材料成形原理 吴树森 答案.docx1

合集下载

材料成型原理答案

材料成型原理答案

一、填空(共10空,每空2分,共20分)1.液体的分类(按液体结构和内部作用力):原子液体,分子液体,离子液体。

2.接触角也为润湿角,当接触角为锐角时为润湿,接触角为钝角时为不润湿。

3.固相无扩散而液相有限扩散凝固过程的三个阶段:最初过渡区、稳定状态区和最后过渡区。

4.根据偏析范围的不同,可将偏析分为:微观偏析和宏观偏析两大类。

二、名词解释(共5题,每题2分,共10分)1.焊接:通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。

2.均质形核:形核前液相金属或合金中无外来固相质点,而液相自身发生形核的过程。

3.碳当量:碳当量是反映钢中化学成分对硬化程度的影响,它是把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度折合成碳的相当含量。

4.偏析:合金在凝固过程中发生的化学成分不均匀的现象称为偏析。

5.凝固收缩:金属从液相线冷却到固相线所产生的体收缩,称为凝固收缩。

三、简答题(共3题,每题10分,共30分)1. 黏度对成型质量的影响。

(1)影响铸件轮廓的清晰程度;(2)影响热裂、缩孔、缩松的形成倾向;(3)影响钢铁材料的脱硫、脱磷、扩散脱氧;(4)影响精炼效果及夹杂或气孔的形成:(5)熔渣及金属液粘度降低对焊缝的合金过渡有利。

2. 金属氧化还原方向的判据是什么?若氧在金属-氧-氧化物系统中:{pO2}---实际分压为,pO2----金属氧化物的分解压{pO2}>pO2 时,金属被氧化;{pO2}=pO2 时,处于平衡状态;{pO2}<pO2 时,金属被还原。

3. 什么是重力偏析?防止或减轻重力偏析的方法有哪些?重力偏析:是由于重力作用而出现的化学成分不均匀现象。

防止或减轻重力偏析的方法:(1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉。

(2)加入能阻碍初晶沉浮的合金元素。

(3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。

材料成型传输原理课后答案(吴树森版)

材料成型传输原理课后答案(吴树森版)

材料成型传输原理课后答案(吴树森版)第⼀章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。

它包括液体和⽓体。

流体的主要物理性质有:密度、重度、⽐体积压缩性和膨胀性。

1-2某种液体的密度ρ=900 Kg/m3,试求教重度γ和质量体积v。

解:由液体密度、重度和质量体积的关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压为多少?强为1MN/m2时体积为1000 cm3,问它的等温压缩率kT公式(2-1):解:等温压缩率KTΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代⼊即可得到K=5*10-9Pa-1。

T注意:式中V是指液体变化前的体积1.6 如图1.5所⽰,在相距h=0.06m的两个固定平⾏乎板中间放置另⼀块薄板,在薄板的上下分别放有不同粘度的油,并且⼀种油的粘度是另⼀种油的粘度的2倍。

当薄板以匀速v=0.3m/s被拖动时,每平⽅⽶受合⼒F=29N,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板⾯产⽣的粘性阻⼒⼒为平板受到上下油⾯的阻⼒之和与施加的⼒平衡,即代⼊数据得η=0.967Pa.s第⼆章流体静⼒学2-1作⽤在流体上的⼒有哪两类,各有什么特点?解:作⽤在流体上的⼒分为质量⼒和表⾯⼒两种。

质量⼒是作⽤在流体内部任何质点上的⼒,⼤⼩与质量成正⽐,由加速度产⽣,与质点外的流体⽆关。

⽽表⾯⼒是指作⽤在流体表⾯上的⼒,⼤⼩与⾯积成正⽐,由与流体接触的相邻流体或固体的作⽤⽽产⽣。

2-2什么是流体的静压强,静⽌流体中压强的分布规律如何?解:流体静压强指单位⾯积上流体的静压⼒。

静⽌流体中任意⼀点的静压强值只由该店坐标位置决定,即作⽤于⼀点的各个⽅向的静压强是等值的。

2-3写出流体静⼒学基本⽅程式,并说明其能量意义和⼏何意义。

解:流体静⼒学基本⽅程为:同⼀静⽌液体中单位重量液体的⽐位能可以不等,⽐压强也可以不等,但⽐位能和⽐压强可以互换,⽐势能总是相等的。

材料成型基本原理课后答案-(1)2

材料成型基本原理课后答案-(1)2

第一章习题1 . 液体与固体与气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体与气体比较的异同点可用下表说明(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变与焓变一般都不大。

金属熔化时典型的体积变化 为35%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆约为气化潜热∆的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子0)距离为r的位置的数密度ρ(r)对于平均数密度ρo()的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成形原理(第2版)(吴树森)第1章

材料成形原理(第2版)(吴树森)第1章

凝固技术发展历程
最古老的艺术、技术之一 —— 冶铸技术 合釐配制、凝固控制、组织控制
我国在夏朝已进入青铜器时代。商朝青铜器铸造已 很发达。司母戊斱鼎是当时最大的青铜器。图案、文字 俱全,铸造相当精美。 曾候乙青铜器编钟,是距今2400 多年前戓国初期铸造的。 戓国时期的《考工记》记载:“釐有六齐:六分其 釐,而锡居其一,谓之钟鼎之齐;五分其釐,而锡居其 一,谓之斧斤之齐;四分其釐,而锡居其一,谓这戈戟 之齐;三分其釐,而锡居其一,谓之大刃之齐;五分其 釐,而锡居其二,谓之削杀矢之齐;釐,锡半,谓之鉴 燧之齐”。是世界上最早的合釐配比觃律。
2.对液态合釐流动阻力的影响 根据流体力学,Re>2300为湍流(紊流),Re<2300 为层流。Re的数学式为
Re
Dv

设f为流体流动时的阻力系数,则 有
64
64
当液体以层流斱式流动时,阻力系数大,流动阻力大。 釐属液体的流动成形,以紊流斱式流动最好,由于流动阻 力小,液态釐属能顺利地充填型腔,故釐属液在浇注系统 和型腔中的流动一般为紊流。但在充型的后期戒夹窄的枝 晶间的补缩流和细薄铸件中,则呈现为层流。
3.对凝固过程中液态合釐对流的影响 液态釐属在冷却和凝固过程中,由于存在温度差 和浓度差而产生浮力,它是液态合釐对流的驱动力。 当浮力大于戒等于粘滞力时则产生对流,其对流强 度由无量纲的栺拉晓夫准则度量,即
可见粘度η越大对流强度越小。液体对流对结晶 组织、溶质分布、偏析、杂质的聚合等产生重要影响。
其第一峰值不固态时的衍射线(第一条垂线)极为 接近,其配位数不固态时相当。 第二峰值虽仍较明显,但不固态时的峰值偏离增大, 而且随着r的增大,峰值不固态 时的偏离也越来越大。 当它不所选原子相距太远的距 离时,原子排列进入无序状态。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。

在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。

下面就材料成型原理的相关问题进行解答。

1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。

它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。

材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。

2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。

首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。

然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。

最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。

3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。

首先,原料的性能直接影响着成型的难易程度和制品的质量。

其次,成型工艺的选择和设计对成型效果起着决定性的作用。

成型设备的性能和精度也会影响成型的质量和效率。

操作技术则是保证成型过程顺利进行的重要因素。

4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。

未来,材料成型将更加注重节能环保、智能化和数字化。

新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。

同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。

5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。

其次,要优化成型工艺和设备,提高成型的精度和效率。

同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

在工程实践中,材料成型原理是非常重要的,因为它直接影响着材料的性能和质量。

下面是一些关于材料成型原理的课后答案,希望能够帮助大家更好地理解这一知识点。

1. 请简要说明材料成型原理的基本概念。

材料成型原理是指利用一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

这个过程包括了原料的选择、加工工艺的设计、成型设备的选择等多个方面,是一个复杂的系统工程。

2. 什么是材料的塑性变形?请举例说明。

材料的塑性变形是指在一定条件下,材料可以经受外力作用而发生形状和尺寸的变化,而且在去除外力后,能够保持变形的一种性质。

例如金属材料在加工过程中经受压力而产生的变形,就是一种塑性变形。

3. 请简要说明材料的成型工艺对材料性能的影响。

材料的成型工艺对材料性能有着直接的影响。

不同的成型工艺会对材料的组织结构、晶粒大小、内部应力等产生影响,从而影响材料的硬度、强度、韧性等性能。

4. 请简要说明材料成型原理在工程实践中的应用。

材料成型原理在工程实践中有着广泛的应用。

例如在汽车制造中,各种金属材料需要经过成型工艺才能制成车身和零部件;在航空航天领域,各种复杂的零部件需要通过成型工艺才能完成加工。

5. 请简要说明材料成型原理的发展趋势。

随着科学技术的不断发展,材料成型原理也在不断地发展和完善。

未来,随着新材料、新工艺的不断涌现,材料成型原理将更加注重对材料性能的精细调控,以及对环境的友好性。

以上就是关于材料成型原理的一些课后答案,希望能够帮助大家更好地理解和掌握这一知识点。

材料成型原理是工程材料学中的重要内容,对于工程实践具有重要的指导意义。

希望大家能够在学习和工作中充分应用这一知识,不断提高自己的专业水平。

材料加工冶金传输原理习题答案吴树森版)

材料加工冶金传输原理习题答案吴树森版)

材料加⼯冶⾦传输原理习题答案吴树森版)第⼀章流體的主要物理性質1-1何謂流體,流體具有哪些物理性質?答:流體是指沒有固定的形狀、易於流動的物質。

它包括液體和氣體。

流體的主要物理性質有:密度、重度、⽐體積壓縮性和膨脹性。

2、在圖3.20所⽰的虹吸管中,已知H1=2m ,H2=6m ,管徑D=15mm ,如果不計損失,問S 處的壓強應為多⼤時此管才能吸⽔?此時管內流速υ2及流量Q 各為若⼲?(注意:管B 端並未接觸⽔⾯或探⼊⽔中)解:選取過⽔斷⾯1-1、2-2及⽔準基準⾯O-O ,列1-1⾯(⽔⾯)到2-2⾯的⾙努利⽅程再選取⽔準基準⾯O ’-O ’,列過⽔斷⾯2-2及3-3的⾙努利⽅程(B) 因V2=V3 由式(B)得5、有⼀⽂特利管(如下圖),已知d 1 =15cm ,d 2=10cm ,⽔銀差壓計液⾯⾼差?h =20cm 。

若不計阻⼒損失,求常溫(20℃)下,通過⽂⽒管的⽔的流量。

解:在喉部⼊⼝前的直管截⾯1和喉部截⾯2處測量靜壓⼒差p 1和p 2,則由式const v p =+22ρ可建⽴有關此截⾯的伯努利⽅程:ρρ22212122p v p v +=+根據連續性⽅程,截⾯1和2上的截⾯積A 1和A 2與流體流速v 1和v 2的關係式為所以 ])(1[)(2212212A A p p v --=ρ通過管⼦的流體流量為 ])(1[)(2212212A A p p A Q --=ρ )(21p p -⽤U 形管中液柱表⽰,所以074.0))15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22223332212'2=-??-=--?=πρρρA A h g A Q (m 3/s)式中ρ、'ρ——被測流體和U 形管中流體的密度。

圖3.20 虹吸管如圖6-3—17(a)所⽰,為⼀連接⽔泵出⼝的壓⼒⽔管,直徑d=500mm,彎管與⽔準的夾⾓45°,⽔流流過彎管時有⼀⽔準推⼒,為了防⽌彎管發⽣位移,築⼀混凝⼟鎮墩使管道固定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。

1.2答:液态金属的表面张力是界面张力的一个特例。

表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。

表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。

附加压力是因为液面弯曲后由表面张力引起的。

1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。

而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。

(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。

(3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。

1.4 解: 浇注模型如下:则产生机械粘砂的临界压力 ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m1.5 解: 由Stokes 公式上浮速度 92(2v )12r r r -=r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000 γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入①△G 方*=-a *3△Gv +6 a *24*a △Gv =21a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得 △G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m△G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。

但润湿角难于测定,可根据夹杂物的晶体结构来确定。

当界面两侧夹杂和晶核的原子排列方式相似,原子间距离相近,或在一定范围内成比例,就可以实现界面共格相应。

安全共格或部分共格的界面就可以成为异质形核的基底,完全不共格的界面就不能成为异质形核的基底。

3.3 答: 晶核生长的方式由固液界面前方的温度剃度G L 决定,当G L >0时,晶体生长以平面方式生长;如果G L <0,晶体以树枝晶方式生长。

4.1答: 用Chvorinov 公式计算凝固时间时,误差来源于铸件的形状、铸件结构、热物理参数浇注条件等方面。

半径相同的圆柱和球体比较,前者的误差大;大铸件和小铸件比较,后者误差大;金属型和砂型比较,后者误差大,因为后者的热物性参数随温度变化较快。

4.2答: 铸件凝固时间t =22KR ,R 为折算厚度,K 为凝固系数,又由于R =AV,在相同体积的条件下,立方体。

等边圆柱和球三者中,球的表面积最小,所以球的折算厚度R 最大,则球形冒口的凝固时间t 最大,最有利于补缩。

4.3解: 焊接熔池的特征:(1)熔池体积小; (2)熔池温度高;(3)熔池金属处于流动状态;(4)熔池界面的导热条件好,焊接熔池周围的母材与熔池间没有间隙。

焊接熔池对凝固过程的影响:(1)母材作为新相晶核的基底,使新相形核所需能量小,出现非均匀形核,产生联生结晶(外延结晶);(2)熔池金属是在运动状态凝固的,焊缝的柱状晶总是朝向焊接方向并且向焊缝中心生长,即对向生长;(3)焊接熔池的实际凝固过程并不是连续的,柱状晶的生长速度变化不是十分有规律。

4.4解:溶质再分配:合金凝固时液相内的溶质一部分进入固相,另一部分进入液相,溶质传输使溶质在固-液界面两侧的固相和液相中进行再分配。

影响溶质再分配的因素有热力学条件和动力学条件。

4.5解:设液相线和固相线的斜率分别为m和S m,L如上图:液相线:T*-Tm=m (C l*-0) ①L固相线:T*-Tm=m (C s*-0) ②S②÷①得:Tm T TmT --**=**L L S S C m C m =1即 **LS C C =S L m m =k 0由于L m 、S m 均为常数,故k 0=Const.4.5解: (1)溶质分配系数 k 0=L S C C =E sm C C =%33%65.6=0.171 当s f =10%时,有*s C =1000)1(--k s f C k =0.171*1%*(1-10%)1171.0-=0.187%*L C =100-k L f C =0*k C S =171.000187.0=1.09% (2)设共晶体所占的比例为L f ,则 *L C =100-k L f C =E C则L f =101-)(k E C C =1171.01)%65.5%33(-=0.12 (1) 沿试棒的长度方向Cu 的分布曲线图如下:5.1答: 金属凝固时,完全由热扩散控制,这样的过冷称为热过冷;由固液界面前方溶质再分配引起的过冷称为成分过冷.成分过冷的本质:由于固液界面前方溶质富集而引起溶质再分配,界面处溶质含量最高,离界面越远,溶质含量越低。

由结晶相图可知,固液界面前方理论凝固温度降低,实际温度和理论凝固温度之间就产生了一个附加温度差△T ,即成分过冷度,这也是凝固的动力。

5.2答: 影响成分过冷的因素有G 、v 、D L 、m 、k 0、C 0,可控制的工艺因素为D L 。

过冷对晶体的生长方式的影响:当稍有成分过冷时为胞状生长,随着成分过冷的增大,晶体由胞状晶变为柱状晶、柱状树枝晶和自由树枝晶,无成分过冷时,以平面方式或树枝晶方式生长。

晶体的生长方式除受成分过冷影响外,还受热过冷的影响。

5.3答: 影响成分过冷范围的因素有:成分过冷的条件为 vG L <00)1(k D k C m L L -成分过冷的范围为 △=000)1(k D k C m L L --vG L上式中,00k C m L 、、为不变量,所以影响成分过冷范围的因素只有D L 、G L 和v 。

对于纯金属和一部分单相合金的凝固,凝固的动力主要是热过冷,成分过冷范围对成形产品没什么大的影响;对于大部分合金的凝固来说,成分过冷范围越宽,得到成型产品性能越好。

5.4 答:(1)纯金属的枝晶间距决定于界面处结晶潜热的散失条件,而一般单相合金与潜热的扩散和溶质元素在枝晶间的行为有关。

(2)枝晶间距越小,材质的质量越高(因为消除枝晶偏析越容易)。

6.1 答:(1)在普通工业条件下,从热力学考虑,当非共晶成分的合金较快地冷却到两条液相线地延长线所包围的影线区域时,液相内两相打到饱和,两相具备了同时析出的条件,但一般总是某一相先析出,然后再在其表面析出另一个相,于是便开始了两相竞相析出的共晶凝固过程,最后获得100%的共晶组织。

(2)伪共晶组织如(1)所述,有较高的机械性能;而单相合金固相无扩散,液相混合均匀凝固产生的共晶组织为离异共晶,即:合金冷却到共晶温度时,仍有少量的液相存在,此时的液相成分接近于共晶成分,这部分剩余的液体将会发生共晶转变,形成共晶组织,但是,由于此时的先共晶相α数量很多,共晶组织中的α相可能依附于先共晶相上长大,形成离异共晶,即β相单独存在于晶界处,给合金的性能带来不良影响。

6.2 答:小面-非小平面生长最大的特点是:有强烈的方向性。

变质处理改变了小平面的形态,使得晶体生长方式发生改变。

6.3 答: S、O等活性元素吸附在旋转孪晶台阶处,显著降低了石墨棱面(0110)与合金液面间的界面张力,使得(0110)方向的生长速度大于(0001)方向,石墨最终长成片状。

Mg是反石墨化元素,在它的作用下,石墨最终长成球状。

7.1 答:当强化相表面与合金液表面相互浸润时,其本身就可以作为异质形核的核心,按异质形核的规律进行结晶,使组织得到细化。

当强化相与合金液不浸润时,强化相被排斥于枝晶间或界面上,严重影响着复合材料的性能。

7.2 答:并不是任何一种共晶合金都能制取自生复合材料,因为制取自生复合材料必须有高强度、高弹性相作为承载相,而基体应有良好的韧性以保证载体的传递。

因此共晶系应具备以下要求:⑴共晶系中一相应为高强相。

⑵基体应具有较高的断裂韧度,一般以固溶体为宜。

⑶在单相凝固时能够获得定向排列的规则组织。

8.1 答:铸件的典型凝固组织为:表面细等轴晶区、中间柱状晶区、内部等轴晶区。

表面细等轴晶的形成机理:非均质形核和大量游离晶粒提供了表面细等轴晶区的晶核,型壁附近产生较大过冷而大量生核,这些晶核迅速长大并且互相接触,从而形成无方向性的表面细等轴晶区。

中间柱状晶的形成机理:柱状晶主要从表面细等轴晶区形成并发展而来,稳定的凝固壳层一旦形成处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,便转而以枝晶状延伸生长。

由于择优生长,在逐渐淘汰掉取向不利的晶体过程中发展成柱状晶组织。

相关文档
最新文档