基于单片机的心率检测系统设计

合集下载

基于51单片机的心率计设计

基于51单片机的心率计设计

基于51单片机的心率计设计一、引言心率是人体健康状况的一个重要指标,测量心率对于预防心血管疾病和监控身体健康非常重要。

本文将介绍基于51单片机的心率计的设计。

二、硬件设计1. 传感器心率计的核心是心率传感器,用于检测心脏的跳动并转化为电信号。

常见的心率传感器有光电传感器和压电传感器。

本设计选用光电传感器,通过红外光发射二极管和光敏二极管组成,以非侵入性的方式测量心率。

2. 信号放大与滤波电路由于心率信号较小,需要经过放大与滤波电路进行信号处理。

设计中使用运放对信号进行放大,并通过带通滤波器滤除杂散信号。

3. 数模转换放大滤波后的心率信号是模拟信号,需要通过模数转换器(ADC)将其转换为数字信号,以便后续处理和显示。

4. 显示屏心率计的设计中需要一个合适的显示屏来显示测量出的心率数值。

常见的显示屏有LCD液晶屏和LED数码管。

5. 51单片机本设计使用51单片机作为控制核心,负责对信号的采集、处理和显示。

51单片机具有成熟的开发环境和丰富的外设资源,非常适合嵌入式系统的设计。

三、软件设计1. 信号采集通过51单片机的IO口连接传感器,定时采集传感器输出的心率信号,并将其转换为数字信号。

2. 信号处理通过软件算法对采集到的心率信号进行滤波和处理,去除噪声和干扰,提取出准确的心率数值。

3. 心率计算根据心率信号的特征,设计一个合适的算法对心率进行计算。

常用的算法有峰值检测法和自相关法等。

4. 数据显示将计算得到的心率数值通过LCD屏或数码管显示出来,以便用户直观地了解自己的心率状况。

四、实验结果与讨论经过实验验证,基于51单片机的心率计设计能够准确地测量心率,并将心率数值显示在屏幕上。

通过与商用心率计的比对,结果显示该设计具有较高的准确性和稳定性。

五、应用前景基于51单片机的心率计设计可以应用于医疗领域、体育训练和健康监控等方面。

例如,可以将心率计嵌入健康手环中,实时监测用户的心率状况,并提醒用户进行适当的运动。

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计心率测试仪是一种用来测量人体心率的设备,它使用单片机技术来实现数据处理和显示功能。

本文将介绍基于单片机的心率测试仪的设计原理、硬件组成以及软件实现。

一、设计原理心率测试仪的设计原理是通过测量人体的心电信号来计算心率。

心电信号是由心脏产生的微弱电流,可以通过电极贴在人体皮肤上进行测量。

传感器将心电信号转换为模拟电压信号,然后经过滤波处理和放大处理后,再经过A/D转换,转换为数字信号供单片机处理。

单片机通过计算心电信号的周期来得到心率值,并将结果显示在液晶屏上。

二、硬件组成1.单片机:选择一款适用的单片机,如STM32系列的单片机,具有高性能和丰富的外设接口,以满足心率测试仪的需求。

2.心电信号传感器:选择一款专门用于心电信号测量的传感器,如AD8232芯片,可以提供可靠的心电信号采集。

3.滤波器:使用滤波器对心电信号进行滤波处理,去除杂散信号,只保留心电信号的频率分量。

4.放大器:为了增强心电信号的幅度,需要使用放大器来对滤波后的信号进行放大处理,方便后续的A/D转换。

5.A/D转换器:将放大后的模拟信号转换为数字信号,供单片机进一步处理。

三、软件实现1.心电信号采集与处理:通过传感器采集心电信号,并经过滤波和放大处理,得到滤波后的模拟信号。

2.A/D转换:将模拟信号通过A/D转换器转换为数字信号,供单片机处理。

3.心率计算:单片机通过计算心电信号的周期来得到心率值,可以使用峰值检测算法或阈值判定算法来实现。

4.数据显示:将计算得到的心率值通过串口或并口发送到液晶屏上进行显示,可以设计显示界面,包括心率值、时间等信息。

总结:基于单片机的心率测试仪设计主要包括硬件组成和软件实现两个部分。

硬件组成包括单片机、心电信号传感器、滤波器、放大器、A/D 转换器和液晶屏等。

软件实现包括心电信号采集与处理、A/D转换、心率计算和数据显示等。

通过合理的设计和编程,可以实现一个功能完善的心率测试仪。

基于单片机的心率计设计

基于单片机的心率计设计

基于单片机的心率计设计
一、硬件设计
1.核心处理器:选用STM32单片机,具有丰富的外设资源,大
内存容量,高性能,在实现心率计功能方面非常适合。

2.心率传感器模块:选用现有的心率传感器模块,如MAX30102。

3.显示模块:可以采用OLED显示模块或者LCD模块来显示心率值。

4.按键模块:添加一个按键模块,用于操作心率计。

5.电源模块:设计适合的电源模块,以保障心率计稳定工作。

二、软件设计
1.初始化:在程序初始化时,配置好单片机的外设,包括时钟,GPIO口,定时器等。

2.心率检测:读取心率传感器的数据,通过波形处理等算法,
实时计算出心率值,然后将其显示在屏幕上。

3.数据存储:可以在单片机内部或外部添加存储芯片,将检测
到的数据保存下来,以方便后期分析。

同时,可以添加一个实时时
钟模块,记录下每次检测的时间。

4.操作界面:添加按键模块,实现心率计的开关、数据存储等
功能。

5.通信功能:可以添加一个蓝牙模块,将心率数据传输到手机
或其他设备上,以便进行分析和管理。

三、应用场景
基于单片机的心率计可以被广泛应用于医疗、运动等领域。


医疗领域,可以用于监测老年人、患病人士等人群的心率变化情况。

在运动领域,可以作为一款运动手环,记录运动者运动时的心率变
化情况。

同时,基于单片机的心率计也可以成为一种新颖的DIY硬
件项目,符合日益增长的Maker文化需求。

基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计随着科技的不断进步,智能化设备在日常生活中的应用越来越广泛。

心率体温检测系统作为一种应用广泛的智能设备,可以实时监测人体的心率和体温的变化情况,为人们的健康提供及时准确的数据支持。

本文将介绍一个基于51单片机的心率体温检测系统的设计方案。

一、系统概述本心率体温检测系统由硬件和软件两部分组成,硬件部分包括传感器模块、信号处理模块和显示模块,软件部分则是通过51单片机进行数据的采集和处理,并在显示模块上进行实时的结果显示。

二、硬件设计1. 传感器模块本系统采用心率传感器和体温传感器进行数据的采集。

心率传感器采集心率信号,体温传感器采集体温信号。

这两个传感器通过模拟信号将采集的数据传递给信号处理模块。

2. 信号处理模块信号处理模块对从传感器模块采集到的心率和体温信号进行滤波和放大处理,提高信号的精确性和可读性。

经过处理后的信号将被发送给显示模块进行实时显示。

3. 显示模块显示模块采用OLED显示屏,可以实时显示心率和体温的数值,以及相应的警报信息。

用户可以通过显示屏上的按键进行操作和设定。

三、软件设计1. 数据采集51单片机通过模拟输入引脚采集来自传感器模块的心率和体温信号。

通过定时中断的方式,可以实现对信号的连续采集。

2. 数据处理采集到的数据通过A/D转换进行数字化,并存储到内部RAM中。

通过计算和处理,可以得到心率和体温的准确数值。

3. 数据显示通过串行通信接口,将处理后的数据发送到显示模块,并通过OLED显示屏进行实时展示。

用户可以通过按键控制,实现不同数据的显示切换。

四、系统特点1. 精确性高本系统通过合理的传感器选择和信号处理,可以保证心率和体温数据的准确性,为用户提供可靠的健康数据支持。

2. 实时监测本系统能够实时监测心率和体温的变化情况,并将结果实时显示在屏幕上。

用户可以时刻关注自身的健康状况。

3. 便捷性基于51单片机的心率体温检测系统体积小巧,易于携带和使用。

基于单片机的心率检测系统设计

基于单片机的心率检测系统设计

目录1.引言 (2)2.系统基本方案 (2)2.1.系统总结构 (3)2.2.各个部分电路的方案选择及分析 (3)2.2.1.脉搏传感器部分 (3)2.2.2.单片机选择 (3)2.2.3.显示部分 (4)2.3.系统各模块的最终方案 (4)3.系统硬件设计 (5)3.1.单片机处理电路 (5)3.1.1.STC89C51系列单片机的主要性能特点: (5)3.1.2 .C51系列单片机的基本组成: (6)3.2.复位电路 (9)3.2.1.单片机复位电路 (9)3.3.振荡电路 (10)3.4.脉搏传感器部分 (10)3.4.1.HK-2000A 集成化脉搏传感器 (10)3.4.2.脉搏传感器接收电路 (12)3.4.3 .电源电路 (12)3.5显示报警部分 (13)3.5.1.数码管显示电路 (13)4.系统软件设计 (14)4.1 主程序流程的设计 (14)4.2 定时器/计数器中断程序流程的设计 (15)4.3 显示程序流程的设计 (16)5.总结 (18)参考文献 (19)1.引言心率是最为常见的临床检查与生理研究的生理现象,且包含两个人类生命的重要信息,那就是血管和心脏的生理状态。

人体各器官的健康状况、疾病等信息将以某种方式出现在脉冲的脉冲条件。

许多有诊断价值的信息,比如有关心脏、内外循环和神经等系统的动态信息,我们可以通过对脉搏波检测脉冲图包含大量的诊断价值信息,也可以用来预测一些身体器官结构和功能的转变趋势, 通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。

同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号[1]。

在医院临床护理和日常的中老年保健中,脉搏是一个基本的生活指数,因此脉搏测量是最常见的生活特征提取。

近年来在日常监护测仪器,如便携式电子血压计,可以完成脉冲测量。

但是这种便携式电子血压计利用微型气泵压力橡胶气球,每次测量都需要一个压缩和解压缩的过程,有体积庞大、脉搏检测的精确度低、加减压过程会有不适等等的不足。

基于单片机的心率设计

基于单片机的心率设计

基于单片机的心率设计引言:心率是测量人体健康状况的重要指标之一,通过监测心率可以及时了解人体的健康状况,对心脑血管疾病的预防和治疗具有重要意义。

本文将基于单片机设计一款心率检测装置,实现心率的实时监测和数据的显示。

一、设计方案1.硬件部分:(2)单片机:选用性能稳定的单片机,如STM32系列单片机,通过单片机来控制心率传感器进行数据采集和处理。

(3)显示模块:选择一款合适的显示模块,如OLED模块或LCD模块,用于实时显示心率数据。

2.软件部分:(1)心率检测算法:设计心率检测算法,通过心率传感器采集到的数据进行心率计算,可以采用波峰检测算法或者傅里叶变换等方法进行心率的计算。

(2)数据处理与显示:通过单片机进行数据的处理和显示,将计算得到的心率数据实时显示在显示模块上,并可以设置报警阈值,当心率超过设定的阈值时进行报警。

二、系统设计及实现1.硬件设计:(1)搭建硬件电路:将心率传感器与单片机进行连接,连接时需要注意信号的保护和滤波,以提高数据的准确性和可靠性。

(2)连接显示模块:将显示模块与单片机进行连接,将计算得到的心率数据通过串口或者I2C总线传输到显示模块上进行显示。

2.软件设计:(1)初始化:进行单片机和心率传感器的初始化工作,配置相应的引脚和寄存器。

(2)数据采集:设置数据采集的频率和时长,通过心率传感器采集心率数据,并进行滤波和去噪处理。

(3)心率计算:采用波峰检测算法或者傅里叶变换等方法,对心率数据进行处理和计算,得到实时的心率数值。

(4)数据显示:将计算得到的心率数值通过串口或I2C传输到显示模块上进行显示。

(5)报警功能:设置心率的报警阈值,当心率超过设定的阈值时,通过蜂鸣器或者LED进行报警。

三、总结和展望本文基于单片机实现了心率检测装置的设计,通过心率传感器采集到的数据计算得到心率,并实时显示在显示模块上。

该装置具有实时性和准确性,并可以设置报警功能,以提醒用户注意心率异常。

基于51单片机的心率计设计

基于51单片机的心率计设计一、引言心率是反映心脏功能的重要指标之一,对于人体健康的监测具有重要意义。

本文将介绍一种基于51单片机的心率计设计方案,通过测量心电信号来实时监测心率变化,并将结果显示在液晶屏上。

二、硬件设计1. 传感器选择心电信号的采集是心率计设计的关键,常用的传感器有心电图传感器和心率带。

本设计选择心电图传感器作为采集装置,它能够直接测量心脏电活动,并将信号转化为模拟电压。

2. 信号放大与滤波由于心电信号较弱且容易受到干扰,需要对信号进行放大和滤波处理。

可以采用运算放大器进行信号放大,并通过滤波电路去除高频干扰和基线漂移。

3. 信号采样与转换经过放大和滤波处理的心电信号需要进行模数转换,将模拟信号转换为数字信号以便单片机处理。

可以选择12位的AD转换器进行采样,并通过SPI接口与单片机进行通信。

4. 单片机控制与显示选取51单片机作为控制核心,通过编程实现信号的采集、处理和显示功能。

使用GPIO口与AD转换器和液晶屏连接,通过串口通信实现与电脑的数据传输。

三、软件设计1. 信号采集与处理通过单片机的GPIO口实现对AD转换器的控制,进行心电信号的采集。

同时,通过软件滤波算法对信号进行滤波处理,去除噪声和干扰。

2. 心率计算心率的计算可以通过测量心跳的时间间隔来实现。

在信号处理过程中,可以设置一个阈值,当信号超过该阈值时,计数器加一。

根据连续心跳的次数和采样频率,可以计算出心率的值。

3. 数据显示与存储通过液晶屏显示心率的实时数值,并提供用户界面操作。

同时,可以通过串口将数据传输到电脑进行进一步的分析和存储。

四、实验结果与讨论本设计基于51单片机成功实现了心率计的功能。

通过实验验证,心率计能够准确地测量心率,并实时显示在液晶屏上。

通过与商用心率计进行对比,结果表明本设计具有较高的准确性和稳定性。

五、总结与展望本文介绍了一种基于51单片机的心率计设计方案。

通过对心电信号的采集、处理和显示,实现了心率的实时监测。

基于单片机心率脉搏检测仪设计

目录一、设计的背景和意义 (1)二、设计方案的论证和确定 (1)(一)设计要求分析 (1)(二)设计方案确定 (1)三、 设计过程 (3)(一) 设计原理 (3)(二)主要器件选型 (5)(三)硬件结构设计 (7)(四)软件控制设计 (11)四、调试过程 (20)1.仿真调试. (20)2.实物演示 (22)五、设计创意说明和总结 (25)六、参考文献 (26)七、致谢 (27)一、设计的背景和意义背景:目前脉搏测量仪在多个领域被广泛应用,除了应用于医学领域,如无创心血管功能检测、妊高症检测、中医脉象、脉率检测等等,商业应用也不断拓展,如运动、健身器材中的心率测试都用到了技术先进的脉搏测量仪。

但人体的生物信号多属于强噪声背景下的低频的弱信号, 脉搏波信号更是低频微弱的非电生理信号,因此必需经过放大和后级滤波以满足采集的要求。

脉象探头式样很多,有单部、三部、单点、多点、刚性接触式、软性接触式、气压式、硅杯式、液态汞、液态水、子母式等组成,脉象探头的主要原件有应变片、压电晶体、单晶硅、光敏元件、PVDF压电薄膜等,其中以单部单点应变片式为最广泛,不过近年来正在向三部多点式方向设计[2]。

意义:近年来国内外致力于开发无创非接触式的传感器,这类传感器的重要特征是测量的探测部分不侵入机体,不造成机体创伤,能够自动消除仪表自身系统的误差,测量精度高,通常在体外,尤其是在体表间接测量人体的生理和生化参数。

二、设计方案的论证和确定(一)设计要求分析总体由设计由STC89C52、按键、LCD1602、光电传感器、等构成,见图3.1所示,系统设有四个按键,设置上下限脉搏数,当超过范围的时候单片机会驱动蜂鸣器发响,脉搏测量的时候需要人把手轻轻的按在光电传感器上面,由于人脉搏跳动的时候,血液的透光性不一样会导致接收器那边接收的信号强弱不一样,间接的把人脉搏信号传回,通过运放对其进行放大、整形后连接到单片机的IO 口,单片机利用外部中断对其进行计数,最终换算成人一分钟脉搏的跳动次数,最终在液晶屏上显示。

基于51单片机心率脉搏计设计和实现机械自动化专业

目录摘要 (I)Abstract (II)引言 (1)1 控制系统设计 (3)1.1 系统方案设计 (3)1.2 系统总体设计 (4)2 硬件设计 (5)2.1 主控电路 (5)2.2 驱动电路 (8)2.3 信号采集电路 (10)2.4 显示电路 (13)2.5 总体电路图设计 (15)3 软件设计 (16)3.1 软件开发环境的介绍 (16)3.2 系统重要函数介绍 (16)4 系统调试 (19)4.1 系统硬件调试 (19)4.2 系统软件调试 (19)结论 (22)参考文献 (23)附录1 总体原理图设计 (25)附录2 源程序清单 (26)致谢 (30)摘要为实现探究心率脉搏计的应用领域,测量心率能够高效的进行,在节省时间的同时准确显示心率相关状况是否存在异常的目标,本文设计了一款操作简单、运行稳定、可靠性高的心率脉搏计。

本设计使用STC89C51单片机作为控制核心,结合ST188光电传感器检测,再借用单片机系统的内部计时器计算时间。

其大致的步骤为通过ST188光电传感器感应生成脉冲,心跳次数由单片机累计所得,其对应的时间根据定时器获取。

本设计使用的时候可以展现脉搏心率次数当其终止使用的时候可以展示总的脉搏心率次数以及时间长短。

由于一些现实状况的存在我们应当实施下述的相关内容:一是了解系统功能的同时可以进行需求分析;二是机体内部生物信号大都在充满噪音状况里,频率和信号很弱,应该放大并且进行滤波处理;三是所有的硬件设备以及对弱信号的处理都应整合在一起,这样能够让人体脉搏信号转化为电信号。

还能够通过C语言这种方式进行编程,而且实现构建屏显等作用。

相关结果能够说明,心率脉搏计设计在技术方面有一定的可行性,基本上符合精度标准。

能够确保基础脉冲测量功能的同时又可以确保测量的精准度且使用单片机控制确保了系统准确稳定。

传感器采用光电传感器,大大降低了外界干扰信号的干扰。

显示器运用液晶显示器,显示效果更好,且易于操作。

基于单片机的心率检测系统设计

基于单片机的心率检测系统设计基于单片机的心率监测系统设计摘要随着社会的发展,心率监测系统已经得到广泛的应用,但医学心率监测系统还存在着单一地点、实时性不精确等缺点。

本设计就是为了克服传统心率监测系统的局限性,突出价格低廉、使用简单方便、维护成本低的特点。

所设计心率监测系统采用光学感应原理做成的传感器,把心率信号转换为可测量的电信号模拟量。

在CPU的选型上,使用价格低、功能强大的AT89S52单片机。

利用中断和定时器功能,能够精确的计算出心率。

在做出硬件和完整的软件算法后,进行了多次测试,测试结果表明,本设计能够达到预期的效果。

关键词:心率监测系统;AT89S52单片机;光电传感器Design of the heart-rate monitoring system based on singlechip microcomputerAbstractWith the development of society, The heart-rate monitoring system has been widely used, but the heart-rate monitoring system has a single location, real-time imprecise and other shortcomings. To overcome these limitations of conventional heart-rate monitoring system, highlight the characteristics of inexpensive, easy to use, low maintenance costs, this heart-rate monitoring system made use of an optical sensor, the heart-rate signal was directly converted into the analog electrical signals. Using interrupt and timer functions, this heart-rate was calculated accurately. After making a complete hardware and software algorithms, several tests were achieved. The test results show this design could obtain the desired effect.Keywords:Heart-rate monitoring system; AT89S52; photoelectric sensor目录摘要 (I)Abstract........................................................................................................................ I I 第1章概述 .. (1)1.1 选题的背景和意义 (1)1.2 心率监测系统的设计设想 (1)1.3 心率监测系统方案的选择 (2)第2章心率监测系统系统结构 (4)2.1 光电心率监测系统的结构 (4)2.2 工作原理 (5)2.3 光电心率监测系统的优点 (5)2.4 光电心率监测系统的适用范围 (6)第3章硬件系统 (7)3.1 控制器 (7)3.1.1 AT89S52 简介 (7)3.1.2 AT89S52 的结构 (7)3.2 信号采集 (9)3.2.1光电传感器的原理 (9)3.2.2光电传感器的结构 (9)3.2.3信号采集电路 (9)3.3 信号放大 (10)3.4 波形整形电路 (13)3.5 单片机处理电路 (14)3.6 显示电路 (14)3.6.1 1602字符型LCD简介 (15)3.6.2 1602LCD的指令说明及时序 (15)3.6.3 1602LCD的RAM地址映射及标准字库表 (16)3.6.4电源模块电路原理图 (16)第4章软件系统 (17)4.1 主程序流程: (17)4.2 中断程序流程 (18)4.3 显示程序流程: (18)4.4 软件说明 (19)第5章抗干扰及使用方法 (20)5.1 抗干扰措施 (20)5.1.1环境光对心率传感器测量的影响 (20)5.1.2电磁干扰对心率传感器的影响 (20)5.2 使用方法 (20)第6章系统检验 (21)6.1 系统检验 (21)6.2 误差分析 (22)第7章总结与展望 (23)参考文献 (24)附录A (25)附录B (26)附录C (27)附录D (28)致谢 (33)第1章概述1.1 选题的背景和意义心血管疾病是当今发达国家死亡率占第一位的致命疾病,在我国同样是致死率最高的疾病,世界卫生组织已将心脑血管疾病列为2l世纪危害人类生命和健康的头等疾病[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.引言 (2)2.系统基本方案 (2)2.1.系统总结构 (3)2.2.各个部分电路的方案选择及分析 (3)2.2.1.脉搏传感器部分 (3)2.2.2.单片机选择 (3)2.2.3.显示部分 (4)2.3.系统各模块的最终方案 (4)3.系统硬件设计 (5)3.1.单片机处理电路 (5)3.1.1.STC89C51系列单片机的主要性能特点: (5)3.1.2 .C51系列单片机的基本组成: (6)3.2.复位电路 (9)3.2.1.单片机复位电路 (9)3.3.振荡电路 (10)3.4.脉搏传感器部分 (10)3.4.1.HK-2000A 集成化脉搏传感器 (10)3.4.2.脉搏传感器接收电路 (12)3.4.3 .电源电路 (12)3.5显示报警部分 (13)3.5.1.数码管显示电路 (13)4.系统软件设计 (14)4.1 主程序流程的设计 (14)4.2 定时器/计数器中断程序流程的设计 (15)4.3 显示程序流程的设计 (16)5.总结 (18)参考文献 (19)1.引言心率是最为常见的临床检查与生理研究的生理现象,且包含两个人类生命的重要信息,那就是血管和心脏的生理状态。

人体各器官的健康状况、疾病等信息将以某种方式出现在脉冲的脉冲条件。

许多有诊断价值的信息,比如有关心脏、内外循环和神经等系统的动态信息,我们可以通过对脉搏波检测脉冲图包含大量的诊断价值信息,也可以用来预测一些身体器官结构和功能的转变趋势, 通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。

同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号[1]。

在医院临床护理和日常的中老年保健中,脉搏是一个基本的生活指数,因此脉搏测量是最常见的生活特征提取。

近年来在日常监护测仪器,如便携式电子血压计,可以完成脉冲测量。

但是这种便携式电子血压计利用微型气泵压力橡胶气球,每次测量都需要一个压缩和解压缩的过程,有体积庞大、脉搏检测的精确度低、加减压过程会有不适等等的不足。

人类心室周期性的收缩和舒张,导致主动脉收缩压和舒张压,使血流压力可以能够以波的形式从主动脉根部,就开始沿着人体整个动脉系统流动,这种波称为脉搏波。

脉搏波所呈现出的不同强度、各种形态、速率不一和跳动节律等方面的综合信息,在很大程度上反映出人体心血管系统血液流动在许多生理和病理特点。

本设计使用系统使用HK - 2000集成传感器转换电压脉冲信号,脉冲信号调节使用后AT89S51单片机对信号采集和处理,在很短的时间内,测量人体每分钟的脉搏数,和心率实时显示,便于携带。

达到的目的, 快速、方便、准确地测量心率。

脉搏测量系统性能好,结构简单,性价比高,稳定的输出显示,更适应流行,适合家庭每天自我反省和医院护士的临床记录。

2.系统基本方案心率检测系统的设计,一定要通过收集脉搏的跳动变化反映出人体的生物的信号,然后生物信号转变成物理的信号,能使物理信号表达人体的心率变化,最后要的出每分钟的心跳频率,就一定需要相应的硬件电路及芯片来处理物理变化并储存心跳的次数。

根据题目的要求系统模块可以基本划分为:脉搏传感器部分、单片机处理电路部分及显示电路部分。

为实现各模块的功能,分别做了几种不同的设计方案病进行了论证2.1.系统总结构心率监测系统的变换原件传感器,把采集到心脏跳动的红外光转换成电信号,用电子仪进行测量和显示装置。

本系统的组成包括信号处理系统、传感器、数码显示、电源、单片机电路等部分。

信号处理电路主要处理光电传感器采集到的低频信号的模拟电路(包括放大、整形、滤波等)。

单片机电路利用单片机自身的定时中断计时功能对输入的脉冲电平进行运算得出心率(包括外部晶振、外部中断、AT89C51等)。

电源电路向信号处理器、传感器和单片机提供电源,可以是直流或交流的稳压电源[2]。

2.2.各个部分电路的方案选择及分析2.2.1.脉搏传感器部分传感器通常又称为转换器或者换能器等。

脉冲传感器是脉冲探测系统的重要组成部分,它的基本功能是利用脉冲压力和径向脉冲压力,将一些物理量(非电量)转换成为电能的容易测量。

脉冲传感器精度、灵敏度、抗干扰和安装方法决定了脉冲测量精度,因此选择整个设计有决定性的作用。

本设计中,采用HK-2000A 集成化脉搏传感器,HK-2000A 集成化脉搏传感器采用高度集成化工艺将灵敏度温度补偿元件、力敏元件(PVDF压电膜)、信号调理电路、感温元件集成在传感器内。

利用压电式原理采集信号,并进行模拟信号输出,然后输出同步于人体的脉搏波动的脉冲信号,若脉搏波动一次就能输出一正脉冲。

该产品可用于脉率检测,如运动或者健身器材设备中的心率测试。

2.2.2.单片机选择51单片机是目前所有兼容英特尔8031单片机的指令系统的一个统称。

该系列单片机的最初是英特尔8031单片机,然后闪速存储器技术的发展,8031单片机不仅取得了很大的进步,并成为最广泛使用的8位微控制器,其代表模型是ATMEL 公司的AT89系列,广泛应用于工业测控系统。

现如今很多公司推出了兼容模式的51系列,目前在很长一段时间,在未来会占据一个大市场。

51单片机是适合初学者入门的一个单片机,同时也是目前应用最广泛的一种单片机[3]。

51单片机是由英特尔公司生产制造的。

它具有结构简单,价格便宜,易于开发的特点。

通用型,有总线扩展,有较强的位处理功能,有全双工异步串行通信口。

但是其功能相对较少,访问外部数据有瓶颈,作电压范围窄。

本设计中,单片机只需要对脉搏信号的波动频率进行测量、计算和显示,对单片机的要求不是很高。

而对51单片机,本人比较熟悉,所以,本设计中选择51单片机作为信息处理中心。

在51系列单片机中,AT89系列单片机是美国ATMEL公司推出的一种新型高性能低价位、低电压低功耗的8位CMOS微型计算机。

AT89S51就是其中一款,它可以完全满足本设计的设计要求,而且,AT89S51的价格较低。

2.2.3.显示部分根据题目要求,设计出来的系统是可以设定报警的范围的。

对显示部分采用以下方案:采用数码管。

数码管具有功耗小、轻薄短小无辐射危险,简单方便等特点。

2.3.系统各模块的最终方案根据以上分析,结合器件和设备等因素,确定如下方案:1)采用STC89C51单片机作为控制器,分别对输入、显示、信号的处理和控制。

2)传感器部分采用光HK-2000A 集成化脉搏传感器,该器件结构简单、可靠性高、抗干扰能力强。

3)显示用数码管显示实时脉搏数和蜂鸣器报警上下限数值。

系统的基本框图如下图2.1所示。

图2.1设计框图3.系统硬件设计3.1.单片机处理电路单片机处理电路如图3.1所示STC89C51单片机图3.1单片机处理电路3.1.1.STC89C51系列单片机的主要性能特点:STC89C51系列单片机是宏晶科技推出的新一代超强抗干扰、高速、低功耗的单片机,指令代码与传统8051单片机完全兼容[4]。

MCS-51的主要特点为:◆CPU为8位;◆数据存储器的片内带128字节;(RAM)◆片内带振荡器,频率范围为1.2~12MHz;◆程序存储器的寻址空间为64KB;(需要扩展ROM)◆片内带4KB的Flash程序存储器;(ROM)◆用户位寻址空间128位(16字节);(在128个字节中)◆片外数据存储器的寻址空间为64KB;(需要扩展RAM)◆4个8位的并行I/O接口:P0、P1、P2、P3;◆2个16位定时器/计数器T0、T1;(MCS-52子系列为3个,T2)◆2个优先级别的5个中断源;(高、低2个)◆18个字节特殊功能寄存器SFR(MCS—52子系列为21个);◆片内采用单总线结构;◆1个全双工的串行I/O接口,可多机通信;◆有较强的位处理能力;3.1.2 .C51系列单片机的基本组成:图3.2框图图3.3 DIP 管脚图AT89C51与51系列中各种型号芯片的引脚互相兼容。

目前多采用40只引脚双列直插,如图3.3所示[15。

引脚按其功能可分为如下3类:①电源及时钟引脚—-VCC 、VSS ;XTAL1、XTAL2;②控制引脚—-/RST VPD 、/ALE PROG 、PSEN 、和/EA VPP ;③I/O 口引脚——P0、P1、P2、P3,为4个8位I/O 口。

1)电源引脚VSS (20脚):接地,0V 参考点。

VCC (40脚):5V 电源。

【提供掉电、空闲、正常工作电压】图3.4总线分布2)外接晶体引脚XTAL1(19脚):接外部晶体振荡器的一端。

当使用芯片内部时钟时,此脚用于外接石英晶体振荡器和微调电容;当使用外部时钟时,对于HMOS单片机,此引脚接地;对于CMOS单片机,此引脚作为外部振荡信号的输入端[6]。

XTAL2(18脚):接外部晶体振荡器的另一端,当使用芯片内部时钟时,此脚用于外接石英晶体振荡器和微调电容。

当使用外部时钟时,对于HMOS单片机,此引脚接外部振荡源;对于CMOS单片机,此引脚悬空不接。

89C51晶体振荡器频率可在6MHZ~40MHZ之间选择,常选6MHz或12MHz的石英晶体。

电容的值没有严格要求,但其取值对振荡器的频率输出的稳定性、大小、振荡电路起振速度稍有影响,C1、C2可在20pF~100pF之间选择。

当外接晶体振荡器时,电容可选30pF±10pF;外接陶瓷振荡器时,电容可选40pF±10pF。

3)控制信号或与其它电源复用引脚(1)/RST VPD(9脚):复位端。

当输入的复位信号持续2个以上机器周期(12个晶体振荡周期)高电平即为有效,用于完成单片机的复位初始化操作。

正常工作时,此脚电平应≤ 0.5V。

在VCC发生故障、降低到电平规定值掉电期间,此引脚可接备用电源VPD(电源范围5V±0.5V),由VPD向内部RAM供电,以保持内部RAM中的数据。

ALE PROG(30脚):地址锁存使能。

(2)/ALE(Address Latch Enable);PROG(Program)ALE PROG为CPU访问外部程序存储器或外部数据存储器提供地址锁存信/号,将低8位地址锁存在片外的地址锁存器中。

/ALE PROG引脚第二功能,对片内 Flash编程,为编程脉冲输入端。

(3)PSEN(29脚):(Programmer Saving ENable),外部程序存储器读选通信号。

在读外部程序存储器时有效(低电平),以实现外部程序存储器单元的读操作。

在访问外部数据存储器、访问内部程序存储器时PSEN无效。

EA VPP(31脚):(Enable Address/Voltage Pulse of Programming)(4)/访问程序存储控制信号。

EA VPP=“0”时,表示读外部程序存储器。

相关文档
最新文档