定时器计数器

6.1.1 单片机定时器/计数器的结构
MCS-51单片机定时器/计数器的原理结构图
T0(P3.4) 定时器0 定时器1 T1(P3.5) 定时器2 T2EX(P1.1)
T2(P1.0)
TH0
溢 出 控 制
TL0
模 式 溢 出
TH1
控 制
TL1
模 式 溢 出
TH2
TL2
重装 捕获
RCAP 2H
RCAP 2L
6.2.2 T0、T1的工作模式
信号源 C/T设为1,为计数器,用P3.4引脚脉冲 C/T设为0,为定时器,用内部脉冲 运行控制 GATE=1,由外部信号控制运行 此时应该设置TR0=1 P3.2引脚为高电平,T0运行 GATE=0, 由内部控制运行 TR0设置为1,T0运行
6.2.2 T0、T1的工作模式
6.2.3 T0、T1的使用方法
例6-1 对89C52单片机编程,使用定时器/计 数器T0以模式1定时,以中断方式实现从P1.0引 脚产生周期为1000µ s的方波。设单片机的振荡频 率为12MHz。 分析与计算 (1)方波产生原理 将T0设为定时器,计算出合适的初值,定 时到了之后对P1.0引脚取反即可。 (2)选择工作模式 计算计数值N
6.2.1 T0、T1的特殊功能寄存器
TR1、TR0:T1、T0启停控制位。 置1,启动定时器; 清0,关闭定时器。
注意: GATE=1 ,TRx与P3.2(P3.3)的配合控制。
IE1、IE0:外部中断1、0请求标志位 IT1、IT0:外部中断1、0触发方式选择位
6.2.2 T0、T1的工作模式
6.2.1 T0、T1的特殊功能寄存器
GATE=0,禁止外部信号控制定时器/计数器。 C/T——定时或计数方式选择位 C/T=0,为定时器;C/T=1,为计数器 计数采样:CPU在每机器周期的S5P2期间,对 计数脉冲输入引脚进行采样。

MCS-51单片机内部定时器计数器

MCS-51单片机内部定时器计数器
•MCS-51单片机内部定时器计数器
二、 方式1
方式 1(16位计数器)
•MCS-51单片机内部定时器计数器
方式1和方式0的工作原理基本相同,唯一 不同是T0和T1工作在方式1时是16位的计数/定 时器。
方式1时的计数长度M是2的16次方。16位 的初值直接拆成高低字节,分别送入TH和TL 即可。
•MCS-51单片机内部定时器计数器
M1 M0:四种工作方式的选择位 工作方式选择表
M1 M0 方式
说明
0 0 0 13 位定时器(TH的 8 位和TL的低 5 位)
0 1 1 16 位定时器/计数器
1 0 2 自动重装入初值的 8 位计数器 T0 分成两个独立的 8 位计数器,
1 1 3 T1 在方式 3 时停止工作
定时 1 ms的初值:
因为 机器周期=12÷6 MHz= 2 μs
所以 1 ms内T0 需要计数N次:
•MCS-51单片机内部定时器计数器
N= 1 ms÷2 μs = 500
由此可知: 使用方式 0 的 13 位计数器即可, T0 的初值X为 X=M-N=8 192-500=7 692=1E0CH 但是, 因为 13 位计数器中, 低 8 位 TL0 只使用了 5 位, 其 余码均计入高 8 位TH0 的初值, 则 T0
0。TF产生的中断申请是否被接受, 还需要由中断计数器T1、 T0 的运行控制位,
通过软件置 1 后, 定时器 /计数器才开始工作, 在系统复位时
被清 0。
•MCS-51单片机内部定时器计数器
定时器的工作方式
一、 方式 0
方式 0(13位计数器)
•MCS-51单片机内部定时器计数器
•MCS-51单片机内部定时器计数器

51单片机定时计数器的工作原理

51单片机定时计数器的工作原理

51单片机定时计数器的工作原理
51单片机是一种常用的微控制器,它具有多个定时计数器,其中包括定时器0和定时器1。

这些定时计数器是通过内部时
钟源提供的脉冲进行计数的。

定时器0和定时器1是独立的计数器,它们可以用于不同
的应用。

这里我们将主要关注定时器0的工作原理。

定时器0
由一个八位计数器和一个控制寄存器组成。

当定时器0启动时,它会根据时钟源提供的脉冲进行计数,每个脉冲会使计数器的值增加1。

定时器0的计数范围为0-255,即八位二进制数。

通过控制寄存器,我们可以设置定时器0的工作模式、计
数器的初始值以及时钟源的频率。

定时器0可以以不同的方式工作,包括定时模式和计数模式。

在定时模式下,我们可以设置一个初始值,并在每次计数
器增加到该值时产生一个中断。

这样就可以实现精确的定时功能。

定时器0的中断服务程序可以完成各种操作,例如控制其他外设、延时等。

在计数模式下,定时器0将简单地计数外部触发信号的脉
冲次数。

这可以用于测量外部事件的时间间隔或频率。

需要注意的是,定时器0的工作需要通过编程来完成。


们可以使用汇编语言或C语言来配置定时器0的寄存器,并
设计相应的中断服务程序。

51单片机定时器的工作原理是通过定时器0和定时器1实
现计数功能。

定时器0可以在定时模式或计数模式下工作,通过设置计数值和时钟源频率,实现精确的定时功能或测量外部
事件的时间间隔或频率。

编程则是必不可少的,通过配置寄存器和编写中断服务程序来实现定时器的工作。

c51单片机计数器触发机制

c51单片机计数器触发机制

C51单片机的计数器是通过触发机制来工作的。

在C51单片机中,有两种常见的计数器类型:定时器和计数器/计时器。

1. 定时器(Timer):
定时器用于生成一定时间间隔的定时事件。

C51单片机中的定时器是基于内部或外部时钟源进行计数的。

当定时器达到设定的计数值时,会触发定时器中断,并执行相应的中断服务程序(ISR)。

可以使用定时器来生成精确的时间延迟、控制周期性任务等。

2. 计数器/计时器(Counter/Timer):
计数器/计时器可以用来计数外部事件的脉冲数量或测量时间间隔。

它可以根据外部事件的触发边沿(上升沿或下降沿)来触发计数动作。

当计数器达到设定的计数值时,也可以触发计数器中断,并执行相应的中断服务程序(ISR)。

计数器还可以被配置为计时器模式,用于测量时间间隔。

在C51单片机中,计数器的触发机制通常是通过设置相关的寄存器来实现的。

这些寄存器包括计数器的初始值、计数模式、计数触发边沿等。

通过配置这些寄存器,可以灵活地控制计数器的工作方式和触发条件。

需要注意的是,具体的计数器触发机制可能会因不同的单片机型号而有所差异。

因此,在编程时应参考相关的芯片手册或数据表,以了解具体的计数器触发机制及其相应的寄存器设置。

1。

51单片机延时函数

51单片机延时函数

51单片机延时函数在嵌入式系统开发中,51单片机因其易于学习和使用、成本低廉等优点被广泛使用。

在51单片机的程序设计中,延时函数是一个常见的需求。

通过延时函数,我们可以控制程序的执行速度,实现定时器功能,或者在需要的时候进行延时操作。

本文将介绍51单片机中常见的延时函数及其实现方法。

一、使用for循环延时这种方法不精确,但是对于要求不高的场合,可以用来估算延时。

cvoid delay(unsigned int time){unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);}这个延时函数的原理是:在第一个for循环中,我们循环了指定的时间次数(time次),然后在每一次循环中,我们又循环了1275次。

这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。

但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有很大差异,所以只适用于对延时时间要求不精确的场合。

二、使用while循环延时这种方法比使用for循环延时更精确一些,但是同样因为硬件和编译器的不同,延时时间会有差异。

cvoid delay(unsigned int time){unsigned int i;while(time--)for(i=0;i<1275;i++);}这个延时函数的原理是:我们先进入一个while循环,在这个循环中,我们循环指定的时间次数(time次)。

然后在每一次循环中,我们又循环了1275次。

这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。

但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有差异,所以只适用于对延时时间要求不精确的场合。

三、使用定时器0实现精确延时这种方法需要在单片机中开启定时器0,并设置定时器中断。

在中断服务程序中,我们进行相应的操作来实现精确的延时。

这种方法需要使用到单片机的定时器中断功能,相对复杂一些,但是可以实现精确的延时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机C语言中断程序定时/计数器
程序一
利用定时/计数器T0从P1.0输出周期为1s 的方波,让发光二极管以1HZ闪烁,
#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit P1_0=P1^0;
uchar tt;
void main() //主函数
{
TMOD=0x01;//设置定时器0为工作方式1
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
while(1);//等待中断产生
}
void timer0() interrupt 1
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
tt++;
if(tt==20)
{
tt=0;
P1_0=~P1_0;
}
}
程序二
利用定时/计数器T1产生定时时钟,
由P1口控制8个发光二极管,
使8个指示灯依次一个一个闪动,
闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。

#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit P1_0=P1^0;
uchar tt,a;
void main() //主函数
{
TMOD=0x01;//设置定时器0为工作方式1 TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
a=0xfe;
while(1);//等待中断产生
}
void timer0() interrupt 1
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
tt++;
if(tt==2)
{
tt=0;
a=_crol_(a,1);
}
}
程序三
同时用两个定时器控制蜂鸣器发声,
定时器0控制频率,定时器1控制同个
频率持续的时间,间隔2s依次输出
1,10,50,100,200,400,800,
1k(hz)的方波
#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit beep=P2^3;
uchar tt;
uint fre,flag;
void main() //主函数
{
fre=50000;
TMOD=0x11;//设置定时器0,定时器1为工作方式1
TH0=(65536-fre)/256;
TL0=(65536-fre)%256;
TH1=(65536-50000)/256;
TL1=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
ET1=1;
TR1=1;
TR0=1;//启动定时器0
while(1);//等待中断产生
}
void timer0() interrupt 1 //定时器0中断
{
TR0=0; //进中断后先把定时器0中断关闭,防止内部程序过多而造成中断丢失
TH0=(65536-fre)/256;
TL0=(65536-fre)%256;
tt++;
if(flag<40) //以下几个if分别用来选取不同的频率
{
tt=0;
fre=50000;
beep=~beep;
}
if(flag>=40&&flag<80) {
tt=0;
fre=50000;
beep=~beep;
}
if(flag>=80&&flag<120) {
tt=0;
fre=10000;
beep=~beep;
}
if(flag>=120&&flag<160) {
tt=0;
fre=5000;
beep=~beep;
}
if(flag>=160&&flag<200) {
tt=0;
fre=2500;
beep=~beep;
}
if(flag>=200&&flag<240) {
tt=0;
fre=1250;
beep=~beep;
}
if(flag>=240&&flag<280) {
tt=0;
fre=625;
beep=~beep;
}
if(flag>=280&&flag<320) {
tt=0;
fre=312;
beep=~beep;
}
if(flag>=320&&flag<360)
{
tt=0;
fre=156;
beep=~beep;
}
TR0=1;
}
void timer1() interrupt 3 //定时器1中断用来产生2秒时间定时{
TH1=(65536-50000)/256;
TL1=(65536-50000)%256;
flag++;
if(flag==360)
{
flag=0;
fre=50000;
}
程序四
用定时器以间隔500MS在6位数码管上依次显示0、1、2、3....C、D、E、F,重复。

#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit dula=P2^6; //数码管段选锁存端
sbit wela=P2^7; ////数码管位选锁存端
uchar num,tt;
uchar code table[]={
0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
void main()
{
num=0;
TMOD=0x01;//设置定时器0为工作方式1
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
dula=1;
P0=0x3f; //给段开始送显示0。

dula=0;//关闭段选锁存端,防止开始时出现乱码。

wela=1;//11101010
P0=0xc0; // 打开六个数码管位选
wela=0;
while(1)
{
if(tt==10) //每进入10次中断即为500ms,执行一次显示变化。

{
tt=0;
num++;
if(num==16)
num=0;
dula=1;
P0=table[num];
dula=0;
}
}
}
void exter0() interrupt 1 // 定时器0中断{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
tt++;
}。

相关文档
最新文档