《固体物理学》房晓勇-思考题03第三章_晶体振动和晶体的热学性质
《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
《固体物理学》房晓勇习题参考解答

考虑平衡条件 (
dU mA nB ) r0 = 0 ,得 m = n ,那么(5)式可化为 dV r0 r0
(
d 2U 1 N ) = 2⋅ 2 V0 dV 9V0 2
⎡ m2 A n2 B ⎤ 1 N ⎢− m + n ⎥ = 2 ⋅ r0 ⎦ 9V0 2 ⎣ r0
⎡ mA nB ⎤ ⎢−m m + n n ⎥ r0 r0 ⎦ ⎣
mi
1
2 2 n12 + n2 + n3
) (
=
mi
2 2 n12 + n2 + n3
)
12
雷纳德-琼斯参数
A6 = ∑ A6,i = ∑
i =1 i =1 N N
N
N
( (
mi
2 2 + n3 n12 + n2
)
A12 = ∑ A12,i = ∑
i =1 i =1
mi
2 2 + n3 n12 + n2
N 个原子组成的晶体
1/ 6
σ σ ⎤ ⎡ U (r ) = 2 N ε ⎢ A12 ( )12 − A6 ( ) 6 ⎥ ……(8) R R ⎦ ⎣
⎛ 2A ⎞ 得到平衡时原子间距 R0 = ⎜ 12 ⎟ σ ⎝ A6 ⎠
平衡时总的相互作用势能
1/ 6
U0 = −N
ε A62
2 A12 2 R0 ,所以 3
3
,
因为 m=12,n=6,查表(P53,表 2-3)知体心立方 A6 = 12.25 , A12 = 9.11
K=
12 mnε A6 3 12 × 6 × 12.252 × 3 ε 89.84ε = = 3 3 3 24 A12 R0 24 × 9.11 R0 R0 5/ 2
固体物理-第3章-晶体振动与晶体热学性质-3.1

第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
格波的意义
格波方程
un Aei(tnaq)
i(t 2 x )
对比连续介质波 Ae
A ei (t qx )
波数 q 2
—— 格波和连续介质波具有完全类似的形式
晶体中所有原子共同参与的一种频率相同的振动,不同 原子间有振动位相差,这种振动以波的形式在整个晶体 中传播,称为格波。
m
d 2un dt 2
(un1 un1 2un )
设方程解
un Aei(t naq)
naq — 第n个原子振动位相因子
un1 Aeitn1aq
un1 Aeitn1aq
得到 m2 (eiaq eiaq 2)
2 4 sin2 ( aq )
m
2
~ q —— 一维简单晶格中格波的色散关系,即振动频谱
—— N个原胞,有2N个独立的方程
方程解的形式
Aei[t(2na)q] 2n
and
Be 2n1
i [t ( 2 n 1) aq ]
两种原子振动的振 幅A和B一般不同
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
第2n+1个M原子 M &&2n1 (22n1 2n2 2n ) 第2n个m原子 m&&2n (22n 2n1 2n1)
要求 eiNaq 1 Naq 2h
q 2 h —— h为整数
Na
波矢的取值范围 q
a
a
N h N
2
2
h — N个整数值 q 取N个不同分立值
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
N h N
《固体物理学》房晓勇-思考题03第三章 晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A . 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件? 解答:(王矜奉3.1.2,中南大学3.1.2) (1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q a π=,一维单原子晶格的振动解n x 不代表行波而代表驻波。
固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式
a
)
《固体物理学》房晓勇思考题参考解答

R = hai + kb j + lck (2)
如果是立方晶系 a = b = c ,
( ) n = h d i + k d j + l d k = d hi + k j + lk (1′) a b ca
( ) R = hai + kb j + lck = ha i + k j + lk (2′)
比较两式得 n = d R ,即n与R平行,晶列 hkl 垂直于同指数的晶面(hkl) a2
第一章 晶体的结构习题
第一章 晶体的结构
思考题
1.1 为什么自然界中大多数固体以晶态形式存在?为什么面指数简单的晶面往往暴露在外表面?
解答:
在密勒指数(面指数)简单的晶面族中,面间距 d 较大。对于一定的晶格,单位体积内格点数目一定,
因此在晶面间距大的晶面上,格点(原子)的面密度必然大。面间距大的晶面,由于单位表面能量小,容
是沿 c 轴伸长后的点阵,因此相同的点阵从(a)是体心点阵,从(b)看是面心点阵,本质上相同,都称 为体心四方点阵。 2)类似的底心四方和简单四方是同一种点阵。 3)底心立方不再具有立方对称性。所以不存在。 1.5 许多金属既可以形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积
1)图(a)代表向 c 轴俯视所观察到的体心四方的格点分布。格点②距离由格点①组成的 晶面的 C/2 处。如 C=a,则点阵为 bcc;如图所示,为已经伸长的 bcc,c≠a,它是体心四 方点阵。如
图(b)与图(a)代表同样的点阵,只是观察的角度不同,图中①构成四方面心格点,
面心格点间的距离 a′ = 2a ,如 C = a′ = a ,则点阵为 fcc;对于一般的 C 值,图(b) 22
固体物理(第三章 晶格振动与晶体的热学性质)

µi 之间,通过如下形式的正交变
mi µ i = ∑ aij Q j
j =1
3N
= ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
m1 µ1 = a11Q1 + a12Q2 + L + a13 N Q3 N
§3-1 简谐近似和简正坐标 8 / 17
& i2 µ
mi µ i = ∑ aij Q j = ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
15 / 17 11/11
§3-1 简谐近似和简正坐标
由上所述,只要能找到体系的简正坐标,或者说振动模, 问题就解决了。
§3-1 简谐近似和简正坐标
16 / 17
§3-1 简谐近似和简正坐标
17 / 17
Qi = A sin(ωi t + δ )
§3-1 简谐近似和简正坐标 10 / 17
任意简正坐标的解为:
Qi = A sin(ωi t + δ )
ωi
是振动的圆频率,ωi
= 2πν i
表明:一个简正振动是表示整个晶体所有原子都参与的振 动。而且它们的振动频率相同。一个简正振动并不是表示某一 个原子的振动。 由简正坐标所代表的体系中所有原子一起参与的共同振动 常常称为一个振动模。
能量本征值
ε i = (ni + )hωi
ϕ n (Qi ) =
i
1 2
本征态函数
ωi
ξ=
Qi h H ni (ξ ) 表示厄密多项式
14 / 17
ω
ξ2 exp H ni (ξ ) − 2 h
固体物理(第3章)解析

1 3N ( 2V
2 i, j1 i j
)0 i j
—— 含有坐标的交叉项
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
引入简正坐标
—— 原子的坐标和简正坐标通过正交变换联系起来
假设存在线性变换 系统的哈密顿量
拉格朗日函数
T
1 2
3N i 1
Qi 2
V
1 2
3N
Q 2 2
ii
i 1
正则动量
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
系统的哈密顿量
正则方程
pi
H Qi
正则动量
pi
L Q i
Qi
Qi i2Qi 0, i 1, 2, 3, 3N —— 3N个独立无关的方程 简正坐标方程解 Qi Asin(it )
简正振动 —— 所有原子参与的振动,振动频率相同 振动模 —— 简正坐标代表所有原子共同参与的一个振动
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
只考察某一个振动模
系统能量本征值计算
i
aij mi
Qj
aij mi
Asin( jt )
正则动量算符
系统薛定谔方程
(1
2
3N i 1
pi2
1 2
3N
i2Qi2 ) (Q1, Q3N )
i 1
E (Q1,
Q3N )
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
E
3N
i
i 1
3N i 1
(ni
1 2
)
i
3N
系统本征态函数 (Q1, Q2, Q3,Q3N ) ni (Qi )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.
在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是 声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低 温下, 德拜模型与事实相符, 自然与实验相符.
(2)与实验结果吻合得较好.
对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有 N 个原子构成
的的原子链, 硬性假定
的边界条件是不符合事实的. 其实不论什么边界条件都与事实不
符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力
验证(《固体物理学》§3.1 与§3.6). 玻恩 卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与
3.17 何谓极化声子?何谓电磁声子? 解答:(王矜奉 3.1.13,中南大学 3.1.13)
长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵 波声子为极化声子.
由《固体物理学》式(3.80a)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长 光学横波声子为电磁声子.
倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.
3.2 试说明格波和弹性波有何不同? 解答:晶格中各个原子间的振动相互关系
1
第三章 3.3 为什么要引入玻恩-卡门条件? 解答:(王矜奉 3.1.2,中南大学 3.1.2) (1)方便于求解原子运动方程.
晶体振动和晶体的热学性质
由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的 两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原 子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子 的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的 困难.
,
,
即低温时, 晶体中的声子数目与 T 3 成正比.
3.7 长光学支格波与长声学支格波的本质上有何区别? 解答:(王矜奉 3.1.4,中南大学 3.1.4)
长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频 率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动 频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但 简单晶格(非复式格子)晶体不存在光学支格波.
对应什么物理图象?
解答:(王矜奉 3.1.15,中南大学 3.1.15)
格波的频率 与 成正比.
说明该光学横波对应的恢复力系数
.
时, 恢复力
消失, 发生了位移的离子再也回不到原来的平衡位置, 而到达另一平衡位置, 即离子晶体结构发生了改变
(称为相变). 在这一新的结构中, 正负离子存在固定的位移偶极矩, 即产生了自发极化, 产生了一个稳定的
3.9 对同一个振动模式,温度高时的声子数目多,还是温度低时的声子数目多? 解答:(王矜奉 3.1.7,中南大学 3.1.7)
设温度 TH>TL, 由于( 子数目.
)小于(
), 所以温度高时的声子数目多于温度低时的声
3.10 由两种不同质量的原子组成的晶格,即使相邻原子间相互作用的恢复力常数相等,也将存在光学 波。试问:由质量相同的原子组成的晶格,若一个原子与两个近邻原子间有不同的恢复力常数,是否有光 学波存在?
3.19 绝对零度时还有格波存在吗?若存在,格波间还有能量交换吗?
5
第三章 晶体振动和晶体的热学性质 解答:(王矜奉 3.1.19,中南大学 3.1.19)
频率为 的格波的振动能为
其中
是由 个声子携带的热振动能, (
, )是零点振动能, 声子数
.
绝对零度时, =0. 频率为 的格波的振动能只剩下零点振动能.
3.8 同一温度下,一个光学波的声子数目与一个声学波的声子数目相同吗? 解答:(王矜奉 3.1.6,中南大学 3.1.6)
频率为 的格波的(平均) 声子数为
.
3
第三章 晶体振动和晶体的热学性质
因为光学波的频率 比声学波的频率 高, ( 下, 一个光学波的声子数目少于一个声学波的声子数目.
)大于(
), 所以在温度一定情况
补充 5 从图 3.6 所示实验曲线, 你能否判断哪一支格波的模式密度大? 是光学纵波呢, 还是声学纵波?
解答:(王矜奉 3.1.9,中南大 学 3.1.9)
从图 3.6 所示实验曲线可以看 出, 在波矢空间内, 光学纵波振动 谱线平缓, 声学纵波振动谱线较陡. 单位频率区间内光学纵波对应的波 矢空间大, 声学纵波对应的波矢空 间小. 格波数目与波矢空间成正比, 所以单位频率区间内光学纵波的格 波数目大. 而模式密度是单位频率 区间内的格波数目, 因此光学纵波 的模式密度大于声学纵波的模式密 度.
解答: 3.11 高频线性谐振子和低频线性谐振子中,在高温区和低温区哪个队热容的贡献大? 解答: 3.12 在低温下,不考虑光学波对比热容的贡献合理吗? 解答:王矜奉 3.1.17,中南大学 3.1.17)
参考《固体物理学》(3-84)式, 可得到光学波对热容贡献的表达式
.
在甚低温下, 对于光学波,
3.13 若考虑非线性相互作用,当晶格发生伸长或压缩的形变时,晶格振动的频率是否变化?如何变 化?
解答: 3.14 试简述固体中的非线性振动对固体的热膨胀、弹性模量、热容、热导、热阻等物理性质的影响。 解答: 3.15 喇曼散射方法中,光子会不会产生倒逆散射? 解答:(王矜奉 3.1.10,中南大学 3.1.10)
3.16 长声学波能否导致离子晶体的宏观极化? 解答:(王矜奉 3.1.11,中南大学 3.1.11)
长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子) 产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离 子晶体的宏观极化.
理论相符的事实说明, 玻恩 卡门周期性边界条件是目前较好的一个边界条件.
3.4 试说明在布里渊区的边界上 ( q = π / a),一维单原子晶格的振动解 xn 不代表行波而代表驻波。
解答: 3.5 什么叫简正模式?简正振动数目、格波数目或格波模式数目是否是同一概念? 解答:(王矜奉 3.1.3,中南大学 3.1.3)
为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非 线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由 N 个原子构成的晶体的晶格振动, 可等效成 3N 个独 立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做 振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这 3N 个简正振 动模式的线形迭加.
第三章 晶体振动和晶体的热学性质 第三章 晶体振动和晶体的热学性质 3.1 相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同? 解答:(王矜奉 3.1.1,中南大学 3.1.1) 以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子 的振幅 A, 另一个原子振幅 B, 由《固体物理学》第 79 页公式,可得两原子振幅之比
3.18 温度降到很低时。爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的 较好。试解释其原因。
解答:(王矜奉 3.1.16,18,中南大学 3.1.16,18)
按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为
, 属于光学支频率. 但光学
格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没
补充 4 金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等? 对 KCl 晶体, 结论又是什 么?
解答:(王矜奉 3.1.12,中南大学 3.1.12)
长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 电场的方向 是阻滞离子的位移, 使得有效恢复力系数变大, 对应的格波的频率变高. 长光学格横波不引起离子的位移, 不产生极化电场, 格波的频率不变. 金刚石不是离子晶体, 其长光学纵波频率与同波矢的长光学格横波 频率相等. 而 KCl 晶体是离子晶体, 它的长光学纵波频率与同波矢的长光学格横波频率不相等, 长光学纵 波频率大于同波矢的长光学格横波频率.
, 上式简化为
.
以上两式中
是光学波的模式密度, 在简谐近似下, 它与温度无关. 在甚低温下,
是合理的.
, 即光学波对热容的贡献可以忽略. 也就是说, 在甚低温下, 不考虑光学波对热容的贡献
从声子能量来说, 光学波声子的能量 很大(大于短声学波声子的能量), 它对应振幅很大 的格波的振动, 这种振动只有温度很高时才能得到激发. 因此, 在甚低温下, 晶体中不存在光学波.
(1) 其中 m 原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别 为
, (2)
. (3) 将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为
,
(4)
由于
.
(5)
=
,
则由(4)(5)两式可得, B A = 1. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数
4
第三章 晶体振动和晶体的热学性质
晶格振动谱的测定中, 光波的波长与格波的波长越接近, 光波与声波的相互作用才越显著. 喇曼 散射中所用的红外光,对晶格振动谱来说, 该波长属于长波长范围. 因此, 喇曼散射是光子与长光学波 声子的相互作用. 长光学波声子的波矢很小, 相应的动量 不大. 而能产生倒逆散射的条件是光的入 射波矢 与散射波矢 要大, 散射角 也要大. 与 大要求波长小, 散射角 大要求 大(参见下 图), . 但对喇曼散射来说, 这两点都不满足. 即喇曼散射中,光子不会产生倒逆散射.