材料成型原理第四章答案

合集下载

材料成型基本原理课后答案-(1)2

材料成型基本原理课后答案-(1)2

第一章习题1 . 液体与固体与气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体与气体比较的异同点可用下表说明(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变与焓变一般都不大。

金属熔化时典型的体积变化 为35%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆约为气化潜热∆的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子0)距离为r的位置的数密度ρ(r)对于平均数密度ρo()的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型原理第四章答案.

材料成型原理第四章答案.

第四章1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。

答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。

溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。

当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为 定值。

2. 某二元合金相图如右所示。

合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。

温度梯度大到足以使固-液界面保持平面生长。

假设固相无扩散,液相均匀混合。

试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。

解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程)1(00-*=K L L f C C图 4-43 二元合金相图K 0<1C 0K 0C 0/K 0T C *S C *L C 0C T *Tm代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。

材料成型传输原理复习(新)

材料成型传输原理复习(新)

考试题型:一、判断题(10题,15%)二、选择题(10题,20%)三、名词解释(3题,9%)四、简答与计算题(7题,56%)要记忆的公式:1、牛顿粘性定律τ=-μdvdy2、傅里叶定律 q=-λdTdy3、菲克第一定律JA=-DABdCdyv1P2v224、伯努力方程gz1+P1ρ+=gz2+ρ+5、雷诺准数 Re=λρcvρDμ6、热扩散率a=Cpμ7、普兰特准数Pr=8、努塞尔准数Nu=9、施密特准数Sc= va=λalλvD10、舍伍德准数Sh=KclD11、沿程阻力降计算公式(达西公式)∆p=λρv2Ldρv2v或hf=λld⋅v2g12、局部阻力降计算公式:∆p=ς⋅或hf=ς⋅2g13、能依题意例出单层、二层、三层的无限大平板和圆筒的传热计算公式 14、黑体辐射力:Eb = C0 (T/100)4式中: C0=5.67 w/(㎡K4) 叫黑体的辐射系数。

15、半无限大表面渗碳时的非稳态传质:Cw-CC-C0=erf(x2Dt)16、半无限大物体一维非稳态导热:17、对流传热量:Q=αA∆T绪论重点:动量、热量与质量传输的类似性动量传输:牛顿粘性定律τ=-μdvdyTw-TTw-T0=erf(x2at)热传导:傅里叶定律 q=-λdTdy质量传输:菲克第一定律 JA=-DABdCdy记忆上述三个公式。

公式中参数的物量意义和各符号表示什么?1、什么是传输过程?传输过程的基础是什么?2、试总结三种传输过程的物理量、推动力、传输方程。

3、传输过程的研究方法有哪些?各有什么特点?第2章流体的性质名词解释:1、不压缩流体答:不可压缩流体指流体密度不随压力变化的流体。

2、可压缩流体3、理想流体答:粘性系数为零(不考虑粘性)的流体4、速度边界层5、粘性系数(动力粘度)答:表征流体变形的能力,由牛顿粘性定律所定义的系数:μ=±τyxduxdy,速度梯度为1时,单位面积上摩擦力的大小。

6、运动粘度7、牛顿流体8、非牛顿流体填空题:1、理想流体是指不存在力,或其作用可忽略的流体。

材料成型原理04答案

材料成型原理04答案

04答案一、判断题(本题共10小题,每题1分,共10分)(正确打“√”,错误打“X”)1、在滑移线场中,当α线与β线构成右手坐标系时,则代数值最大的主应力σ1的作用线位于第一和第三象限。

(√)2、低碳钢焊接熔合区,具有明显的化学成分不均匀性,导致组织、性能不均匀,影响焊接接头的强度、韧性,是焊热影响区性能最差的区域。

()3、焊接热循环中的冷却时间t表示从峰值冷却到100︒C的冷却时间。

100(√)4、稳定温度场通常是指温度场内各点的温度不随时间而变的温度场。

(√)5、同样体积大小相同的情况下,球状铸件的凝固时间大于块状铸件的凝固时间。

(X)6、焊前预热、焊后后热的根本作用在于,通过减小冷却速度而降低淬硬组织形成倾向,从而达到消除冷裂的目的。

()7、晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。

金属的塑性越好。

(√)8、滑移线就是塑性变形体内最大切应力的轨迹线。

(√)9、根据溶渣离子理论,碱性渣中自由氧离子的浓度远大于酸性渣,所以一定具有很高的氧化性。

()10、两块等厚薄板对焊,采用从两头向中间焊接,较从中间向两头焊的横向应力小。

(X )二、选择题:(本题共10小题,每题2分,共20分)(请选择一个你认为最好的答案)1、用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B 。

A、解析法;B、主应力法;C、上限法;D、滑移线法;2、滑移线场理论假设材料为均匀、各向同性的理想刚塑性体,其应力应变关系用 表示。

;A 、B 、C 、D 、3、以下 工艺措施不利于解决Al-Mg 合金铸造过程中出现的“浇不足”缺陷。

A 、加大充型压;B 、预热铸型C 、提高浇注温度;D 、使用大蓄热系数的铸型;4、下图表示的是 中凝固时的温度分布曲线。

A 、厚壁砂型B 、内表面有大热阻涂料的铸型C 、厚壁金属型D 、水冷薄壁金属型5、已知两个应力张量分别为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000201001070,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000401001050,应力张量不变量公式为:z y x I σσσ++=1)()(2222zx yz xy x z z y y x I τττσσσσσσ+++++-=)(22223zx y zx y yz x zx yz xy z y x I τστστστττσσσ++-+=以下论述错误的是 。

材料成型原理复习题答案

材料成型原理复习题答案

《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。

影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。

其实质是原子间的结合力。

2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。

(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。

(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。

(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。

3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。

(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。

(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。

2.表面张力。

影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。

其实质是质点间的作用力。

2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。

(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。

(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。

(4)流体性质:不同的流体,表面张力不同。

3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。

3.液态金属的流动性。

影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。

2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。

材料成形原理课程思考与练习

材料成形原理课程思考与练习

(1) (2)
固-液界面的
CS*
和C
* L

固-液界面保持平整界面的条件。
6. 在同一幅图中表示第一节描述的四种方式的凝固过程中溶质再分配条件下固相成分的分布曲线。
7. 根据式(4-6),分析有效分配系数 KE 的三种情况。 8. 论述成分过冷与热过冷的涵义以及它们之间的区别和联系。
9. 何为成分过冷判据?成分过冷的大小受哪些因素的影响?
度对过冷度的关系有何不同?
第四章 思考与练习
1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数 K0 所决定?当相图上的液相线和固相线皆为直线时,试证明 K0 为 一常数。
2. 某 二 元 合 金 相 图 如 右 所 示 。 合 金 液 成 分 为
CB=40%,置于长瓷舟中并从左端开始凝固。温度 梯度大到足以使固-液界面保持平面生长。假设固
7.冶炼与熔焊过程中熔渣的氧化性强会造成什么不良后果?
8.采用碱性焊条施焊时,为什么要求严格清理去焊件坡口表面的铁锈和氧化皮,而用酸性焊条施焊或 CO2 焊时对焊前清理 的要求相对较低?
9.试比较表 7-1 中各种焊接熔渣的氧化性强弱。
10.有人说:“焊接过程中熔渣对液态金属的氧化反应比熔炼过程剧烈,但反应程度不如熔炼时彻底”。您认为这句话对吗?
2.采用(2-17)、(2-18)两式计算凝固过程中的温度分布与实际温度分布状况是否存在误差?分析误差产生的原因,说明 什么情况下误差相对较小?
3.凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度? 4.比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。 5.在砂型中浇铸尺寸为 300×300×20 mm 的纯铝板。设铸型的初始温度为 20℃,浇注后瞬间铸件-铸型界面温度立即升至纯 铝熔点 660℃,且在铸件凝固期间保持不变。浇铸温度为 670℃,金属与铸型材料的热物性参数见下表:

2020年智慧树知道网课《材料成形原理》课后章节测试满分答案

2020年智慧树知道网课《材料成形原理》课后章节测试满分答案

绪论单元测试1【判断题】(2分)材料成形主要包括液态成形、连接成形、塑性成形及粉末冶金成形。

A.错B.对2【判断题】(2分)液态成形俗称铸造。

A.对B.错3【判断题】(2分)液态成形是将液态金属浇注、压射或吸入到具有一定形状的铸型中冷却凝固,获得具有型腔形状铸件的成形方法。

A.对B.错4【判断题】(2分)铸件形成的方法很多,但基本特点不同。

A.对B.错5【判断题】(2分)液态成形在材料成形过程中,具有不可取代的首要地位。

A.对B.错6【判断题】(2分)液态成形的零件尺寸范围大。

A.错B.对7【判断题】(2分)铸造能采用的材料范围广。

A.错B.对8【判断题】(2分)液态成形的零件壁厚范围大。

A.错B.对9【判断题】(2分)连接成形是通过加热或加压,或两者并用,并且使用或不用填充材料,使焊件达到原子结合的一种加工方法。

A.对B.错10【判断题】(2分)连接成形俗称锻压。

A.错B.对11【判断题】(2分)焊接应用范围广,适用性强,但成本不低。

A.错B.对12【判断题】(2分)塑性成形是利用金属能够产生塑性变形的能力,使金属在外力作用下,加工成一定形状的成形方法。

A.对B.错13【判断题】(2分)塑性成形俗称锻压。

A.错B.对14【判断题】(2分)塑性成形应用范围很广。

A.对B.错15【判断题】(2分)材料成形在装备制造中,具有不可替代的重要作用。

A.错B.对第一章测试1【判断题】(2分)晶界产生粘性流动,固体熔化成液体。

A.错B.对2【判断题】(2分)偶分布函数是距离某一粒子r处,找到另一粒子的几率。

A.对B.错3【判断题】(2分)液体与非晶固体衍射特征不同。

A.对B.错4【判断题】(2分)能量起伏表现为原子团簇在游动过程中,能量也发生变化。

A.对B.错5【判断题】(2分)动力粘度η在凝固过程中补缩起主要作用。

A.对B.错6【判断题】(2分)表面非活性物质越多,粘度越低。

A.错B.对7【判断题】(2分)A.对B.错8【判断题】(2分)表面非活性元素,引起表面张力增加。

材料成型原理第四章答案

材料成型原理第四章答案

第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。

答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。

溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。

当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。

2.B 开始凝固。

温度梯度大到足以使固-液界面保持平面生长。

假设固相无扩散,液相均匀混合。

试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。

解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。

答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。

溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。

当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, —此时,K 0与温度及浓度无关,所以,当液相线和固相线为直 线时,不同温度和浓度下K 0为定值。

2. 某二元合金相图如右所示。

合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。

温度梯度大到足以使固-液界面保持平面生长。

假设固相无扩散,液相均匀混合。

试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。

解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30= K 0即为所求 α相与液相之间的平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算:>由固相无扩散液相均匀混合下溶质再分配的正常偏析方程、图 4-43 二元合金相图K 0<1C 0K 0C 0/K 0T C *S C *L C 0C T *Tm)1(00-*=K L L f C C代入已知的*L C = 60% , K 0 = , C 0= C B =40%可求出此时的L f = %由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下: 3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。

答:在固相无扩散而液相仅有扩散条件下凝固速度变大时(1)固相成分将发生下列变化:当凝固速度增大时,固液界面前沿的液相和固相都将经历:稳定态→ 不稳定态→稳定态的过程。

如右图所示,当R 2>R 1时在新、旧稳定状态之间,C S >C 0。

重新恢复到稳定时,C S 又回到C 0。

R 2上升越多,12/R R 越大, 不稳定区内C S 越高。

·(2)溶质富集层的变化情况如下:在其它条件不变的情况下,R 越大,在固-液界面前沿溶质富集越严重,曲线越陡峭。

如右图所示。

R 2越大, 富集层高度ΔC 越大,过渡 60%~2056R 2>R 1 R 2 R 1R 2>R 1区时间(Δt )越长,过渡区间也就越%宽。

在新的稳定状态下,富集区的面积将减小。

4. A-B 二元合金原始成分为C 0=C B =%,K 0=,L m =5,自左向右单向凝固, 固相无扩散而液相仅有扩散(D L =3×10-5cm 2/s )。

达到稳定态凝固时,求(1)固-液界面的**L S C C 和;(2)固-液界面保持平整界面的条件。

解:(1)求固-液界面的**L S C C 和 :由于固相中无扩散而液相中仅有限扩散的情况下达到稳定状态时,满足:0*K C C L = ,C *S = C 0 代入C 0=C B =%,K 0='即可得出: 00*K C C L ==2.0%5.2=% C *S = C 0 = %(2)固-液界面保持平整界面的条件 :当存在“成分过冷”时,随着的“成分过冷”的增大,固溶体生长方式 将 经历:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶) 的转变过程,所以只有当不发生成分过冷时,固-液界面才可保持平整界面,即需满足 R G L ≥000)1(K K D C m L L - 代入L m =5,C 0=C B =% ,D L =3×10-5cm 2/s , K 0=可得出:RG L ≥×104 ℃/cm 2s 即为所求.5. \6. 在同一幅图中表示第一节描述的四种方式的凝固过程中溶质再分配条件下固相成分的分布曲线。

答:四种方式凝固过程中溶质再分配条件下固相成分的分布曲线:(单向凝固时铸棒内溶质的分布)7^8论述成分过冷与热过冷的涵义以及它们之间的区别和联系。

成分过冷的涵义:合金在不平衡凝固时,使液固界面前沿的液相中形成溶质富集层,因富集层中各处的合金成分不同,具有不同的熔点,造成液固前沿的液相处于不同的过冷状态,这种由于液固界面前沿合金成分不同造成的过冷。

热过冷的涵义: 界面液相侧形成的负温度剃度,使得界面前方获得大于k T ∆的过冷度。

在界面向前推移的情况下,结晶潜一般都生成树枝晶。

成分过冷是由溶质富集所产生,只能出现在合金的凝固过程中,其产生的晶体形貌随成分过冷程度的不同而不同,当过冷程度增大时,固溶体生长方式由无成分过冷时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶)。

成分过冷与热过冷的联系:对于合金凝固,当出现“热过冷”的影响时,必然受“成分过冷”的影响,而且后者往往更为重要。

即使液相一侧不出现负的温度梯度,由于溶质再分配引起界面前沿的溶质富集,从而导致平衡结晶温度的变化。

在负温梯下,合金的情况与纯金属相似,合金固溶体结晶易于出现树枝晶形貌。

9. 《10. 何为成分过冷判据成分过冷的大小受哪些因素的影响 答: “成分过冷”判据为:R G L <N L D R L L Le K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度R — 晶体生长速度m L — 液相线斜率C 0 — 原始成分浓度|D L—液相中溶质扩散系数K0—平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L越小,越有利于成分过冷2)晶体生长速度R , R越大,越有利于成分过冷3)液相线斜率m L ,m L越大,越有利于成分过冷4)原始成分浓度C0,C0越高,越有利于成分过冷5)液相中溶质扩散系数D L, D L越底,越有利于成分过冷6)平衡分配系数K0 ,K0<1时,K0 越小,越有利于成分过冷;K0>1时,K0越大,越有利于成分过冷。

、(注:其中的G L和R 为工艺因素,相对较易加以控制; m L , C0 , D L , K0 ,为材料因素,较难控制)8.分别讨论“成分过冷”对单相固溶体及共晶凝固组织形貌的影响答:“成分过冷”对单相固溶体组织形貌的影响:随着“成分过冷”程度的增大,固溶体生长方式由无“成分过冷”时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶)。

“成分过冷”对共晶凝固组织形貌的影响:1)共晶成分的合金,在冷速较快时,不一定能得到100%的共晶组织,而是得到亚共晶或过共晶组织,甚至完全得不到共晶组织;2)有些非共晶成分的合金在冷速较快时反而得到100%的共晶组织;3)有些非共晶成分的合金,在一定的冷速下,既不出现100%的共晶组织,也不出现初晶+共晶的情况,而是出现“离异共晶”。

…9. 如何认识“外生生长”与“内生生长”由前者向后者转变的前提是什么仅仅由成分过冷因素决定吗答:“外生生长”: 晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。

平面生长、胞状生长和柱状树枝晶生长都属于外生生长.“内生生长”: 等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。

如果“成分过冷”在远离界面处大于异质形核所需过冷度(ΔT异),就会在内部熔体中产生新的晶核,造成“内生生长”,使得自由树枝晶在固-液界面前方的熔体中出现。

外生生长向内生生长的转变的前提是:成分过冷区的进一步加大。

决定因素:外生生长向内生生长的转变是由成分过冷的大小和外来质点非均质生核的能力这两个因素所决定的。

大的成分过冷和强生核能力的外来质点都有利于内生生长并促进内部等轴晶的形成。

}10. 影响枝晶间距的主要因素是什么枝晶间距与材料的机械性能有什么关系答: 影响枝晶间距的主要因素:纯金属的枝晶间距主要决定于晶面处结晶潜热散失条件,而一般单相合金的枝晶间距则还受控于溶质元素在枝晶间的扩散行为。

通常采用的有一次枝晶(柱状晶主干)间距d1、和二次分枝间距d2两种。

前者是胞状晶和柱状树枝晶的重要参数,后者对柱状树枝晶和等轴枝晶均有重要意义。

一次枝晶间距与生长速度R、界面前液相温度梯度G L直接相关,在一定的合金成分及生长条件下,枝晶间距是一定的,R及G L增大均会使一次间距变小。

二次臂枝晶间距与冷却速度(温度梯度G L及生长速度R)以及微量变质元素(如稀土)的影响有关。

枝晶间距与材料的机械性能:枝晶间距越小,组织就越细密,分布于其间的元素偏析范围就越小,故越容易通过热处理而均匀化。

而且,这时的显微缩松和非金属夹杂物也更加细小分散,与成分偏析相关的各类缺陷(如铸件及焊缝的热裂)也会减轻,因而也就越有利于性能的提高。

11. 根据共晶体两组成相的Jackson因子,共晶组织可分为哪三类它们各有何生长特性及组织特点·答:根据共晶体两组成相的Jackson因子,共晶组织可分为下列三类:(1)粗糙-粗糙界面(非小晶面-非小晶面)共晶。

(2)粗糙-光滑界面(非小晶面-小晶)共晶。

(3)光滑-光滑界面(小晶面-小晶面)共晶。

各自何生长特性及组织特点:第(1)类共晶,生长特性为:“共生”生长,即在共晶偶合长大时,两相彼此紧密相连,而在两相前方的液体区域存在溶质的运动,两相有某种相互依赖关系。

组织特点为:对于有共晶成分的合金,其典型的显微形态是有规则的层片状或其中有一相为棒状或纤维状(即规则共晶);对于非共晶成分的合金,在共晶反应前,初生相呈树枝状长大,所得到的组织由初晶及共晶体所组成。

第(2)类共晶体,生长特性为:长大过程是相互偶合的共生长大。

组织特点为:组织较为无规则的,且容易发生弯曲和分枝。

第(3)类共晶体, 生长特性为:长大过程不再是偶合的。

组织特性为:所得到的组织为两相的不规则混合物。

12.试描述离异共晶组织的两种情况及其形成原因。

答:离异共晶组织有两种情况:“晶间偏析”和“晕圈”。

晶间偏析的形成原因如下:(1)由系统本身的原因:如果合金成分偏离共晶点很远,初晶相长得很大,共晶成分的残留液体很少,类似于薄膜分布于枝晶之间。

相关文档
最新文档