高三数学(文)10月月考试卷答案

合集下载

2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷(含解析)

2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷(含解析)

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷.1. 已知集合{}1,2,4A =,2{N |20}B x x x =Î+-£,则A B =U ( )A. {}2,1,0,1,2,4-- B. {}0,1,2,4C. {}1,2,4 D. {}1【答案】B 【解析】【分析】根据一元二次不等式的解法,求得{}0,1B =,结合集合并集的概念与运算,即可求解.【详解】由不等式220x x +-£,可得(2)(1)0≤x x +-,解得21x -££,所以集合{}{N |21}0,1B x x =Î-££=,又因为{}1,2,4A =,可得{}0,1,2,4A B È=.故选:B.2. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则( )A. 盛李豪的平均射击环数超过10.6B. 黄雨婷射击环数的第80百分位数为10.65C. 盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差【答案】C 【解析】【分析】根据图表数据可直接判断选项A ,利用第80百分位数的解法直接判断选项B ,根据图表的分散程度即可判断选项C ,根据极差的求法直接判断选项D.【详解】由题知,盛李豪的射击环数只有两次是10.8环,5次10.6环,其余都是10.6环以下,所以盛李豪平均射击环数低于10.6,故A 错误;由于140.811.2´=,故第80百分位数是从小到大排列的第12个数10.7,故B 错误;由于黄雨婷的射击环数更分散,故标准差更大,故C 正确;黄雨婷射击环数的极差为10.89.7 1.1-=,盛李豪的射击环数极差为10.810.30.5-=,故D 错误.故选:C3. 已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为( )A. b c a >> B. a b c >>C. c b a >> D. a c b>>【答案】A 【解析】【分析】由对数函数的底数小于1得到函数单调递减,判断出b ,c 的大小关系,又判断出b ,c 大于1,a 小于1,从而得出结论.【详解】由于0.6log y x =(0,)+¥单调递减,故0.60.60.6log 0.3log 0.4log 0.61b c =>=>=,又∵0.100.60.61a =<=,∴b c a >>.故选:A.4. 已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是( )A. 22ab cb > B.222a cc a+³C. ||||a b > D. 0ab bc +>【答案】C 【解析】【分析】根据已知等式可确定0,0a c ><,结合不等式性质和作差法依次判断各个选项即可.【详解】由题,0,0a c ><,取1,0,1a b c ===-,则22ab cb =,故A 错误;在2522a c c a +=-,故B 错误;0ab bc +=,故D 错误;因为22()()()0a b a b a b c a b -=+-=-->,所以22a b >,即||||a b >,故C 正确.故选:C.5. “函数2()ln(22)f x x ax =-+的值域为R ”的一个充分不必要条件是( )A. [B. (C. ()-¥+¥U D. )+¥【答案】D 【解析】【分析】根据对数函数的性质,先分析出对数的真数部分能取得所有的正数,然后根据二次函数与其对应二次方程的关系,求出a 的范围即可求解.【详解】因为函数2()ln(22)f x x ax =-+的值域为R ,设222y x ax =-+,则二次函数y 需要取到一切正数,对应于方程2220x ax -+=中,0D ³,即2480a -³,解得a ³或a £,从而)+¥是“函数2()ln(22)f x x ax =-+的值域为R ”的充分不必要条件.故选:D6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155 B. 159C. 162D. 166【答案】B 【解析】【分析】根据题意列出等量关系,借助换底公式和题目给出的参考量得出结果.【详解】设氚含量变成初始量的110000大约需要经过t 年,则1211()210000t =,121log 1210000t =,即48159lg 2t =»年,故选:B.7. 若函数()y f x =的图象如图1所示,则如图2对应的函数可能是( )A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--【答案】A 【解析】【分析】根据函数定义域求出新函数定义域判断B,D;取特殊值判断C,根据函数平移伸缩变换判断A.【详解】由()y f x =的定义域为(1,)-+¥知,1(1)2y f x =-中111,42x x ->-<,不符合图2,故排除B ,D ;对于C ,当12x =时,(0)0y f =->,不满足图2,故C 错误;将函数()y f x =图关于y 轴对称,得到()y f x =-的图,向右平移1个单位得到(1)y f x =-的图,最后纵坐标不变,横坐标变为原来的一半,得到函数(12)y f x =-的图可能为图2.故选:A.8. 已知函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为( )A. 0 B. 3C. 6D. 9【答案】C【解析】的【分析】将方程根的问题转化为函数()y f x =和2(3)y f x =--的图象交点横坐标问题,数形结合即可判断交点个数,再根据对称性求解和即可解答.【详解】方程()(3)2f x f x +-=的根为函数()y f x =和2(3)y f x =--的图象交点横坐标,由函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î得,()31,3,23232,3,x x x y f x x -ì<ï=--=íï-³î如下图所示,两函数图象共有4个交点,且因为()(3)2f x f x +-=,所以函数()y f x =与函数2(3)y f x =--的图象关于点3(,1)2中心对称,故方程()(3)2f x f x +-=的所有根之和为6.故选:C.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分, 部分选对的得部分分,有选错的得0分,.9. 已知函数()f x 的定义域为R ,()()()22f x y f x f y +=+,则( )A. ()00f = B. ()11f =C. ()f x 是奇函数 D. ()f x 在R 上单调递增【答案】AC 【解析】【分析】通过赋值法及特例逐项判断即可.【详解】由()()()22f x y f x f y +=+知,当0x y ==时, ()()030f f =,即()00f =,故A 正确;取()f x x =-,则()f x 满足条件()()()22f x y f x f y +=+,但()11f =-,且()f x 是在R 上单调递减,故B ,D错误;当,x t y t =-=时,()()()2f t f t f t =-+,即()()f t f t -=-,故C 正确.故选:AC.10. 已知复数12,z z 的共轭复数分别为21,z z ,则下列命题为真命题的是( )A. 1212z z z z +=+B. 1212z z z z ×=×C. 若120z z ->,则12z z >D. 若2221212z z z z +=+,则21210z z z z +××=【答案】ABD 【解析】分析】设出1i z a b =+,2i z c d =+,,,,R a b c d Î,结合共轭复数及模长定义与复数运算法则逐项计算可判断A 、B 、D ;举出反例可判断C.【详解】设1i z a b =+,2i z c d =+,且,,,R a b c d Î,则1i z a b =-,2i z c d =-;对A :12i i ()i z z a b c d a c b d +=+++=+++,12()i a c z b d z +=+-+所以12()i a c z b d z -=+++,所以1212z z z z +=+,故A 正确;对B :12i)(i)()i (()z z a b c d ac bd bc ad ++=--+=,12i)(i)()i (()z z a b c d ac bd bc ad --=--+=,故B 正确;对C :当1212i,2i z z =+=时,满足1210z z -=>,但不能得出12z z >,故C 错误;对D :2121212121211221212()()()()z z z z z z z z z z z z z z z z z z +=++=++=+++22121212z z z z z z =+++,故11220z z z z +=,故D 正确.故选:ABD.11. 设函数()()()ln f x x a x b =++,则下面说法正确的是( )A. 当0,1a b ==时,函数()f x 在定义域上仅有一个零点B. 当0,0a b ==时,函数()f x 在(1,)+¥上单调递增C. 若函数()f x 存在极值点,则a b£【D. 若()0f x ³,则22a b +的最小值为12【答案】ABD 【解析】【分析】代入0,1a b ==得到()f x 解析式,结合对数运算可得A 正确;求导分析单调性可得B 正确;当a b £时求导分析,当a b >利用换元法二次求导数分析可得C 错误;由复合函数同增异减得到()f x 的单调性,再结合二次函数取值可得D 正确;【详解】对于A ,当0,1a b ==时,()ln(1)f x x x =+,由()0f x =得,0x =,函数()f x 在定义域上仅有一个零点,故A 正确;对于B ,当0a b ==时,函数()ln f x x x =,当1x >时,()ln 10f x x ¢=+>,故函数()f x 在(1,)+¥上单调递增,故B 正确;对于C ,()ln()ln()1x a a bf x x b x b x b x b+-¢=++=+++++,当a b £时,函数()f x ¢在定义域上单调递增,且当x b ®-时,()f x ¥¢®-,当x ®+¥时,()f x ¥¢®+,此时函数()f x ¢存在零点0x ,即函数()f x 在0(,)b x -上单调递减,在0(,)x +¥上单调递增,故此时函数()f x 存在极值点,当a b >时,设()ln()1a b g x x b x b-=++++,则()2212()()a b x b a g x x b x b x b -+-=-=+++¢,令()0g x ¢=,则2x a b =-,故函数()f x ¢在(,2)b a b --上单调递减,在(2,)a b -+¥上单调递增,故()()2ln()2f x f a b a b ¢³¢-=-+,故当21e b a b <<+时,函数()f x ¢存在零点,函数()f x 存在极值点,综上,当函数()f x 存在极值点时,21eb a b <<+或a b £,故C 错误;对于D ,()()ln 0x a x b ++³恒成立,当()0f x =时,x a =-或1x b =-,当且仅当两个零点重合时, 即1a b -=-,因为y x a =+为增函数,设()()1ln ln 1y x b x a =+=++,则1y 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,所以函数()f x 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,满足()()ln 0x a x b ++³, 则22212212a b b b +=-+³,当12b =时取“=”,故D 正确,故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数2()23f x x kx =++在[1,2]上单调,则实数k 的取值范围为_____.【答案】8k £-或4k ³-【解析】【分析】运用二次函数的单调性知识,结合对称轴可解.【详解】函数2()23f x x kx =++的对称轴为04k x =-,故当24k -³或14k-£时,函数()f x 在[1,2]上单调,即8k £-或4k ³-,故答案为:8k £-或4k ³-.13.若()y f x =是定义在R 上的奇函数,()(2)f x f x =-,(1)2f =,则(1)(2)(3)(2025)f f f f +++=L ________.【答案】2【解析】【分析】根据题意,推得(4)()f x f x +=,得到()y f x =的周期为4,再求得(1),(2),(3),(4)f f f f 的值,结合周期性,即可求解.【详解】因为函数()y f x =是定义在R 上的奇函数,故()()f x f x -=-,又因为()(2)f x f x =-,所以(2)()f x f x -=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()y f x =的周期为4,由于()y f x =为定义在R 上的奇函数,且(1)2f =,可得(0)0f =,(2)(0)0f f ==,(3)(1)(1)2f f f =-=-=-,所以(1)(2)(3)(4)0f f f f +++=,则(1)(2)(3)(2025)f f f f +++=L 506[(1)(2)(3)(4)](1)2f f f f f ´++++=.故答案为:2.14. 若过点()1,b 作曲线e x y x =的切线有且仅有两条,则b 的取值范围是______.【答案】25[0,e)e ìü-íýîþU 【解析】【分析】由题意,设切点000(,e )xx x ,利用相切性质得到关于0,b x 的关系式0200(1)e xb x x =-+,将切线条数问题转化为关于0x 的方程解的个数问题求解,再分离参数转化为函数2()(1)e x g x x x =-+的图象与直线y b =的交点个数问题,构造函数研究函数的单调性与最值,数形结合求b 的范围即可.【详解】设切点为000(,e )xx x ,()(1)e x f x x ¢=+,故切线方程为00000e (1)e ()x x y x x x x -=+-,将()1,b 代入切线方程得00000e(1)e (1)x x b x x x -=+-,0200(1)e x b x x \=-+,过点()1,b 作曲线e x y x =的切线有且仅有两条,则关于0x 的方程0200(1)e xb x x =-+有两解,可转化为直线y b =与函数2(1)e x y x x =-+的图象有两个交点.令2()(1)e x g x x x =-+,则2()(2)e (1)(2)e x x g x x x x x ¢=--=--+,当2x <-时,()0f x ¢<,()f x 在(),2¥--单调递减;当2<<1x -时,()0f x ¢>,()f x 在()2,1-单调递增;当1x >时,()0f x ¢<,()f x 在(1,+∞)单调递减;故()g x 的单调减区间(,2),(1,)-¥-+¥,增区间是(2,1)-.当x ®-¥时,()0g x ®,当x ®+¥时,()g x ®-¥,且25(1)e,(2)e g g =-=-,当y b =与()y g x =有且仅有两个交点时,25[0,e)e b ìüÎÈ-íýîþ,故答案为:25[0,e)e ìüÈ-íýîþ.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1ln 1kxf x x -=-为奇函数.(1)求实数k 值;(2)若函数()()2xg x f x m =-+,且()g x 在区间[]2,3上没有零点,求实数m 的取值范围.【答案】(1)1-(2)(,4ln 3)(8ln 2,)m Î-¥--+¥U 【解析】【分析】(1)根据奇函数定义建立方程,解得1k =±,检验即可求解;(2)利用导数研究函数的单调性可知()g x 在[2,3]上单调递减,根据零点的概念建立不等式,解之即可求解.【小问1详解】因为()1ln1kxf x x -=-是奇函数,所以()()f x f x -=-, 即11ln ln ln 1111kx kx x x kx x --+=-=----, 所以1111kx x kxx +=----,故22211k x x -=-,则1k =±,当1k =时,111xx -=--显然不成立;经验证:1k =-符合题意;所以1k =-;【小问2详解】由1()ln21x x g x m x +=-+-,22()2ln 21x g x x ¢=---, 当[2,3]x Î时,()0g x ¢<,故()g x 在[2,3]上单调递减.的的故()[ln 28,ln 34]g x m m Î-+-+.因为()g x 在区间[]2,3上没有零点,所以ln 280m -+>或ln 340m -+<,解得4ln 3m <-或8ln 2m >-,即(,4ln 3)(8ln 2,)m Î-¥--+¥U .16. 已知三棱锥D ABC -,D 在平面ABC 上的射影为ABC V 的重心O ,15AC AB ==,24BC =.(1)证明:BC AD ^;(2)E 为AD 上靠近A 的三等分点,若三棱锥D ABC -的体积为432,求二面角E CO B --的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得AM BC ^、OD ^平面ABC ,根据线面垂直的性质可得OD BC ^,结合线面垂直的判定定理和性质即可证明;(2)建立如图空间直角坐标系,利用三棱锥的体积公式求得12OD =,由空间向量的线性运算求得()4,0,4OE =uuu r,结合空间向量法求解面面角即可.【小问1详解】如图所示,连结AO 并延长交BC 于M ,因为O 为△ABC 的重心,所以M 是BC 的中点,又因为AC AB =,所以由等腰三角形三线合一可得AM BC ^, 因为D 在平面ABC 上的射影为O ,所以OD ^平面ABC , 又ÌBC 平面ABC ,所以OD BC ^,又,,AM OD O AM OD =ÌI 平面AMD ,所以^BC 平面AMD , 又AD Ì平面AMD ,所以BC AD ^,【小问2详解】由(1)知AM BC ^,OD ^面ABC ,过M 作z 轴平行于OD ,则z 轴垂直于面ABC ,如图,以,MA MB 为x 轴,y 轴,建立空间直角坐标系,在ABC V 中,15AC AB ==,24BC =由(1)知,AM BC ^,故9AM ==,得11082ABC S AM BC =×=V , 所以三棱锥A-BCD 的体积为 1110843233ABC S OD OD ×=´´=V ,则12OD =因为O 为△ABC 的重心,故133OM AM ==,则()()()()()0,12,0,0,12,0,3,0,0,9,0,0,3,0,12C B O A D -,()()()6,0,0,6,0,12,3,12,0OA AD OC ==-=--uuu r uuu r uuu r因为E 为AD 上靠近A 的三等分点,所以()12,0,43AE AD ==-uuu r uuu r,故()14,0,43OE OA AD =+=uuu r uuu r uuu r设(),,n x y z =r 为平面ECO 的一个法向量,则4403120n OE x z n OC x y ì×=+=ïí×=--=ïîuuu r r uuu rr ,取4x =,则1,4y z =-=-,故()4,1,4n =--r,易得()0,0,1m =r是平面COB 的一个法向量, 设二面角E CO B --的平面角为q ,则q 为钝角,所以cos cos ,m n m n m n q ×=-=-==r r r rr r 所以二面角E CO B --的余弦值为 【点睛】17. 某小区有3000名居民,想通过验血的方法筛选乙肝病毒携带者,假设携带病毒的人占%a .为减轻工作量,随机地按n 人一组分组,然后将各组n 个人的血样混合在一起化验.若混合血样呈阴性,说明这n 个人全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.(1)若0.2,20,a n ==试估算该小区化验的总次数;(2)若0.9a =,且每人单独化验一次花费10元,n 人混合化验一次花费9n +元,求当n为何值时,每个居民化验的平均费用最少.注:假设每位居民的化验结果呈阴性还是阳性相互独立.当00.01p <<时,(1)1n p np -»-.【答案】(1)270 (2)10【解析】【分析】(1)设每组居民需化验的次数为X ,确定其取值,分别求概率,进而可得期望,即得;(2)设每组n 人总费用为Y 元,结合条件计算,然后表示出结合基本不等式即得.【小问1详解】设每组需要检验的次数为X ,若混合血样为阴性,则1X =,若混合血样呈阳性,则21X =, 所以20(1)(10.002)P X ==-,20(21)1(10.002)P X ==--, 所以202020()1(10.002)21[1(10.002)]2120(10.002)E X =´-+´--=-´-2120(1200.002) 1.8»-´-´=一共有300020150¸=组,故估计该小区化验的总次数是1.8150270´=.【小问2详解】设每组n 人总费用为Y 元,若混合血样呈阴性,则9Y n =+;若混合血样呈阳性,则119Y n =+,故(9)(10.009)n P Y n =+=-,(119)1(10.009)n P Y n =+=--()(9)0.991(119)(10.991)11100.9919n n n E Y n n n n =+×++×-=-´+每位居民的化验费用为()11100.99199911100.9911110(10.009)n n E Y n n n n n n n-´+==-´+»-´-+=911100.091 2.8n n -++³+=元 当且仅当90.09n n=,即10n =时取等号,故10n =时,每个居民化验的平均费用最少.18. 在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+uuu r uuu r uuu r,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22144x y -=(2)不存在直线l 符合题意,理由见解析【解析】【分析】(1)设(),P x y ,则由OP mOA nOB =+uuu r uuu r uuu r,可得x m n =+,y m n =-,再结合1mn =,消去,m n ,即可得曲线C 的标准方程,(2)判断直线l 的斜率存在,设l :()22y k x =-+,设()11,M x y ,()22,N x y ,将直线方程代入曲线C 的方程,化简后利用根与系数的关系,结合中点坐标公式表示出MN 的中点H 的坐标,利用弦长公式表示出MN ,表示出线段MN 的中垂线方程,求出其与与x 轴的交点坐标为4,01k Q k æöç÷+èø,而AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,从而由2222224MNQA QM QH HM QH ==+=+列方程求解即可.【小问1详解】设(),P x y ,则(),OP x y =uuu r,()1,1OA =uuu r ,()1,1OB =-uuu r ,因为OP mOA nOB =+uuu r uuu r uuu r,所以()()()(),1,11,1,x y m n m n m n =+-=+-,所以x m n =+,y m n =-,所以2x y m +=,2x yn -=,又122x y x y mn +-=×=,整理得22144x y -=,即曲线C 的标准方程为22144x y -=;【小问2详解】易知当l 的斜率不存在时,直线l 与曲线C 没有两个交点,所以直线l 的斜率存在,设l :()22y k x =-+,将直线l 与曲线C 联立,得22(2)2144y k x x y =-+ìïí-=ïî,消去y ,整理得()22212(22)4880kxk k x k k ----+-=,因为()()22224(22)4148832(1)0k k kkk k D =----+-=->且210k -¹,所以1k <且1k ¹-,设()11,M x y ,()22,N x y ,则1241k x x k +=+,21224881k k x x k -+=-,所以MN 的中点22,11kH k k æöç÷++èø,且1x M N =-=,将1241k x x k +=+,21224881k k x x k -+=-代入上式,整理得4MN =当0k ¹时,线段MN 的中垂线方程为1l :12214111k y x x k k k k k æö=--+=-+ç÷+++èø,令y =0,解得41k x k =+,即1l 与x 轴的交点坐标为4,01k Q k æöç÷+èø,当k =0时,线段MN 的中垂线为y 轴,与x 轴交于原点,符合Q 点坐标,因为AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,所以2222224MNQA QM QH HM QH ==+=+,所以()2222281442211111(1)(1)k k k k k k k k k +-æöæöæö-+=++ç÷ç÷ç÷++++-èøèøèø,整理得32622100k k k -++=,即()22(1)3450k k k +-+=,因为1k <且1k ¹-,所以上述方程无解,即不存在直线l 符合题意.19. 在高等数学中,我们将()y f x =在0x x =处可以用一个多项式函数近似表示,具体形式为:()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ¢¢=+¢-+-+×××+-+×××(其中()()n f x 表示()f x 的n 次导数*3,N n n ³Î),以上公式我们称为函数()f x 在0x x =处的泰勒展开式.当00x =时泰勒展开式也称为麦克劳林公式.比如e x 在0x =处的麦克劳林公式为:22111e 12!3!x n x x x x n =++++++L L !,由此当0x ³时,可以非常容易得到不等式223111e 1,e 1,e 1,226x x x x x x x x x ³+³++³+++L 请利用上述公式和所学知识完成下列问题:(1)写出sin x 在0x =处的泰勒展开式.(2)若30,2x æö"Îç÷èø,sin e 1a xx >+恒成立,求a 的范围;(参考数据5ln 0.92»)(3)估计5ln3的近似值(精确到0.001)【答案】(1)1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ; (2)1a ³; (3)0.511【解析】【分析】(1)求导,根据题意写出sin x 在0x =处的泰勒展开式;(2)结合sin x 在0x =处的泰勒展开式,构造函数证明3310,,sin 26x x x x æö"Î>-ç÷èø,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,求导得到函数单调性,证明出30,,()02x g x æö"Î>ç÷èø,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,满足要求,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不合要求,从而得到答案;(3)求出ln(1)x +和ln(1)x -的泰勒展开式,得到35122ln 2135x x xx x +=+++-L ,令14x =,估计5ln3的近似值.【小问1详解】()sin cos x x ¢=,()cos sin x x ¢=-,()sin cos x x ¢-=-,()cos sin x x ¢-=,其中cos 01,sin 00==,sin x 在0x =处的泰勒展开式为:1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,【小问2详解】因为1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,由sin x 在0x =处的泰勒展开式,先证3310,,sin 26x x x x æö"Î>-ç÷èø,令3211()sin ,()cos 1,()sin 62f x x x x f x x x f x x x =-+¢=-+¢¢=-,()1cos f x x ¢¢¢=-,易知()0f x ¢¢¢>,所以()f x ¢¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢¢>¢¢=,所以()f x ¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢>¢=,所以()f x 在30,2æöç÷èø上单调递增,所以()(0)0f x f >=,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,易得1(1)(2)2()1x x x g x x --+¢=+,所以()g x 在(0,1)上单调递增,在31,2æöç÷èø上单调递减,而3155(0)0,ln 02162g g æö==->ç÷èø,所以30,,()02x g x æö"Î>ç÷èø恒成立,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,所以sin e 1a x x >+成立,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不符合题意. 综上所述,1a ³.【小问3详解】因为1154ln ln,1314+=-转化研究1ln 1x x +-的结构,23456ln(1)23456x x x x x x x +=-+-+-+L ,23456ln(1)23456x x x x x x x -=-------L ,两式相减得35122ln 2135x x x x x +=+++-L ,取1,4x =得35512121ln 2((0.5108343454=´+´+´+»L ,所以估计5ln 3的近似值为0.511(精确到0.001).【点睛】麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 12!!n x n x x x o x n +=+++++L ,()()()352122sin 13!5!21!n n n x x x x x o x n ++=-+-+-++L ,()()()24622cos 112!4!6!2!nn n x x x xx o x n =-+-++-+L ,()()()2311ln 11231n n n x x xx x o x n +++=-+-+-++L ,()2111n n x x x o x x =+++++-L ,()()()221112!nn n x nx x o x -+=+++。

辽宁省沈阳市重点学校2024-2025学年高三上学期10月月考试题 数学含答案

辽宁省沈阳市重点学校2024-2025学年高三上学期10月月考试题 数学含答案

2024-2025学年度上学期10月份月考数学试卷(答案在最后)命题人:高三数学组第Ⅰ卷(选择题)一、单选题(每个小题有且只有一个正确选项,每小题5分,共40分)1.设集合{}2230A x Z x x =∈--≤∣,{B x y ==∣,则A B ⋂=()A .{1,0,1}-B .{0,1,2}C .{1,0,1,2}-D .{1,2}2.若22i z z+=-,则z =()A .1i +B .1i-C .1i -+D .1i--3.已知n S 为等比数列{}n a 的前n 项和,432:p S S a -=,{}:n q a 为常数列,则()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 充要条件D .p 是q 的既不充分也不必要条件4.已知锐角α,β满足1sin cos 5αα-=,tan tan tan tan αβαβ++=α与β的大小关系为()A .4παβ<<B .4πβα<<C .4παβ<<D .4πβα<<5.在等差数列{}n a 中,若49228a a a +==,则下列说法错误的是()A .19a =B .1045S =C .n S 的最大值为45D .满足0n S >的n 的最大值为196.已知30,4πα⎛⎫∈ ⎪⎝⎭,30,,sin 243ππβα⎛⎫⎛⎫∈+= ⎪ ⎪⎝⎭⎝⎭,53cos 29βα⎛⎫+=- ⎪⎝⎭则cos 42πβ⎛⎫-= ⎪⎝⎭()A .9B .9-C .3D .3-7.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,(5,0)D ,(2,)B A ,BC CD ⊥,则(4)f =()A .4B C .D .8.已知函数22,0()ln(1)1,0x x ax a x f x e x x ⎧---<=⎨+++≥⎩的值域为R ,则a 的取值范围是()A .(,2]-∞-B .[2,0]-C .(,2][2,)-∞-⋃+∞D .(,1][2,)-∞-⋃+∞二、多选题(每小题6分,每个小题漏选2或3分或4分,有错选不得分,共18分)9.已知20ax bx c ++>的解集是(2,3)-,则下列说法正确的是()A .0b c +>B .不等式20cx bx a -+<的解集为11,23⎛⎫- ⎪⎝⎭C .1234a b -+的最小值是4D .当2c =时,若2()36f x ax bx =+,[]12,x n n ∈的值域是[3,1]-,则21[2,4]n n -∈10.设()3sin 2cos 2f x a x a x =+,其中a ∈R ,0a ≠,则:()A .()f x 相邻两个最高点之间的距离是πB .()2f x a≤C .()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z D .()f x 的图象向左平移6π个单位长度得到的函数图象关于y 轴对称.11.已知函数32()1f x x ax =-+,则()A .曲线()y f x =关于点(0,1)成中心对称B .a ∃∈R ,()f x 无极值C .若()f x 在(2,)+∞上单调递增,则3a <D .若曲线()y f x =与x 轴分别交于点()1,0A x ,()2,0B x ,()3,0C x ,且在这三个点处的切线斜率分别为1k ,2k ,3k 则123111k k k ++为定值第II 卷(非选择题)三、填空题(每个小题5分,共15分)12.已知函数()2sin 2f x x x =-,则不等式()2(34)0f x f x +-<的解集为__________.13.已知数列{}n a则{}n a 的前n 项和n S =_________.14.若函数2log 2,0()sin ,03x x x f x x x πωπ+>⎧⎪=⎨⎛⎫+-≤≤ ⎪⎪⎝⎭⎩有4个零点,则正数ω的取值范围是__________.四、解答题(15题13分,16、17题每小题15分,18、19题每小题17分,共77分)15.(本小题满分13分)已知ABC ∆中,角A ,B ,C 的对边分别为a ,b ,csin cos C c B c -=..(1)求角B .(2)若ABC ∆为锐角三角形,且2a =,求ABC ∆面积的取值范围.16.(本小题满分15分)设{}n a 是正数组成的数列,其前n 项和为n S ,已知n a 与2的等差中项等于n S 与2的等比中项.(1)求数列{}n a 的通项公式;(2)令()*111 N 2n n n n n a a b n a a ++⎛⎫=+∈ ⎪⎝⎭,求{}n b 的前n 项和.17.(本小题满分15分)已知曲线()e xf x a x b =-+在0x =处的切线过点()21,21a a +-.(1)试求2b a -的值;(2)讨论()f x 的单调性;(3)证明:当0a >时,3()2ln 2f x a >+.18.(本小题满分17分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .AD 为BC 边上的中线,点E ,F 分别为边AB ,AC 上动点,EF 交AD 于G .已知4b =,且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求c 边的长度;(2)若21cos 7BAD ∠=,求BAC ∠的余弦值;(3)在(2)的条件下,若4ABC AEP S S =△△,求AG EF ⋅u u u r u u u r的取值范围.19.(本小题满分17分)已知对任意正整数n ,均有10cos()cos coscos nn n n nx a x a x a x a --=++++L ,我们称1110()(11)n n n n f x a x a x a x a x --=++++-≤≤L 为n 次切比雪夫函数.(1)若()f x 为3次切比雪夫函数,求(1)f 的值.(2)已知()f x 为2n 次切比雪夫函数,若数列{}k x 满足(21)(1,2,,2)4k k x k n nπ-==L .证明:①数列{}cos k x 中的每一项均为()f x 的零点;②当2n ≥时,1cos22cos 4n n x x n nππ-+<.2024-2025学年度上学期10月份月考数学试卷答案一、单选题1-8.CABBDCAC 二、多选题9.ACD10.AD11.BD .三、填空题12.(4,1)-13.111222n n ++-14.710,33⎡⎫⎪⎢⎣⎭四、解答题15.(1sin cos C c B c -=sin sin cos sin B C C B C -=,因为0C π<<,sin 0C >cos 1B B -=,所以1sin 62B π⎛⎫-= ⎪⎝⎭,因为0B π<<,所以66B ππ-=,解得3B π=;(2)由题设,因为V ABC 为锐角三角形,所以02A π<<62A ππ<<,可得tan 3A >,所以302tan 2A <<,则面积的取值范围是,2⎛ ⎝.16.(1)由题意,当1n =时有122a +=11S a =,所以122a +=,解得:12a =,)*2 N 2n a n +=∈,整理得()2128n n S a =+,由此得()211118n n S a ++=+,所以()()221111228n n n n n a S S a a +++⎡⎤=-=+-+⎣⎦,整理得()()1140n n n n a a a a +++--=,由题意知10n n a a ++≠,所以14n n a a +-=,即数列{}n a 为等差数列,其中12a =,公差4d =,所以42n a n =-.(2)令1n n c b =-,则11112121112112221212121n n n n n a a n n c a a n n n n ++⎛⎫⎡+-⎤⎛⎫⎛⎫=+-=-+-=- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎣⎦⎝⎭,故1212n n b b b n c c c +++-=+++L L ,11111111335212121n T n n n n ⎛⎫⎛⎫⎛⎫-=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭L 所以1121n T n n =+-+.17.(1)函数()e x f x a x b =-+,求导得()e 1xf x a '=-,则(0)1f a '=-,而(0)f a b =+,因此曲线()f x 在0x =处的切线方程为(1)y a b a x --=-,即(1)y a x a b =-++,依题意,2211a a a a b +-=-++,所以则20b a -=.(2)由(1)知函数2()e xf x a x a =-+,其定义域为R ,求导得()e 1xf x a '=-,当0a ≤时,()0f x '<,()f x 在R 上单调递减;当0a >时,由()e 10xf x a '=-=,得ln x a =-,当ln x a <-时,()0f x '<,()f x 在(,ln )a -∞-上单调递减;当ln x a >-时,()0f x '>,()f x 在(ln ,)a -+∞上单调递增;所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增.(3)由(2)得()ln 2min ()(ln )e ln 1ln a f x f a a a a a c -=-=++=++,要证明3()2ln 2f x a >+,即证231ln 2ln 2a a a ++>+,即证21ln 02a a -->,令21()ln 2g a a a =--,求导得2121()2a g a a a a -'=-=,由()0g a '<,得02a <<,由()0g a '>,得2a >,即函数()g a在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,因此2min 1()ln ln 02222g a g ⎛⎫⎛⎫==--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即21()ln 02g a a a =-->恒成立,所以当0a >时,3()2ln 2f x a >+.18.(1)由已知12sin cos sin sin sin 4c A B a A b B b C =-+,由正弦定理角化边可得,2212cos 4ca B a b bc =-+.由余弦定理角化边可得,222221224c a b ca a b bc ac +-⋅=-+,整理可得,214c bc =,即4b c =.因为4b =,所以1c =.(2)因为D 为中点,所以1()2AD AB AC =+u u u r u u u r u u u r.设AB u u u r ,AC u u ur 的夹角为θ,则178cos ||2AD ===u u u r 又()2211cos 14cos ()2222c cb AB AD AB AB AC AB AB AC θθ++⋅=⋅+=+⋅==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以21cos 7||||AB AD BAD AB AD ⋅∠===u u u r u u u r u u u r u u u r ,整理可得228cos 8cos 110θθ+-=,解得1cos 2θ=或11cos 14θ=-.又21cos 07BAD ∠=>,所以0AB AD ⋅>u u u r u u u r ,14cos 0θ+>,所以1cos 2θ=,所以BAC ∠的余弦值为12.(3)由(2)可得,||||cos 2AB AC AB AC θ⋅=⋅=u u u r u u u r u u u r u u u r.由已知可设AD k AG =u u u r u u u r ,AB AE λ=u u u r u u u r ,(,,[1,))AC AF k μλμ=∈+∞u u u r u u u r所以||||AB AE λ=u u u r u u u r ,||1||AB AE λλ==u u u ru u u r ,||||AC AF μ=u u u r u u u r,||4||AC AF μμ==u u u r u u u r .因为4ABCABFS S =V V ,所以11||||sin 14sin 2241114||||sin 22AB AC AE AF θθλμθμλθ⋅⋅⨯⨯===⋅⋅⋅u u u r u u u r u u u r u u u r .由1122AD AB AC =+u u u r u u u r u u u r 可得,2k AG AE AF λμ=+u u u r u u u r u u u r ,即22AG AE AF k kλμ=+u u u r u u u r u u u r.由G ,E ,F 三点共线,得122k kλμ+=,即2k λμ+=.所以1()AG EF AD AF AE k ⋅=⋅-u u u r u u u r u u u r u u u r u u u r 46116122363424k λλμλμλμλλμλμλλ-⎛⎫-=⋅-+-=⋅=⋅⎪+⎝⎭+222223643624283286444444λλλλλ-+-⎛⎫=⋅=⋅=⨯-⎪+++⎝⎭.因为41μλ=≥,所以4λ≤,即[1,4]λ∈,所以24[5,20]λ+∈,所以22828282045λ≤≤+,即22828285420λ-≤-≤-+,即2228236545λ≤-≤+,所以23328696104420λ⎛⎫≤-≤ ⎪+⎝⎭,所以3691020AG EF ≤⋅≤u u u r u u u r ,所以AG EF ⋅u u u r u u u r 的取值范围为369,1020⎡⎤⎢⎥⎣⎦.19.(1)(方法一)因为323cos3cos 2cos sin 2sin 2cos cos 2sin cos 4cos 3cos x x x x x x x x x x x =-=--=-,所以3()43f x x x =-,则(1)431f =-=.(方法二)由题意得323210()f x a x a x a x a =+++,令0x =,得1110cos 0cos 0cos 0cos 01n n n n a a a a --=⋅+⋅++⋅+=,即101n n a a a -+++=,则3210(1)1f a a a a =+++=.(2)证明:①由题可知22122110()n n n n f x a x a x a x a --=++++L ,则()()22122110cos cos cos cos cos 2nn k n k n k k k f x a x a x a x a nx --=++++=L .因为(21)4k k x n π-=,所以()()21cos cos 2cos 2cos 042k k k f x nx n k n πππ-⎛⎫⎛⎫==⋅=-= ⎪ ⎪⎝⎭⎝⎭,所以数列{}cos k x 中的每一项均为()f x 的零点.②令()cos 022g x x x x ππ⎛⎫=+-<< ⎪⎝⎭,则()1sin 0g x x '=->,()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,则()02g x g π⎛⎫<=⎪⎝⎭,即cos 2x x π<-.因为1(23)(21)0442n n n n x x n n πππ---<=<=<,所以11cos 2cos 2n n n nx x x xππ--⎧<-⎪⎪⎨⎪<-⎪⎩则()11cos cos n n n n x x x x π--+<-+,则()111cos cos 222n n n n n n x x x x x x π----++-<.因为1(23)(21)442n n n n x x n n n πππ----=-=所以1coscos cos 0244n n x x n n ππ--⎛⎫=-=> ⎪⎝⎭,从而()111cos 22cos2cos 42n n n n n n x x x x x x n n πππ----++<=-.。

重庆市2023-2024学年高三上学期10月月考数学试题含答案

重庆市2023-2024学年高三上学期10月月考数学试题含答案

重庆高2024届高三上10月质量监测数学试题(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共计40分.1.定义集合,A B 的一种运算:2{|,,}A B x x b a a A b B ⊗==-∈∈,若{1,4},{1,2}A B ==-,则A B ⊗中的元素个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】计算可求得{}0,3,3A B ⊗=-,可得结论.【详解】因为{1,4},{1,2}A B ==-,当1,1a b ==-时,20x b a =-=,当1,2a b ==时,23x b a =-=,当4,1a b ==-时,23x b a =-=-,当4,2a b ==时,20x b a =-=,所以{}0,3,3A B ⊗=-,故A B ⊗中的元素个数为3.故选:C.2.直线10ax y +-=被圆22(1)(4)4x y -+-=所截得的弦长为a =()A.43-B.34-C.3D.2【答案】A 【解析】【分析】先求出圆心到直线10ax y +-=的距离,结合点到直线的距离公式,即可得出a 的值.【详解】圆22(1)(4)4x y -+-=的圆心为(1,4),半径为2r =,1=,根据点到直线距离公式,知圆心(1,4)到直线10ax y +-=的距离1d ==,化简可得22(3)1a a +=+,解得43a =-.故选:A.3.已知:p x a ≥,:||6q x a +<,且p 是q 的必要不充分条件,则a 的取值范围为()A.(−∞,−3]B.(−∞,−3)C.[3,+∞)D.(3,+∞)【答案】A 【解析】【分析】由题意可得6a a ≤--,求解即可.【详解】由||6x a +<,解得66a x a --<<-,由p 是q 的必要不充分条件,所以6a a ≤--,解得3a ≤-,所以a 的取值范围为(,3]-∞-.故选:A.4.下列说法中,正确的是()A.设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为1B.已知数据2,3,5,7,8,9,10,11,则该组数据的上四分位数为9C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等D.频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C 【解析】【分析】依据方差的性质计算可判断选项A ;求得四分位数可判断选项B ;依据中位数定义和平均数定义去判断选项C ;由频率直方图的意义可判断D.【详解】对于A ,设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为2100.110⨯=,故A 错误;对于B ,因为80.756⨯=,所以该组数据的上四分位数为9109.52+=,故B 错误;对于C ,一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等,故C 正确;对于D ,频率分布直方图中各小长方形的面积等于相应各组的频率,故D 错误.故选:C.5.已知3a log 6=,5log 10b =,7log 14c =,则()A.b a c << B.c b a<< C.a b c<< D.a c b<<【答案】B 【解析】【分析】根据对数的运算和对数函数的性质即可求解.【详解】因为3321log 61log 21,log 3a ==+=+5521log 101log 21log 5b ==+=+,7721log 141log 21log 7c ==+=+且222log 7>log 5log 3>0>;所以a b c >>.故选:B.6.已知2F 是椭圆()222210+=>>x y a b a b的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A.3B.5C.4D.5【答案】A 【解析】【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ += 由22()0OP OF PF +⋅= ,即220OQ PF ⋅=所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b =,即1||2PF b=所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得22222513c a b b e a a a -===-,故选:A7.设函数f(x)是定义在R 上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=212x⎛⎫- ⎪ ⎪⎝⎭,则在区间(-2,6)上关于x 的方程f(x)-log 8(x+2)=0的解的个数为A.4 B.3C.2D.1【答案】B 【解析】【分析】把原方程转化为()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,再在同一坐标系下,画出两函数的图象,结合图象,即可求解.【详解】由题意,原方程等价于()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,作出()f x 在(0,2)上的图象,再根据()f x 是偶函数,图象关于y 轴对称,结合对称性,可得作出()f x 在()2,6-上的图象,如图所示.再在同一坐标系下,画出8log (2)y x =+的图象,同时注意其图象过点(6,1),由图可知,两图象在区间()2,6-内有三个交点,从而原方程有三个根,故选B.【点睛】本题主要考查了对数函数的图象,以及函数的奇偶性的应用,其中解答中熟记对数函数的性质,合理应用函数的奇偶性,在同一坐标系内作出两函数的图象,结合图象求解是解答的关键,着重考查了数形结合思想,以及转化思想的应用,属于中档试题.8.已知函数() )2023f x x =-+,,a b 满足 (2)(4)4046(,f a f b a b +-=为正实数),则242b a a ab b ++的最小值为()A.1B.2C.4D.658【答案】B 【解析】【分析】由已知构造函数()()2023g x f x =-,探讨函数()g x 的单调性、奇偶性,进而求得24a b +=,再利用基本不等式求解即得.【详解】令()()2023)g x f x x =-=-||x x >≥,得()g x 定义域为R ,()()))ln10g x g x x x -+=+==,即函数()g x 是奇函数,而())g x x -=-,当0x ≥时,函数u x =+是增函数,又ln y u =是增函数,于是函数()g x 在[0,)+∞上单调递减,由奇函数的性质知,函数()g x 在(,0]-∞上单调递减,因此函数()g x 在R 上单调递减,由(2)(4)4046f a f b +-=,得(2)2023(4)20230f a f b -+--=,即(2)(4)0g a g b +-=,所以(2)(4)(4)g a g b g b =--=-,则24a b =-,即24a b +=,又0,0a b >>,所以244422(2)4b b b a ab b a b a a a a a b b +=+=+≥++,当且仅当164,99a b ==时取等号,所以242b a a ab b ++的最小值为2.故选:B.二、多项选择题:本大题共4小题,每小题5分,共计20分.9.已知1,0a b c >><,则()A.c a <cbB.()ac ->()bc -C.a cb a +⎛⎫< ⎪⎝⎭b cb a +⎛⎫ ⎪⎝⎭D.()log b a c ->()log a b c -【答案】CD 【解析】【分析】对于A,B ,取特殊值判断即可;对于C,利用指数函数的单调性判断即可;对于D,利用对数函数的单调性判断即可.【详解】对于A,不妨取4,2,c 1a b ===-,则c 1c 1,42a b =-=-,此时c ca b>,故A 错误;对于B,不妨取4,2,c 1a b ===-,则42()11,()11a b c c -==-==,此时()()a b c c -=-,故B 错误;对于C,因为1a b >>,所以01b a <<,所以指数函数xb y a ⎛⎫= ⎪⎝⎭在R 上单调递减,因为0c <,所以a c b c +>+,所以a cb cb b a a ++⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D,因为1a b >>,所以对数函数log b y x =和log a y x =在()0,∞+上单调递增,因为0c <,所以1a c b c ->->,所以()()log log 0b b ac b c ->->又()()log log 0b a b c b c ->->,所以()()log log b a a c b c ->-,故D 正确.故选:CD.10.第19届亚运会于2023年9月23日至10月8日在杭州举行.现安排小明、小红、小兵3名志愿者到甲、乙、丙、丁四个场馆进行服务.每名志愿者只能选择一个场馆,且允许多人选择同一个场馆,下列说法中正确的有()A.所有可能的方法有43种B.若场馆甲必须有志愿者去,则不同的安排方法有37种C.若志愿者小明必须去场馆甲,则不同的安排方法有16种D.若三名志愿者所选场馆各不相同,则不同的安排方法有24种【答案】BCD 【解析】【分析】利用分步乘法计数原理判断AC 选项的正确性,利用分类加法计数原理以及组合数计算判断B 选项的正确性,利用排列数计算判断D 选项的正确性.【详解】对于A ,所有可能的方法有34种,故A 错误.对于B ,分三种情况:第一种:若有1名志愿者去场馆甲,则去场馆甲的志愿者情况为13C ,另外两名同学的安排方法有339⨯=种,此种情况共有13C 927⨯=种,第二种:若有两名志愿者去场馆甲,则志愿者选派情况有23C ,另外一名志愿者的排法有3种,此种情况共有23C 39⨯=种,第三种情况,若三名志愿者都去场馆甲,此种情况唯一,则共有279137++=种安排方法,B 正确.对于C ,若小明必去甲场馆,则小红,小兵两名志愿者各有4种安排,共有4416⨯=种安排,C 正确.对于D ,若三名志愿者所选场馆各不同,则共有34A 24=种安排,D 正确.故选:BCD.11.已知双曲线22:1(01)91x y C k k k +=<<--,则()A.双曲线C 的焦点在x 轴上B.双曲线C 的焦距等于C.双曲线CD.双曲线C的离心率的取值范围为1,3⎛⎫⎪ ⎪⎝⎭【答案】ACD 【解析】【分析】根据双曲线的简单几何性质,对各选项逐一分析即可得答案.【详解】解:对A :因为01k <<,所以90k ->,10k -<,所以双曲线22:1(01)91x y C k k k-=<<--表示焦点在x 轴上的双曲线,故选项A 正确;对B :由A 知229,1a k b k =-=-,所以222102c a b k =+=-,所以c =所以双曲线C的焦距等于)21c k <<=,故选项B 错误;对C :设焦点在x 轴上的双曲线C 的方程为()222210,0x ya b a b-=>>,焦点坐标为(),0c ±,则渐近线方程为by x a=±,即0bx ay ±=,所以焦点到渐近线的距离d b ==,所以双曲线22:1(01)91x y C k k k -=<<--C 正确;对D :双曲线C的离心率e ===,因为01k <<,所以8101299k <-<-,所以13,e ⎛⎫ ⎪ ⎪⎝=⎭,故选项D 正确.故选:ACD.12.信息熵常被用来作为一个系统的信息含量的量化指标,从而可以进一步用来作为系统方程优化的目标或者参数选择的判据.在决策树的生成过程中,就使用了熵来作为样本最优属性划分的判据.信息论之父克劳德·香农给出的信息熵的三个性质:①单调性,发生概率越高的事件,其携带的信息量越低;②非负性,信息熵可以看作为一种广度量,非负性是一种合理的必然;③累加性,即多随机事件同时发生存在的总不确定性的量度是可以表示为各事件不确定性的量度的和.克劳德⋅香农从数学上严格证明了满足上述三个条件的随机变量不确定性度量函数具有唯一形式21()log1nii i H X CP P ==-=∑,令1=C ,设随机变量X 所有取值为1,2,3,⋯,n ,且()()01,2,3,,i P X i P i n ==>= ,11nii P ==∑,则下列说法正确的有()A.1n =时,()0H X =B.n =2时,若1P ∈10,2⎛⎫⎪⎝⎭,则()H X 的值随着1P的增大而增大C.若1P =2P =112n -,1k P +=2kP (2,N k k ≥∈),则()2122n H X -=-D.若2n m =,随机变量Y 的所有可能取值为12m ,,,,且()()()()2112P Y j P X j P X m j j m ===+=+-= ,,,,,则()()H X H Y ≤【答案】ABC 【解析】【分析】A 直接利用公式求解;B 先求出()2log H X n =,再判断单调性即可求解;CD 分别求出()H X 和()H Y ,结合对数函数单调性放缩即可求解.【详解】对于A :若1n =,则11,1i P ==,因此()()21log 10,A H x =-⨯=正确;对于B :当2n =时,()()()112112110,,log 1l 12P H x PP P og P ⎛⎫∈=---- ⎪⎝⎭,令()()()221log 1log 1,0,2f t t t t t t ⎛⎫=----∈ ⎪⎝⎭,则()()2221log log 1log 10f t t t t ⎛⎫=-+-=-> ⎪⎝⎭',即函数()f t 在10,2⎛⎫⎪⎝⎭上单调递增,所以()H x 的值随着1P的增大而增大,B 正确;对于C :()12111,22,N 2k k n P P P P k k +-===≥∈,则22211212,222k k k n n k P P k ----+=⨯==≥,22111111log log 222k k n k n k n k n k P P -+-+-+-+==-,,而1212111111log log 222n n n n P P ----==-,于是()2111222111221log ...222222n k k n n n n k n n n n H x P P ----=----=+=+++++∑1122112212222222n n n n n n n n n n ------=-++++++ 令231123122222n n n n nS --=+++++ ,则234112312221222n n n S n n +-=+++++ ,两式相减得2311111111111222112222222212n n n n n n n n n S +++⎛⎫- ⎪+⎝⎭=++++-=-=-- ,因此222n n n S +=-,()112112122222222nn n n n n n n n n n n H x S -----+=-+=-+-=-,C 正确;对于D ,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()()()()21,1,2,,P Y j P X j P X m j j m ===+=+-=⋯,222211()l 1og log m mi i i i i iH x P P P P ===-=∑∑122221222122121111log log log log m m m m P P P P P P P P --=++++ ()()()()122221212122211111log log log m m m m mm m m H Y P P P P P P P P P P P P -+-+=+++++++++ 12222122212221221121111log log log log m m m m m mP P P P P P P P P P P P ---=++++++++ 由于()01,2,,2i P i m >= ,即有2111i i m i P P P +->+,则222111log log i i m iP P P +->+,因此222111log log i i i i m iP P P P P +->+,所以()()H X H Y >,D 错误.故选:ABC .三、填空题:本大题共4小题,每小题5分,共20分.13.已知P 为椭圆221123x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,1260F PF ∠︒=,则12F PF 的面积为_______.【解析】【分析】结合椭圆定义与余弦定理、面积公式计算即可得.【详解】由已知得a =,b =,所以3c ===,从而1226F F c ==,在12F PF 中,2221212122cos 60F F PF PF PF PF ⋅︒=+-,即22121236PF PF PF PF ⋅=+-①,由椭圆的定义得12PF PF +=,即221212482PF PF PF PF ⋅=++②,由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ⋅⋅=︒= .14.若a ,0b >,且3ab a b =++,则ab 的最小值是____________.【答案】9【解析】【分析】利用基本不等式得3a b ab +=-≥,再解不等式可得结果.【详解】因为3a b ab +=-≥(当且仅当a b =时,等号成立),所以230--≥,所以1)0-+≥3≥,所以9ab ≥,所以ab 的最小值为9.故答案为:915.设关于x 的不等式220(0)x ax a a -+<<的解集为A ,若集合A 中恰有两个整数解,则实数a 的取值范围为___________.【答案】1[1,3--【解析】【分析】令2()2f x x ax a =-+,根据不等式220(0)x ax a a -+<<解集A 中恰有两个整数解,结合二次函数性质判断整数解为0,1-,从而列出不等式,求得答案.【详解】由题意可得当a<0时,280a a ∆=->,令2()2f x x ax a =-+,则其图象对称轴为02ax =<,且(0)20f a =<,故关于x 的不等式220(0)x ax a a -+<<解集A 中恰有两个的整数解为0,1-,则(1)130f a -=+<且(2)440f a -=+≥,解得113a -≤<-,故答案为:1[1,3--.16.已知函数()12e 0ƒ210x x x x x x -⎧>⎪=⎨--+≤⎪⎩,,,若方程()2f x ⎡⎤⎣⎦−()bf x +4=0有6个相异的实数根,则实数b 的取值范围是__________.【答案】44e eb <<+【解析】【分析】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,进而数形结合,将问题转化为方程240t bt -+=有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可.【详解】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,如图:令()t f x =,因为方程()()240fx bf x -+=有6个相异的实数根,所以方程240t bt -+=有两个不等的实根,所以2160b ∆=->,解得4b <-或4b >,不妨设这两根12t t <,则1212t t =⎧⎨=⎩或12122e t t <<⎧⎨<<⎩,当1212t t =⎧⎨=⎩时,123t t b +==,且1224t t ==,所以无解;当12122e t t <<⎧⎨<<⎩时,令()24g t t bt =-+,只需()()()1020e 0g g g ⎧>⎪<⎨⎪>⎩,即21404240e e 40b b b -+>⎧⎪-+<⎨⎪-+>⎩,解得44e e b <<+,终上所述:44e eb <<+.故答案为:44e eb <<+.四、解答题:本大题共6小题,共70分.17.已知函数() 938xf x a x =-⋅+.(1)当2a =时,求不等式() 16f x ≥的解集;(2)若函数() f x 在()0,∞+有零点,求实数a .【答案】(1)[)3log 4,+∞(2))⎡+∞⎣【解析】【分析】(1)令()30xt t =>,则()()280g t t at t =-+>,再由()16f x ≥,解不等式即可;(2)函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,即8a t t=+在1,+∞上有解,由基本不等式求出a 的取值范围.【小问1详解】因为()938xf x a x =-⋅+,令()30xt t =>,则()()280g t t at t =-+>,当2a =时,()()2280g t t t t =-+>,()16f x ≥即()16g t ≥,即2280t t --≥,由0t >,解得4t ≥,即34x ≥,解得3log 4x ≥,所以原不等式的解集为[)3log 4,∞+.【小问2详解】因为函数3x t =在R 上单调递增,所以函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,280t at -+=由大于1的解,即8a t t=+在1,+∞上有解,因为8t t +≥=8t t =,即t =时等号成立,得a ≥所以实数a 的取值范围为)∞⎡+⎣.18.已知双曲线的中心在原点,焦点在x 轴上,离心率为2,且过点(4,P .(1)求双曲线的方程;(2)直线l y kx =+:C 的左支交于A ,B 两点,求k 的取值范围.【答案】(1)22166x y -=(2)13k <<【解析】【分析】(1)根据题意求解双曲线方程即可;(2)联立直线和双曲线方程,通过判别式大于0,及12120,0x x x x +求解即可.【小问1详解】双曲线的中心在原点,焦点在x 轴上,设双曲线的方程为22221(0,0)x ya b a b-=>>由c e a ===,可得a b =,由双曲线过点(4,,可得2216101a b-=,解得6a b ==,则双曲线的标准方程为22166x y -=;【小问2详解】联立直线与双曲线方程22166x y y kx ⎧-=⎪⎨⎪=⎩,化简得()22180kx---=,则210k -≠,假设1122()A x y B x y ,,(,),则()222122122Δ)3213224001801k k x x k x x k ⎧=+-=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎩,解得13k <<.19.已知()x f x e ex =-+(e 为自然对数的底数)(Ⅰ)求函数()f x 的最大值;(Ⅱ)设21()ln 2g x x x ax =++,若对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <,求实数a 的取值范围.【答案】(Ⅰ)0;(Ⅱ)1,ln 212⎛⎫-∞-- ⎪⎝⎭【解析】【分析】(Ⅰ)求出函数导数,判断出单调性,即可求出最值;(Ⅱ)问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立,分离参数可得ln 12x a x x ->+,构造函数()(]ln 1,0,22x h x x x x =+∈,利用导数求出函数的最大值即可.【详解】(Ⅰ) ()x f x e ex =-+,()xf x e e '∴=-+,令()0f x '>,解得1x <;令()0f x '<,解得1x >,()f x \在−∞,0单调递增,在()1,+∞单调递减,()()max 10f x f ∴==;(Ⅱ)对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <等价于()()12max g x f x <,由(Ⅰ)()()2max 10f x f ==,则问题转化为()0g x <在(]0,2恒成立,化得21ln ln 122x xx a x x x +->=+,令()(]ln 1,0,22x h x x x x =+∈,则()21ln 12x h x x -'=+,当(]0,2x ∈时,1ln 0x ->,得()0h x '>,()h x ∴在(]0,2单调递增,()()max 12ln 212h x h ∴==+,则1ln 212a ->+,即1ln 212a <--,故a 的取值范围为1,ln 212⎛⎫-∞-- ⎪⎝⎭【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是将问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立.20.图,在直三棱柱111ABC A B C -中,,,O M N 分别为线段11,,BC AA BB 的中点,P 为线段1AC 上的动点,11,3,4,82AO BC AB AC AA ====.(1)求三棱锥1C C MN -的体积;(2)试确定动点P 的位置,使直线MP 与平面11BB C C 所成角的正弦值最大.【答案】(1)16(2)P 为1AC 的中点【解析】【分析】(1)由题意可得BA ⊥平面11AA C C ,进而可证MN ⊥平面11AA C C ,利用等体积法可求三棱锥1C C MN -的体积;(2)以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,发现为的中点时所成角的正弦值最大.【小问1详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,因为AB ⊂平面ABC ,所以1CC AB ⊥,由12AO BC =,O 是BC 的中点,则BA AC ⊥,因为1AC CC C = ,1,AC CC ⊂平面11AA C C ,所以BA ⊥平面11AA C C ,因为,M N 分别为线段11,AA BB 的中点,所以//MN AB ,所以MN ⊥平面11AA C C ,因为13,4,8AB AC AA ===,所以N 平面1CC M 的距离为3,因为四边形11AA C C 为矩形,M 为线段1AA 的中点,所以116CC M S = ,所以111163163C C MN N CC M V V --==⨯⨯=.【小问2详解】在ABC V 中,因为O 是BC 的中点,12AO BC =,所以BA AC ⊥,因为1AA ⊥平面ABC ,,AB AC ⊂平面ABC ,所以11,,AA AB AA AC ⊥⊥以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,由题设可得11(0,0,0),(3,0,0),(0,4,0),(0,4,8),(0,0,4),(3,0,8),(3,0,4)A B C C M B N ,1(3,4,0),(0,0,8)BC BB =-=,设平面11BB C C 的法向量为(,,)n x y z =,则1·340·80BC n x y BB n z ⎧=-+=⎪⎨==⎪⎩ ,令4x =,得3,0y z ==,所以平面11BB C C 的法向量为(4,3,0)n =,设(,,)P a b c ,1(01)AP mAC m =≤≤,则(,,)(0,4,8)a b c m =,所以(0,4,8)P m m ,(0,4,84)MP m m =-,设直线MP 与平面11BB C C 所成的角为θ,则222||sin ||||516(84)5541n MP n MP m m m m θ===+--+,若0m =,sin 0θ=此时,点P 与A 重合;若0m ≠,令11t m=≥,则2233355545(2)1sin t t t θ=≤-+-+=,当2t =,即12m =,P 为1AC 的中点时,sin θ取得最大值35.21.树德中学为了调查中学生周末回家使用智能手机玩耍网络游戏情况,学校德育处随机选取高一年级中的100名男同学和100名女同学进行无记名问卷调查.问卷调查中设置了两个问题:①你是否为男生?②你是否使用智能手机玩耍网络游戏?调查分两个环节:第一个环节:先确定回答哪一个问题,让被调查的200名同学从装有3个白球,3个黑球(除颜色外完全相同)的袋子中随机摸取两个球,摸到同色两球的学生如实回答第一个问题,摸到异色两球的学生如实回答第二个问题;第二个环节:再填写问卷(只填“是”与“否”).回收全部问卷,经统计问卷中共有70张答案为“是”.(1)根据以上的调查结果,利用你所学的知识,估计该校中学生使用智能手机玩耍网络游戏的概率;(2)据核查以上的200名学生中有30名男学生使用智能手机玩耍网络游戏,按照(1)中的概率计算,依据小概率值α=0.15的独立性检验,能否认为中学生使用智能手机玩耍网络游戏与性别有关联;若有关联,请解释所得结论的实际含义.参考公式和数据如下:()()()()()22n ad bcn a b c da b c d a c b dχ-==+++ ++++,.α0.150.100.050.0250.005 xα 2.072 2.706 3.841 5.0247.879【答案】(1)1 4(2)有关联,答案见解析【解析】【分析】(1)由题可得摸到同色两球的概率,进而可得回答第一个问题的人数及选择“是”的人数,再利用古典概型概率公式即得;(2)通过计算2χ,进而即得.【小问1详解】因为摸到同色两球的概率223326C+C2C5 p==,所以回答第一个问题的人数为2 200805⨯=人,回答第二个问题的人数为20080120-=人,因为男女人数相等,是等可能的,所以回答第一个问题,选择“是”的同学人数为180402⨯=人,则回答第二个问题,选择“是”的同学人数为704030-=人,所以估计中学生在考试中有作弊现象的概率为301 1204=.【小问2详解】由(1)可知200名学生使用智能手机玩网络游戏估计有50人,则有20名女生使用智能手机玩网络游戏男女合计使用智能手机玩游戏302050不用智能手机玩游戏7080150100100200零假设为:0H 使用智能手机玩耍游戏与性别无关,()222003080207082.67 2.072501501001003χ⨯⨯-⨯==≈>⨯⨯⨯根据小概率值0.15α=的独立性检验,推断0H 不成立,因此认为使用智能手机玩耍网络游戏与性别有关,此推断犯错误的概率不大于0.15.在男生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.3,0.7,在女生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.2,0.8,在被调查者中男生使用智能手机玩耍游戏是女生的1.5倍,于是根据概率稳定概率的原理,我们可以认为男士使用智能手机玩耍网络游戏的概率大于女生使用智能手机玩耍网络游戏的概率.22.在平面直角坐标系中,动点M 到()10,的距离等于到直线=−1的距离.(1)求M 的轨迹方程;(2)P 为不在x 轴上的动点,过点P 作(1)中M 的轨迹的两条切线,切点为A ,B ;直线AB 与PO 垂直(O 为坐标原点),与x 轴的交点为R ,与PO 的交点为Q ;(ⅰ)求证:R 是一个定点;(ⅱ)求PQ QR的最小值.【答案】(1)24y x=(2)(ⅰ)证明见解析;(ⅱ)【解析】【分析】(1)利用抛物线的定义求M 的轨迹方程;(2)(ⅰ)设点()()()001122,,,,,P x y A x y B x y ,由切线AP 和BP 的方程,得到直线AB 的方程为()002yy x x =+,又直线AB 与PO 垂直得02x =-,则直线AB 的方程()022yy x =-,可得所过定点.(ⅱ)联立直线AB 与直线OP 的方程得交点Q 的坐标,表示出PQ QR,结合基本不等式求最小值.【小问1详解】因为动点M 到()1,0的距离等于到直线=−1的距离,所以M 的轨迹为开口向右的抛物线,又因为焦点为()1,0,所以轨迹方程为24y x =.【小问2详解】(ⅰ)证明:设点()()()001122,,,,,P x y A x y B x y ,设以1,1为切点的切线方程为()11y y k x x -=-,联立抛物线方程,可得2114440ky y y kx -+-=,由()21Δ420ky =-=,得12k y =,所以切线AP :()112yy x x =+,同理切线BP :()222yy x x =+点P 在两条切线上,则010102022()2()y y x x y y x x =+⎧⎨=+⎩,由于()()1122,,,A x y B x y 均满足方程()002yy x x =+,故此为直线AB 的方程,由于垂直1AB OP k k ⋅=-即0021y y x ⋅=-,则02x =-,所以直线AB 的方程()022yy x =-,恒过()2,0R ;(ⅱ)解:由(ⅰ)知02x =-,则()()02,,2,0P y R -,直线()0:22AB yy x =-联立直线AB 与直线OP 的方程()00222y y x yy x ⎧=-⎪⎨⎪=-⎩得0220048,44y Q y y ⎛⎫- ⎪++⎝⎭,()()()()()()2223220000222202220000224220022222200021684824444||=416||4824444y y y y y y y y y PQ y y RQ y yyy y ++⎛⎫⎛⎫-+--+- ⎪ ++++⎝⎭⎝⎭⎛⎫⎛⎫-+-+- ⎪ ++++⎝⎭⎝⎭()()()()()22222222000004222004888441644y y y y y y y y y +++++==++422000220016641164.16844y y y y y ⎛⎫++=⋅=++≥ ⎪⎝⎭因此||||PQ QR ≥0y =±时取等号.即PQ QR的最小值是.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题,求最值经常与基本不等式相联系.。

2025届绵阳市南山中学高三数学上学期10月考试卷及答案解析

2025届绵阳市南山中学高三数学上学期10月考试卷及答案解析

绵阳南山中学校高2022级10月月考数学试卷一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 已知集合{}2340A x x x =--£,{}22B x x =-<<,则A B Ç=Rð()A. {}12x x -<< B. {}12x x -££ C. {}24x x << D. {}24x x ££【答案】D 【解析】【分析】求出集合A ,利用补集和交集的定义可求得集合A B ÇR ð.【详解】因为{}{}234014A x x x x x =--£=-££,{}22B x x =-<<,则{2B x x =£-R ð或}2x ³,故{}24A B x x Ç=££R ð.故选:D.2. 下列函数是偶函数的是( )A. ())lnf x x= B. ()1ln 1x f x x x +=-C. ()tan f x x = D. ()121x f x =-【答案】B 【解析】【分析】根据函数奇偶性的定义判断各选项即可.【详解】对于A ,函数定义域为R ,())ln x f x =--,所以()()))lnlnln10f x f x x x +-=++-==,则()()f x f x -=-,所以函数()f x 为奇函数;对于B ,函数定义域为()(),11,-¥-È+¥,()()111ln ln ln 111x x x f x x x x f x x x x -+-+-=-=-==--+-,所以函数()f x 为偶函数;对于C ,正切函数()tan f x x =为奇函数;对于D ,函数定义域为()(),00,-¥+¥U ,()()122112xx xf x f x --==¹--,所以()f x 不为偶函数.故选:B.3. 由一组样本数据()()()1122,,,,,,n n x y x y x y L 得到经验回归方程ˆˆˆy bx a =+,那么下列说法正确的是()A. 若相关系数r 越小,则两组变量的相关性越弱B. 若ˆb越大,则两组变量的相关性越强C. 经验回归方程ˆˆˆy bx a =+至少经过样本数据()()()1122,,,,,,...n n x y x y x y 中的一个D. 在经验回归方程ˆˆˆy bx a =+中,当解释变量x 每增加1个单位时,相应的观测值y 约增加ˆb个单位【答案】D 【解析】【分析】根据相关系数的含义可判断AB ;根据回归直线的含义可判断CD ;【详解】对于A ,若相关系数r 越小,则两组变量的相关性越弱,A 错误;对于B ,若r 越大,则两组变量的相关性越强,ˆb是回归直线的斜率,它不反应两变量的相关性强弱,B 错误;对于C ,经验回归方程ˆˆˆy bx a =+不一定经过样本数据()()()1122,,,,,,...n n x y x y x y 中的一个,C 错误;对于D ,在经验回归方程ˆˆˆy bx a =+中,当解释变量x 每增加1个单位时,若ˆ0b>,相应的观测值y 约增加ˆb 个单位;若ˆ0b <,相应的观测值y 约增加ˆb -个单位;故当解释变量x 每增加1个单位时,相应的观测值y 约增加ˆb个单位,正确,故选:D4. 在ABC V 中,角A 、B 、C 的对边分别是a 、b 、c ,且cos cos a B b A b +=,则ABC V 一定是( )A. 等腰三角形 B. 钝角三角形C. 锐角三角形D. 直角三角形【答案】A 【解析】【分析】由题意根据正弦定理及和差公式可得sin()sin A B B +=,由πA B C ++=及诱导公式可得sin sin C B =,结合,B C 为三角形的内角可得B C =,即可得结果.【详解】cos cos a B b A b +=,由正弦定理得sin cos sin cos sin A B B A B +=,则sin()sin A B B +=,又πA B C ++=,可得sin sin C B =,,B C Q 为三角形的内角,B C \=,所以ABC V 一定是等腰三角形.故选:A .5. 函数()()()cos 0,0f x A x A w j j =+>>的图象如下,则其解析式可能是()A. ()2π2cos 23f x x æö=-ç÷èø B. ()π2cos 23f x x æö=-ç÷èøC. ()π2cos 23f x x æö=+ç÷èøD. ()2π2cos 23f x x æö=+ç÷èø【答案】A 【解析】【分析】结合图象可知()π01,26f f æö=--=-ç÷èø,由此可判断BCD 不可能,结合函数周期说明A 中图象可能正确,即可得答案.【详解】结合题意以及各选项可知A 可为2,结合图象可知()π01,26f f æö=--=-ç÷èø,则对于B ,()π02cos 13f æö=-=ç÷èø,由此可判断B 中解析式不可能;对于C ,()π02cos13f ==,由此可判断C 中解析式不可能;对于D ,c ππ632π2os 13f --æöæö=+=ç÷ç÷èøèø,由此可判断D 中解析式不可能;对于 A ,由于π12ππ,,034646T w w >\´>\<<,即w 可取2;由2cos 1j =-,则2π2π,Z 3k k j =±+Î,由于0j >,可取4πj =3,此时()4π4π2π2cos 22cos 22π2cos 2333f x x x x æöæöæö=+=+-=-ç÷ç÷ç÷èøèøèø,A 可能,故选:A6. 研究发现一种鸟类迁徙的飞行速度v (单位:m/s )与其耗氧量Q 之间的关系式为:113log 10Q v a b =+(其中,a b 是实数),据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m /s .大西洋鲑鱼逆流而上时其游速为v (单位:m/s ),耗氧量单位数为2Q ,统计发现:2v 与23log 100Q 成正比.当21m/s v =时,2900Q =.若这种鸟类与鲑鱼的速度1v 与2v 相同时,则1Q 与2Q 的关系是( )A. 2219Q Q = B. 2129Q Q = C. 2213Q Q = D. 2123Q Q =【答案】B 【解析】【分析】根据题意求出,a b ,可得1131log 10Q v =-+,设223log 100Q v k =,由题意得12k =,2231log 2100Q v =,由12v v =得131log 10Q -+231log 2100Q =,根据对数的运算性质即可求解.【详解】由题意得3330log 01090log 110a b a b ì+=ïïíï+=ïî,解得11a b =-ìí=î,1131log 10Q v \=-+,设223log 100Q v k =,由题意得3900log 1100k =,解得12k =,2231log 2100Q v \=,又12v v =,131log 10Q \-+231log 2100Q =,则13331log log log 310Q +=,即133log log 30Q =130Q \=,即2129Q Q =.故选:B .7. 已知()()1122,,,x y x y 是函数2log y x =图象上两个不同的点,则下列4个式子中正确的是( )①1212222y y x x ++<;②1212222y y x x ++>;③122122log 2y y x x +<-+;④122122log 2y y x x +>-+.A. ①③ B. ②③ C. ①④ D. ②④【答案】B 【解析】【分析】求出已知两点的中点坐标及函数2log y x =的图象上纵坐标为122y y +的点,结合函数图象建立不等式,即可得解.【详解】如图所示,设()()1122,,A x y B x y ,,AB 的中点为点N 在函数2log y x =的图象上,且//MN x 轴,则121222,2y y y y N +æö+ç÷èø,由图知点N 在M 的左侧,即1212222y y x x ++>,故①错误,②正确;则121212222log log 222y y x x y y +++>=,即122122log 2y y x x +->+,即122122log 2y y xx +<-+,故③正确,④错误.故选:B.8. 设函数()()2(1)1,cos 2f x a x g x x ax =+-=+,当()1,1x Î-时,曲线()y f x =与()y g x =交点个数的情况有( )种.A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】设()()()h x f x g x =-,由()0h x =,得到方程21cos a x ax -=+解的个数,进而转化为21y ax a =+-与cos y x =的图象在(1,1)-上的交点个数,结合余弦函数的图象,以及二次函数的性质,分类讨论,即可求解.【详解】由函数()()2(1)1,cos 2f x a x g x x ax =+-=+,设()()()2cos 1,(1,1)h x f x g x ax x a x =-=-+-Î-,可得()()22()cos()1cos 1h x a x x a ax x a h x -=---+-=-+-=,所以函数ℎ(x )为偶函数,图象关于y 轴对称,令()0h x =,可得2cos 10ax x a -+-=,即21cos a x ax -=+,则()0h x =解的个数,即为21y ax a =+-与cos y x =的图象在(1,1)-上的交点个数,如图所示:当0a =时,1y =-,此时1y =-与cos y x =的图象在(1,1)-上没有公共点;当11a ->时,即2a >时,21y ax a =+-与cos y x =的图象在(1,1)-上有没有公共点;当11a -=时,即2a =时,21y ax a =+-与cos y x =的图象在(1,1)-上有1个公共点;当21cos1a ->且11a -<时,即cos1122a +<<时,21y ax a =+-与cos y x =的图象在(1,1)-上有2个公共点;当21cos1a -£且0a >时,即cos1102a +<£时,21y ax a =+-与cos y x =图象在(1,1)-上有没有公共点;当0a <时,此时21y ax a =+-对应的抛物线开口向下,且11a -<-,此时21y ax a =+-与cos y x =图象在(1,1)-上有没有公共点,综上可得,曲线y =f (x )与y =g (x )交点个数的情况有3种.的的故选:C.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 下列叙述正确的是( )A. 若等差数列{}n a 的公差0d >,则数列{}n a 为递增数列B. 若等比数列{}n b 的公比1q >,则数列{}n b 为递增数列C. 若2b ac =,则a 、b 、c 成等比数列D. 若21n S -是等比数列{}n c 的前21n -项和,则210n S -=无解【答案】AD 【解析】【分析】对于A :根据等差数列的定义以及递增数列的定义分析判断;对于BC :举反例说明即可;对于D :分1q =和1q ¹两种情况,结合等比数列求和公式分析判断.【详解】对于A :因为10n n a a d +-=>,可知数列{a n }为递增数列,故A 正确;对于B :例如11,20a q =-=>,则22a =-,即21a a <,可知数列{a n }不为递增数列,故B 错误;对于C :例如0a b c ===,满足2b ac =,但a 、b 、c 不成等比数列,故C 错误;对于D :设等比数列{}n c 公比为q ,且10a ¹,若1q =,则()211210n S n a -=-¹;若1q ¹,则()21121101n n a q S q---=¹-;综上所述:210n S -=无解,故D正确;故选:AD.的10. 设函数,若()0f x £,则22a b +的最值情况是( )A. 有最大值 B. 无最大值C. 有最小值D. 无最小值【答案】BC 【解析】【分析】根据知()()10f a f b =-=,根据()0f x £可得1a b +=,再根据不等式性质可判断.【详解】根据,可知()()10f a f b =-=,根据()0f x £恒成立,则相同取值情况下(),ln y x a y x b =-+=+为异号或同时等于0,又y x a =-+在R 上递减,()ln y x b =+在(),b -+¥上递增,只需它们的零点重合,得1a b =-,即1a b +=,所以()2222211112222a b b b b æö+=-+=-+³ç÷èø,所以22a b +有最小值,没有最大值.故选:BC11. 定义在R 上的函数()f x 的导函数为()g x ,且满足下列条件:()()()()2220,222f x f x g x g x +--==--,且()11f =.则下列正确的是( )A. ()y g x =周期为8B. ()2y g x =图象关于()1,0对称C. ()y f x =关于()1,0-对称D.()20241i f i ==å【答案】ACD 【解析】【分析】对于A ,C 根据已知等式结合对称中心定义得出判断;根据已知等式求导得出()()2g x g x =--,结合已知得出函数周期判断B ;应用导函数与原函数间关系得出f (x )周期,再根据()()150f x f x +++=,计算求解判断D.【详解】对于A,B ,因为()()222g x g x =--,则()()2g x g x =--,则()()11g x g x +=--可知()g x 的图象关于(1,0)中心对称,知(2)g x 的图象关于1(,0)2中心对称,B 错误;因为()()2220f x f x +--=,则()()2f x f x =---,两边求导数可得()()2f x f x ¢¢=--,即得()()2g x g x =--,所以()()22g x g x -=---,即得()()22g x g x +=--+,所以()()4g x g x +=-,()()()84g x g x g x +=-+=,所以函数()g x 的周期为8,A 正确;对于C ,因()()2220f x f x +--=则()()2f x f x =---,所以()()11f x f x --=--+,函数()f x 关于()1,0-对称,C 正确;对于D ,因为()g x 的图象关于(1,0)中心对称,所以f (x )关于x =1对称,所以()()11f x f x -=+,又()()2f x f x =---,所以()()()131f x f x f x +=---=-,可得()()31f x f x --+=+,所以()()()()()84f x f x f x f x +=-+=--=,所以函数f (x )周期为8,因为()()130f x f x ++-+=,所以()()150f x f x +++=,所以()()()()()()()()150,260,370,480f f f f f f f f +=+=+=+=,所以()()()()()()()()()()1234202425312348f f f f f f f f f f éù+++++=+++++ëûL L ()()()()()()()()253152637480f f f f f f f f éù=+++++++=ëû,D 正确.故选:ACD .【点睛】方法点睛:函数周期性及函数的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.)12. 若数列{}n a 的通项公式是2n a n =,且等比数列{}n b 满足2158b a b a ==,,则n b =_____.【答案】12n -【解析】【分析】设等比数列{}n b 的公比为q ,根据题意结合等比数列通项公式列式求1,b q ,即可得结果.【详解】由题意可知:21582,16b a b a ====,设等比数列{}n b 的公比为q ,则21451216b b q b b q ==ìí==î,解得112b q =ìí=î,为所以11122n n n b --=´=.故答案为:12n -.13. 设函数()()sin 0f x x w w =>,已知()()121,0f x f x ==,且12x x -的最小值为π2,则w =_____.【答案】1【解析】【分析】确定()()sin 0f x xw w =>的周期为πT w =,结合题意可得1π22T=,即可求得答案.【详解】由题意知()()sin 0f x x w w =>图象可由,()sin 0y x w w >=的图象将x 轴下方部分翻折到x 轴上方得到,故()()sin 0f x xw w =>的周期为πT w =,又()()121,0f x f x ==,则12x x -的最小值为函数周期的二分之一,即1π22T =,即1ππ,122w w ×=\=,故答案为:114. 在如下图的44´的方格表中选4个方格,要求每行和每列均恰有1个方格被选中,在所有符合上述要求的选法中,选中方格中的4个数之和的最小值是_____.8273262323376362738665263966【答案】126【解析】【分析】先按列分析,可知十位数是固定的,利用列举法写出所有个位数的可能结果,即可求解.【详解】先按列分析,每列必选出一个数,所选4个数的十位数字分别为0,2,3,6,若选中方格中的4个数之和的最小值,则需要个位数之和最小,每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的个位数字,则所有的可能结果为:(8,3,8,6),(8,3,9,6),(8,7,7,6),(8,7,9,3),(8,6,7,6),(8,6,8,3),(3,7,8,6),(3,7,9,6),(3,7,2,6),(3,7,9,2),(3,6,2,6),(3,6,8,2),(6,7,7,6),(6,7,9,3),(6,3,2,6),(6,3,9,2),(6,6,2,3),(6,6,7,2),(5,7,7,6),(5,7,8,3),(5,3,2,6),(5,3,8,2),(5,7,2,3),(5,7,7,2),此时最小为532616+++=,所以选中的方格中,5,23,32,66的4个数之和最小,为5233266126+++=.故答案为:126.【点睛】关键点点睛:关解决本题的关键是先确定十位数,再确定个位数,利用列举法写出所有的可能结果.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 2021年8月,义务教育阶段“双减”政策出台,某初中在课后延时服务开设奥数、科技、体育等特色课程.为了进一步了解学生选课的情况,随机选取了400人进行调查问卷,整理后获得如下统计表:喜欢奥数不喜欢奥数总计已选奥数课(A 组)15050200未选奥数课(B 组)90110200总计240160400(1)若从样本内喜欢奥数的240人中用分层抽样方法随机抽取32人,则应在A 组、B 组各抽取多少人?(2)依据小概率值α0.005=的独立性检验,能否认为选报奥数延时课与喜欢奥数有关?附:()2P c a ³0.10.050.010.0050.001a2.7063.841 6.6357.87910.828参考公式:()()()()22()n ad bc a b c d a c b d c -=++++,其中n a b c d =+++.【答案】(1)应在A 组抽取20人,应在B 组抽取12人.(2)能认为选报奥数延时课与喜欢奥数有关联,此推断犯错误的概率不大于0.005【解析】【分析】(1)根据分层抽样列式计算即可;(2)根据表格数据求出2c 的值,然后与临界值比较即可判断.【小问1详解】应在A 组抽取3215020240´=人,应在B 组抽取329012240´=人.【小问2详解】零假设为0H :选报奥数延时课与喜欢奥数无关联,根据列联表中的数据,经计算可得22400(1501109050)37.57.879200200240160c ´´-´==>´´´,根据小概率值α0.005=的独立性检验,我们推断零假设不成立,即认为选报奥数延时课与喜欢奥数有关联,此推断犯错误的概率不大于0.005.16. 阅读一元二次方程韦达定理的推导过程,完成下列问题:设一元二次方程()21200R ax bx c a a b c x x ++=¹Î,,,的两根为,,则212ax bx c a x x x x ++=--()(),展开得:()221212ax bx c ax a x x x ax x ++=-++,比较系数得:()1212b a x x c ax x =-+=,,于是1212b c a x x x x a+=-=,.(1)已知一元三次方程()3200R ax bx cx d a a b c d +++=¹Î,,,,的三个根为123x x x ,,,类比于上述推导过程,求123x x x ;(2)已知()32691f x x x x =-++,若存在三个不相等的实数()()()m n t f m f n f t ==,,,使得,求mnt 的取值范围.【答案】(1)123d x x x a=- (2)()04,【解析】【分析】(1)先把式子展开再应用待定系数法即可求值;(2)根据函数求出导函数,根据导数正负得出函数单调性,再画出图像数形结合()y f x =与y s =有三个交点,即可求参数范围.【小问1详解】由题意知()()()32123ax bx cx d a x x x x x x +++=---,展开得:()()3232123122331123ax bx cx d ax a x x x x a x x x x x x x ax x x +++=-+++++-,比较系数得123,d ax x x =-即123d x x x a=-.【小问2详解】令()()()f m f n f t s ===,,,m n t 是()32691f x x x x s =-++=的三个根,即为326910x x x s -++-=的三个不等根,由上知1mnt s =-.()()()23129331f x x x x x =-+=--¢,于是()()()1,3,0,x f x f x <¢Î单调递减,()()()1,0,x f x f x ¢Î-¥>,单调递增,()()()3,,0,x f x f x ¢Î+¥>单调递增,且()()()()031,145f f f f ====,函数()f x 的大致图象如下:为使得()y f x =与y s =有三个交点,则()1,5,s Î故()104.mnt s =-Î,17. 如图所示,直线12,l l 之间的距离为2,直线23,l l 之间的距离为1,且点,,A B C 分别在123,,l l l 上运动,π3CAB Ð=,令CAF a Ð=.(1)判断ABC V 能否为正三角形?若能,求出其边长的值;若不能,请说明理由;(2)求ABC V 面积的最小值.【答案】(1)ABC V(2).【解析】【分析】(1)过C 作1CD l ^,过B 作1BE l ^,利用直角三角形边角关系求出,AC AB ,则等边三角形建立方程求解即得.(2)由(1)中信息,利用三角形面积公式,结合三角恒等变换及正弦函数的性质求出最小值.【小问1详解】过C 作1CD l ^,过B 作1BE l ^,垂足分别为,D E ,如图,由CAF a Ð=,π3CAB Ð=,得2π2π0,33BAE a a <<Ð=-,在ACD V 中,3sin AC a =,在ABE V 中,22πsin()3AB a =-,由ABC V 是正三角形,则AC AB =,即322π,3sin()2sin 2πsin 3sin()3a a a a =-=-,整理得cos a a =,又22sin cos 1a a +=,解得sin a =,所以3sin AC a ==【小问2详解】由(1)知,1π1sin 2π23sin sin()3ABC S AB AC a a =×==-V ,21111π1cos sin cos2sin(2)244264a a a a a a +=-+=-+,由2π03a <<,得ππ7π2666a -<-<,则当ππ262a -=,即π3a =21cos sin 2a a a +取最大值34,所以π3a =时,ABC S V43=.18. 已知函数()2124ln .f x ax x x a =+-ÎR ()(1)若函数()y f x =在()0,¥+上是减函数,求实数a 的取值范围;(2)“若函数()y f x =在()0,1上只有一个极值点,求实数a 取值的集合”,某同学给出了如下解法:由()2124412440ax x f x ax x x+-=+-==¢在()0,1上只有一个实数根,所以16960a =+=V ,得16a =-,此时()10,12x =Î.所以,实数a 取值的集合为16ìü-íýîþ.上述解答正确吗?若不正确,说明理由,并给出正确的解答;(3)若函数()f x 有两个极值点12,x x ,证明:()()1232ln 2.f x f x +>+【答案】(1)1,6¥æù--çúèû(2)上述解答不正确,理由见解析,解答见解析(3)证明见解析【解析】【分析】(1)求导,分析可知()()00f x x ¢£>恒成立,参变分理结合二次函数最值分析求解;(2)分析可知()22441g x ax x =+-在(0,1)上只有一个变号零点,参变分类结合二次函数分析求解;(3)分析可知g (x )=0在(0,+∞)上有两个不等实根为12,x x ,利用韦达定理整理可得()()12111ln 324f x f x a a æö+=---ç÷èø,令11244t a =->,()18ln h t t t =+-,利用导数分析证明.【小问1详解】因为()212441244ax x f x ax x x=¢+-=+-,由题意可知()()00f x x ¢£>恒成立,则224410ax x +-³,可得221412424a x x x æöæö£-=--ç÷ç÷èøèø,因为21244x æö--³-ç÷èø,当且仅当12x =,即12x =时,等号成立,可得244a £-,解得16a £-,所以实数a 的取值范围为1,6¥æù--çúèû.【小问2详解】上述解答不正确,理由如下:由题意可知:()22441g x ax x =+-在(0,1)上只有一个变号零点,令g (x )=0,整理可得212424a x æö=--ç÷èø,令()11,t x¥=Î+,则()22424a t =--,令()()224,1h t t t =-->,作出其函数图象,由图象可知:243a ³-,解得18a ³-,所以实数a 取值的集合是1,8¥éö-+÷êëø.【小问3详解】因为函数()f x 有两个极值点12,x x ,可知()224410g x ax x =+-=在(0,+∞)上有两个不等实根为12,x x ,则1212169601061024a x x a x x a =+>ìïï+=->íïï=->îV ,解得106a -<<,可得()()2212111222124ln 124ln f x f x ax x x ax x x +=+-++-()()()()()22212121212121212124ln 1224ln a x x x x x x a x x x x x x x x éù=+++-=+-++-ëû211211112ln 1ln 3612324324a a a a a a a æöæöæö=+---=---ç÷ç÷ç÷èøèøèø,令11244t a =->,则()()1218ln f x f x t t +=+-.令()118ln 4h t t t t æö=+->ç÷èø,则()18180t h t t t -=-=>¢,可知()h t 在1,4¥æö+ç÷èø内单调递增,则()132ln 24h t h æö>=+ç÷èø,所以()()1232ln 2f x f x +>+.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形;(2)构造新的函数ℎ(x );(3)利用导数研究ℎ(x )的单调性或最值;(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.19. 设函数()e xf x =.(1)设()()1g x f x ax =--,讨论()g x 的单调区间;(2)设曲线y =f (x )在点()()(),2,N n f n n n ³Î处的切线与x 轴、y 轴围成的三角形面积为S n ,令2n n S c n =,求2ln i n n c å=;(3)若0x "³,()sin cos 2f ax x x ³-+,求实数a 的取值范围.【答案】(1)答案见解析(2)()222ln 1ln22n n n n +----. (3)[1,)+¥【解析】【分析】(1)先求导函数再根据导函数正负得出函数的单调性即可 ;(2)先求出切线方程得出截距,再表示面积结合求出公式定义应用对数运算化简求解;(3)先构造函数()e sin cos 2axh x x x =-+-,再求导函数分1,1a a ³<两种情况讨论计算求参.【小问1详解】()e 1x g x ax =--,则()e x g x a ¢=-.①若0a £,则()()0g x g x ¢>,在(),¥¥-+上单调递增;②若a >0,令()0g x ¢=,解得ln x a=当(),ln x a Î-¥时,()()0g x g x ¢<,单调递减,当()ln ,x a Î+¥时,()()0g x g x ¢>,单调递增.综上,当0a £时,()g x 的单调递增区间为(),¥¥-+;当a >0时,()g x 的单调递减区间为(),ln a -¥,单调递增区间为()ln ,a +¥.【小问2详解】由题意易得曲线y =f (x )在点()(),n f n 处的切线方程为()e e n n y x n -=-.设切线与x 轴、y 轴相交所得的横截距与纵截距分别为,n n a b .则令0y =,解得1n a n =-,令x =0,解得()e1n n b n =--.则所围成的三角形面积为()2111e 22nn n n S a b n ==-则()()22222221e 11e 11ln ln ln ln lne 2ln ln2222n n n n n n n n S n n c c n n n n n n----====++=+-(),,2222211ln 2ln ln22ln ln2i i i i i n n n n n n n n c n n n n ååååå=====--æö=+-=+-ç÷èø()()()()221122ln 1ln22ln 1ln222n n n n n n n n +-+-=+--=---.小问3详解】()sin cos 2f ax x x ³-+即e sin cos 2ax x x ³-+,令()e sin cos 2ax h x x x =-+-,则()e cos sin axh x a x x =-¢-,①当1a ³时,因为0x ³,所以e e ax x ³,()e cos sin xh x x x ³-¢-,令()sin u x x x =-,则()1cos 0u x x =¢-³,则函数()u x 单调递增,且()(0)0u x u ³=,即sin x x ³;由(1)可知当1a =时,()()00g x g ³=,【即()1f x x ³+,所以e 1sin 1x x x ³+³+,则()e cos sin 1cos 0x h x x x x ³-¢³--³,所以函数()h x 在[0,)+¥上单调递增,且()(0)0h x h ³=,即e sin cos 2ax x x ³-+恒成立.②当1a <时,(0)10h a ¢=-<,存在实数00x >,使得0(0,)x x "Î均有()0h x ¢<,则函数()h x 在0(0,)x 上单调递减,且()(0)0h x h <=,不符合题意,所以当1a <时,不符合题意.综上,a 的取值范围为[1,)+¥.【点睛】关键点点睛:解题的关键是当1a <时,得出函数()h x 在0(0,)x 上单调递减,且()(0)0h x h <=,不符合题意,得出矛盾不成立.。

高三10月月考检测(数学)试题含答案

高三10月月考检测(数学)试题含答案
令g(x)=lnx﹣x+2,则 ,
所以g(x)在(1,+∞)上单调递减,且g(2)=ln2>0,g(3)=ln3﹣1>0,g(4)=ln4﹣2<0,
所以存在x0∈(3,4)使得g(x0)=0,
则g(x)=lnx﹣x+2>0的解集为(1,x0),
综上k的取值范围(﹣∞,x0),其中x0∈(3,4),
所以正整数k的最大值3.
15.(5分)15.已知 ,则 的最小值为_______.
16.(5分)16.设函数 是单调函数.若 的值域是 ,且方程 没有实根,则 的取值范围是______.
三、 解答题 (本题共计4小题,总分40分)
17.(10分)17.已知 的内角A,B,C的对边分别为a,b,c,满足
(1)求角B的大小;
(2)若 ,求 的值;
15.(5分)15.
16.(5分)16.
三、 解答题 (本题共计4小题,总分40分)
17.(10分)17【详解】(1)由正弦定理有: ,因为 ,
所以 ,即 ,由 ,可得 .
(2)
.
因为 , ,可得 ,而 ,
所以 .
18.(10分)(1)令 ,解得:
的单调递增区间为:
(2) ,即 由余弦定理 得: (当且仅当 时取等号) (当且仅当 时取等号)即 面积的最大值为:
A.∀x∈R,x2﹣2mx+m2﹣4=0B.∃x0∈R,
C. 不存在x∈R,x2﹣2mx+m2﹣4=0D.∀x∈R,x2﹣2mx+m2﹣4≠0
4.(5分) 4.函数 大致图象为()
A. B
C. D
5.(5分)5.已知 ,且 为第二象限角,则 ()
A. B. C. D.

北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题(含解析)

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C .D.{}1,2{}1,0,1,2-2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-3. 已知定义域为的函数不是偶函数,则()R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,225. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 1006. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+A.B.C.D.b a c>>b c a>>a c b>>c a b>>7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪⎪⎝⎭⎝⎭8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SO B. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π310. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A. B. ()00f =()()2f a x f x -=C.为偶函数D.()f x ()20251f a =三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x 13. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=14.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +16. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD 所成锐二面角的余弦值.17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C(1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQ D (0,G G 的距离的最大值.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C.D.{}1,2{}1,0,1,2-【正确答案】A【分析】解不等式化简集合,求出函数的定义域化简集合,再利用交集的定义求出求解A B 即得.【详解】依题意,,{{}{}1,0,1,2,1A x x B x x =∈<<=-=>-所以.{}0,1,2A B = 故选:A2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-【正确答案】D【分析】根据题意,由复数的运算代入计算,结合复数相等列出方程,即可得到结果.【详解】由可得,即,3i12i i a b -=++()()3i i 12i a b -=++()()3i 221ia b b -=-++所以,解得,则.2213a b b =-⎧⎨+=-⎩42a b =-⎧⎨=-⎩6a b +=-故选:D3. 已知定义域为的函数不是偶函数,则( )R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 【正确答案】D【分析】根据偶函数的概念得是假命题,再写其否定形式即可得()(),0x f x f x ∀∈--=R 答案.【详解】定义域为的函数是偶函数,R ()f x ()(),0x f x f x ⇔∀∈--=R 所以不是偶函数.()f x ()()000,0x f x f x ⇔∃∈--≠R 故选:D .4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,22【正确答案】A【分析】根据题意,由平均数与方差的性质列出方程,代入计算,即可求解.【详解】设数据的平均数和方差分别是,,1234,,,x x x x x 2s 则数据的平均数是,方差是,123421,21,21,21x x x x ++++()21x +24s 所以,解得,,解得,()213x +=1x =244s=21s =即数据的平均数和方差分别是.1234,,,x x x x 1,1故选:A5. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 100【正确答案】D【分析】设等差数列的公差为d ,由题意结合等差数列的通项公式求出即可结合等{}n a 1,a d 差数列前n 项和公式计算得解.()112n n n S na d -=+【详解】设等差数列的公差为d ,{}n a 则由题得,解得,()()1111519,4700a a d a d a d d ++=⎧⎪++=⎨⎪>⎩132d a =⎧⎨=⎩所以.8878231002S ⨯=⨯+⨯=故选:D.6. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+ A.B.C.D.b a c>>b c a>>a c b>>c a b>>【正确答案】B【分析】先由求出即,接着由余弦定理结合数量积的运算212BA BC BC⋅= |AB |=|AC |b c =律计算得,再由平面向量模的求法即可计算比较得解.2222b a AB AC -⋅=【详解】设的角A 、B 、C 的对边为a 、b 、c ,ABC V 因为,所以,212BA BC BC ⋅= ()()212AB AC AB AC AB-⋅-=-所以,故,2221122AB AC AB AC AB AC AB-⋅=⋅+-+ 22AB AC = 所以,即,|AB |=|AC |b c =所以,222222cos 22b c a b a AB AC bc A bc bc +--⋅==⨯=所以22221214433999a AB AC AB AB AC AC⎛⎫=+=+⋅+ ⎪⎝⎭,2222221424299299b a c b b a -=+⋅+=-22222222223193193213441681616821616b a b AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭ ,222222222225420254202251077494949494924949b a c AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭,因为,所以,即.210394916>>222b c a >> b c a >>故选:B.7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭【正确答案】C【分析】由条件求出的范围,结合正弦函数的性质列不等式可求结论.π6x ω+【详解】因为,,π02x ≤<0ω>所以, ()πππ31666x ωω≤+<+由已知,,()π331π62ω+>所以,83ω>所以的取值范围是.ω8,3∞⎛⎫+ ⎪⎝⎭故选:C.8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1【正确答案】D【分析】由题意可得,令,则有mint ≤0m =>1m =,结合基本不等式求得,于是有,从而得答案.2112m =21m ≥1m ≥【详解】解:因为,,xy 0>所以,则有,t ≤mint ≤令,则m =>1m =所以,2111122m ==+≤+=当且仅当时,等号成立,x y =所以,,211m≤21m ≥又,所以,0m >1m ≥,1≥1,所以,1t ≤即的最大值为1.t 故选:D.方法点睛:对于恒成立问题,常采用参变分离法,只需求出分离后的函数(代数式)的最值即可得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SOB. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π3【正确答案】ABD【分析】A 选项,作出辅助线,设底面圆的半径为,根据异面直线的夹角余弦值和余弦定r 理得到,从而得到圆锥的体积;B 选项,根据侧面积公式求出答案;C 选项,作出辅助1r =线,得到直线与平面所成角的平面角为,并求出其正切值,得到SO SAC OST ∠;D 选项,找到外接球球心,并根据半径相等得到方程,求出外接球半径,得30OST ∠<︒到外接球表面积.【详解】A 选项,连接并延长交圆于点,连接,CO P ,AP BP 因为为圆锥的底面的直径,弧的长度是弧的长度的2倍,AB SO BC AC 故四边形为矩形,,则,ACBP ππ,36CAB ABP CBA BAP ∠=∠=∠=∠=//BP AC 异面直线与所成角等于异面直线与所成角,SB BP SB AC 因为,所以,2SA =2SB SP ==设底面圆的半径为,则,r BP r =故,解得,2222441cos 244SB BP SP r SBP SB BP r +-+-∠===⋅1r =则由勾股定理得,SO ===故圆锥的体积为A 正确;SO 21π3r SO ⋅⋅=B 选项,圆锥的侧面积为,B 正确;SO π2πrl =C 选项,取的中点,连接,则⊥,⊥,AC T ,ST OT OT AC ST AC 又,平面,故⊥平面,OT ST T = ,OT ST ⊂SOT AC SOT 过点作⊥于点,由于平面,则⊥,O OE ST E OE ⊂SOT OE AC 又,平面,故⊥平面,ST AC T = ,ST AC ⊂SAC OE SAC 故即为直线与平面所成的角,OST ∠SO SAC 其中,则,πsin 3OT CO ==1tan 2OT OST OS ∠===由于,且在上单调递增,故,C 错误;1tan 302︒=>tan y x =π0,2⎛⎫ ⎪⎝⎭30OST ∠<︒D 选项,由对称性可知,外接球球心在上,连接,Q OSQC 设圆锥的外接球半径为,则,SO R OQ SO R R =-=由勾股定理得,即,解得,222OC OQ QC +=)221R R +=R =故圆锥的外接球的表面积为,D 正确.SO 2216π4π4π3R =⨯=故选:ABD方法点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径10. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 【正确答案】ABC【分析】不妨设,则,,对于A ,由题意A (x 1,y ), B (x 2,y )(y >0)21248y x x ==120x x >>求出和即可求解;对于B ,由题意得,进而可求出两点11x =212x =|AB |1243-=x x ,A B 坐标,从而求出和即可判断;对于C ,由题意先得,接着求出,进而求2F A 2F B21x =1x 出,轴即可得解;对于D ,先假设四边形是菱形,再推出矛盾12AB F F =2AF x ⊥12F F AB 即可得解.【详解】由题意得,不妨设,()()121,0,2,0F F A (x 1,y ), B (x 2,y )(y >0)则,,21248y x x ==120x x >>对于A ,因为,又直线平行于轴,所以轴,1AF AB ⊥AB x 1AF x ⊥所以,故, 11x =2212,82y y x ====如图,故,故A 正确;1212AB x x =-=对于B ,若,则,所以,解得,43AB =1243-=xx 224483y y -=y =所以,84,33A B ⎛⎛ ⎝⎝所以 ,,2103F A ==2103F B ==所以,,所以是等腰三角形,故B 正确;22F A F B=|F 2A |+|AB |>|F 2B |2F AB 对于C ,若,又直线平行于轴,所以轴,1BF BA⊥AB x 1BFx ⊥所以,故,21x =2124y y x ====故,轴,所以四边形是矩形,故C 正确;12121AB x x F F =-==2AF x ⊥12F F AB 对于D ,若四边形是菱形,则,即即,12F F AB 121AB F F==121x x -=22148y y -=所以,所以,y =((2,,1,A B 所以可得,则四边形不是菱形,矛盾,21F A F B AB==≠12F F AB 所以四边形不是菱形,故D 错误.12F F AB 故选:ABC.11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A.B.()00f =()()2f a x f x -=C.为偶函数 D.()f x ()20251f a =【正确答案】ABD【分析】对于A ,令,又,即可求得;对于B ,令,,0x a y ==()1f a =()00f =y a =再由,即可推得;对于C ,令,可得()()1,00f a f ==()()2f a x f x -=y x =-,从而为奇函数;对于D ,可推得,即()()0f x f x +-=()f x ()()4f x a f x +=的周期为,则.()f x 4a ()()()202550641f a f a a f a =⨯+==【详解】对于A ,令,得,,0x a y ==()()()()()00f a f a f a f f =+因为,所以,故A 正确;()1f a =()00f =对于B ,令,代入可得,y a =()()()()()0f x a f x f f a f a x +=+-因为,所以,()()1,00f a f ==()()f x a f a x +=-从而,故B 正确;()()2f a x f x -=对于C ,令,代入得,y x =-()()()()()0f f x f a x f x f a x =++--又因为对,恒成立且不恒为0,x ∀∈R ()()f a x f a x +=-所以,从而为奇函数,()()0f x f x +-=()f x 又不恒等于0,故C 错误;()f x 对于D ,因为,()()()2f x a f x f x +=-=-所以,()()()42f x a f x a f x +=-+=所以为的周期,4a ()f x 所以,故D 正确.()()()202550641f a f a a f a =⨯+==故选:ABD .三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x【正确答案】99【分析】先求二项式的展开式的通项,再由乘法法则求出的展开式6(13)x +6(12)(13)x x -+中含的项即可得解.2x 【详解】由题意得的展开式的通项为,6(13)x +()166C 33C rr r r rr T x x +==所以的展开式中,含的项为,6(12)(13)x x -+2x 2221112663C 23C 99x x x x -⋅=所以展开式中含的项的系数为.2x 99故答案为.9913. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=【正确答案】##24250.96【分析】由条件,根据三角函数定义可求,,根据对称性可求,,sin αcos αsin βcos β结合两角差正弦公式求结论.【详解】因为角的终边过点,α(3,4)--所以,,4sin 5α==-3cos 5α==-又角的终边与角的终边关于轴对称,βαx 所以,,4sin 5β=3cos 5β=-所以.24sin()sin cos cos sin 25αβαβαβ-=-=故答案为.242514.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =【正确答案】##0.215【分析】求出点关于直线对称点的坐标,进而求出,再结1(,0)F c -2y x =A 12||,||AF AF 合椭圆定义及勾股定理求出即可.1||BF 【详解】设关于直线的对称点,由,解得1(,0)F c -2y x =11(,)A x y 111112222y x cy x c⎧=-⎪+⎪⎨-⎪=⋅⎪⎩,113545c x c y ⎧=⎪⎪⎨⎪=-⎪⎩即,令椭圆右焦点,则,34(,55c c A -2(,0)Fc 1||AF ==,而点在椭圆上,由,得2||AF ==AC 122AF AF a +=,a =设,则,显然的中点都在直线上,1||BF m =2||2BF a m m =-=-112,AF F F 2y x =则平行于直线,从而,在中,2AF 2y x =21AF AF ⊥2Rt ABF,222()))m m +=-解得,所以.m =11|1|5||BF AF =故15思路点睛:椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用勾股定理、正弦定理、余弦定理、,得到a ,c 的关12|||2PF PF a =+|系.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +【正确答案】(1);2π3A =(2).32【分析】(1)由题意结合正弦定理和即可求解.sin sin cos cos sin C A B A B =+(2)先由(1)结合余弦定理得,接着由正弦定理角化边得222a b c bc =++,再结合基本不等式即可求解.22222sin 1sin sin A bcB C bc =+++【小问1详解】因为,,sin cos )b A a B c =-()sin sin sin cos cos sin CA B A B A B =+=+所以由正弦定理得)sin sin sin cos sin cos cos sin sin B A A B C A B A B A B A B=-=,又,故,所以即,B ∈(0,π)sin 0B≠sin A A =tan A =又,所以.()0,πA ∈2π3A =【小问2详解】由(1),所以由余弦定理得,2π3A =222222cos a b c bc A b c bc =+-=++所以由正弦定理得,222222222222sin 311sin sin 2A a b c bc bc B C b c b c b c ++===+≤=++++当且仅当时等号成立.b c =所以的最大值为.222sin sin sin A B C +3216. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD所成锐二面角的余弦值.【正确答案】(1)证明见解析(2【分析】(1)取PD 的中点E ,连接ME ,AE ,根据E 是PD 的中点,得到,//EM AB ,从而四边形ABME 是平行四边形,得到,再利用线面平行的判定定理EM AB =//AE BM 证明;(2)以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求得平面BDM 的一个法向量,平面PAB 的一个法向量,设n =(x,y,z )(),,m a b c= 平面PAB 与平面BMD 所成锐二面角的大小为θ,由求解.()cos ,n m cos n m n mθ⋅==【小问1详解】证明:取PD 的中点E ,连接ME ,AE ,因为E 是PD 的中点,M 是PC 的中点,所以,,又,,//EM DC 112EM DC ==//AB CD 1AB =所以,,//EM AB EM AB =所以四边形ABME 是平行四边形,所以,//AE BM 又平面PAD ,平面PAD ,所以平面PAD .AE ⊂BM ⊄//BM 【小问2详解】解:因为平面ABCD ,DA ,平面ABCD ,PD ⊥DC ⊂所以,,又,,所以.PD AD ⊥PD DC ⊥AB DA ⊥//AB CD AD DC ⊥以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示.则,所以.()()()()()0,0,0,0,0,2,1,0,0,1,1,0,0,2,0D P A B C ()0,1,1M 设平面BDM 的一个法向量,又,,n =(x,y,z )()1,1,0DB =()0,1,1DM =所以0,0,n DB x y n DM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令,解得,,1x =1y =-1z =所以平面BMD 的一个法向量.n =(1,−1,1)设平面PAB 的一个法向量,又,,(),,m a b c= ()1,0,2AP =-()0,1,0AB =所以20,0.m AP a c m AB b ⎧⋅=-+=⎪⎨⋅==⎪⎩令,解得,,2a =0b =1c =所以平面PAB 的一个法向量,()2,0,1m =设平面PAB 与平面BMD 所成锐二面角的大小为θ,所以.()cos ,n m cos n m n m θ⋅====即平面PAB 与平面BMD17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.【正确答案】(1)答案见解析(2)111200【分析】(1)写出所有可能得取值,然后分别求出其对应概率,列出表格,即可得到分布X 列,再由期望的公式代入计算,即可得到结果;(2)根据题意,由互斥事件概率公式代入计算,即可得到结果.【小问1详解】一年级学生及格的频率为,不及格的频率为,6031005=4021005=二年级学生及格的频率为,不及格的频率为,7531004=2511004=三年级学生及格的频率为,不及格的频率为,90910010=10110010=的所有可能取值为,X 0,1,2,3则,,()21105410P X ==⨯=()312391545420P X ==⨯+⨯=,()33925420P X ==⨯=所以的分布列为:X X12P110920920所以的期望为X ()1992701210202020E X =⨯+⨯+⨯=【小问2详解】由题意可知,抽到一、二年级,一、三年级,二、三年级的概率都是,13所以抽到的两名学生测试成绩均及格的概率为.13313913911135435103410200P =⨯⨯+⨯⨯+⨯⨯=18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C (1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N 的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQD (0,G G 的距离的最大值.BD 【正确答案】(1)2214x y -=(2),.220x y -+-=220x y ++-=220y --=(3【分析】(1)列出关于的方程,代入计算,即可求解;,a b (2)分直线斜率存在于不存在讨论,然后联立直线与双曲线方程,代入计算,即可得到结果;(3)分直线斜率存在于不存在讨论,分别联立直线与双曲线方程以及直线与双曲线方程,1l 2l结合韦达定理代入计算,即可得到直线过定点,从而得到结果.BD 【小问1详解】由题意可得,,解得,所以双曲线的方程为.2212811b a a b ⎧=⎪⎪⎨⎪-=⎪⎩21a b =⎧⎨=⎩C 2214x y -=【小问2详解】当直线斜率存在时,设直线的方程为,ll (1y k x -=-代入可得,2214x y -=()(()22214814110k x k k ⎡⎤-----+=⎢⎥⎣⎦当时,即时,直线与双曲线的渐近线平行,只有一个公共点,2140k -=12k =±l即直线的方程为,;l 220x y -+-=220x y ++-=当时,,2140k -≠()()()2222Δ6411614110k k ⎡⎤=-+--+=⎢⎥⎣⎦即,可得与双曲线相切,)210-=k =l 直线;l 220y --=显然,当直线斜率不存在时,直线与双曲线有两个公共点,不满足;l l 综上所述,与双曲线仅有1个公共点的直线有3条:C ,.220x y -+-=220x y ++-=220y --=【小问3详解】当直线的斜率不存在时,则与重合,又,即,1l B F 2415c =+=c =所以,,此时直线的方程为,)F()0,0D BD 0y =则到的距离为0;G BD 当直线的斜率为0时,则与重合,,,1l DF )D ()0,0B 此时直线的方程为,则到的距离为0;BD 0y =G BD 当直线的斜率存在且不为0时,设的方程为,1l 1l(y k x =-设,()()()()11223344,,,,,,,M xy N x y P x y Q x y 直线的方程为,2l (1y x k =-联立可得,(2214x y y k x ⎧-=⎪⎨⎪=⎩()2222142040k x x k -+--=,()()()()22222Δ4142041610k kk=----=+>由韦达定理可得,则12x x +=122x x +=所以,121222y y x x k k ++⎛=== ⎝所以,B 联立可得,(22141x y y x k ⎧-=⎪⎪⎨⎪=-⎪⎩222420140x x k k ⎛⎫---= ⎪⎝⎭,22224201Δ4141610k k k -⎛⎫⎛⎫⎛⎫=---=+> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由韦达定理可得,则,34x x+==342x x +=所以,所以,1212y y k +=-=D则()()2422334414BDk k k k k k --===--+,,()()()2423134141k k kk k -+-==--()2221,140,40kk k ≠-≠-≠所以直线的方程为,BD ()2341k y x k ⎛-=-⎝即,()2413k y kx-=--所以,即,()2413k y kx -=-+()2413k y k x ⎛-=-- ⎝故直线过定点,BD ⎫⎪⎪⎭当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;2410k -=1l当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;240k -=2l 当时,的方程为,21k =,BDBD x =过点;⎫⎪⎪⎭综上所述,直线过定点.BD ⎫⎪⎪⎭所以点到直线.GBD=关键点点睛:本题主要考查了直线与双曲线的位置关系,难度较大,解答本题的关键在于分类讨论直线的斜率存在以及不存在,然后得到直线恒过定点,从而解答.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -【正确答案】(1)证明见解析; (2)证明见解析;(3).1-【分析】(1)根据给定条件,求出函数的导数,再判断导数值为正即可.(2)利用中心对称的定义,计算推理即得.(3)求出函数及其导数,再按分类讨论并求出的最小值,建立不等()g x 0,0a a <>()g x 式,构造函数,利用导数求出最小值即得.【小问1详解】函数的定义域为R ,当时,,()f x 0,0a b >=1122()22121x x x f x ax ax--=+=-+++求导得,所以是增函数.122ln2()0(21)x x f x a -'=+>+()f x 【小问2详解】依题意,(2)()f x f x -+2331122(2)(1)(1)2121x x x x a x b x ax b x ---=+-+-+++-++,()11222211221xx x a a --=++=+++所以曲线关于点对称,曲线是中心对称图形.()y f x =(1,1)a +()y f x =【小问3详解】依题意,,其定义域为,求导得,()e 1xg x ax b =-+-R ()x g x e a '=-当时,在上单调递增,0a <()0,()g x g x >'R 当时,,的取值集合为,0x <0e 1x<<1ax b -+-(,1)b -∞-因此当时,函数的取值集合为,不符合题意;0x <()g x (,)b -∞当时,由,得在上单调递增;0a >()0g x '>ln ,()x a g x >(ln ,)a +∞由,得在上单调递减,()0g x '<ln ,()x a g x <(,ln )a -∞函数在处取得最小值,且,()g x ln x a =min ()(ln )ln 1g x g a a a a b ==-+-由对任意的恒成立,得,即成立,()0g x ≥x ∈R ln 10a a a b -+-≥ln 1b a a a ≥-++因此,设,2ln 11ln 2b a a a a a a a a --++≥=+-221111()ln 2,()a a a a a a a a ϕϕ-=+-=='-当时,,当时,,01a <<()0a ϕ'<1a >()0a ϕ'>函数在上递减,在上递增,()a ϕ(0,1)(1,)+∞则,即,当且仅当时取等号,min()(1)1a ϕϕ==-1b aa -≥-1,0ab ==所以的最小值为.b aa -1-结论点睛:函数的定义域为D ,,()y f x =x D ∀∈①存在常数a ,b 使得,则函数()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=图象关于点对称.()y f x =(,)a b ②存在常数a 使得,则函数图象关于直()(2)()()f x f a x f a x f a x =-⇔+=-()y f x =线对称.x a =。

2024学年百色市铝城中学高三数学上学期10月考试卷及答案解析f

2024年高三上学期10月份月考测试卷姓名:___________ 班级:___________考号:___________一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 抛物线28y x =上的一点M 到焦点的距离为4,则点M 的纵坐标为( )A. 4B. 2C. 4±D. 0【答案】C【解析】【分析】根据抛物线的焦半径公式可求出结果.【详解】抛物线28y x =的准线方程为2x =-,设00(,)M x y ,依题意得024x +=,即02x =,所以208216y =´=,04y =±.所以点M 的纵坐标为4±.故选:C2. 在核酸检测时,为了让标本中DNA 的数量达到核酸探针能检测到的阈值,通常采用PCR 技术对DNA 进行快速复制扩增数量.在此过程中,DNA 的数量n X (单位:g /L m m )与PCR 扩增次数n 满足0 1.6n n X X =´,其中0X 为DNA 的初始数量.已知某待测标本中DNA 的初始数量为0.1g /L m m ,核酸探针能检测到的DNA 数量最低值为10g /L m m ,则应对该标本进行PCR 扩增的次数至少为( )(参考数据:lg1.60.20»,ln1.60.47»)A. 5B. 10C. 15D. 20【答案】B【解析】【分析】根据题意列出方程,利用指数与对数的互化即可求解.【详解】由题意知00.1X =,10n X =,令100.1 1.6n =´,得1.6100n =,取以10为底的对数得lg1.62n =,所以210lg1.6n =».故选:B .3. 已知复数z 满足|2i |3,z z +=在复平面内对应点为(,)x y ,则( )A. 22(2)9x y -+= B. 22(2)9x y ++=C 22(2)9x y ++= D. 22(2)9x y +-=【答案】C【解析】【分析】由题意可得复数z 在复平面内对应的点为(,)x y 到点()0,2-的距离为3,运算求解即可.【详解】因为|2i |3z +=,可知复数z 在复平面内对应的点为(,)x y 到点()0,2-的距离为3,3=,即22(2)9x y ++=.故选:C.4. 函数()2()ln 2f x x x =-+的单调递增区间是( )A. (,1)-¥ B. (1,2) C. (0,1) D. (1,)+¥【答案】C【解析】【分析】令22x x m =-+,则ln y m =,求出函数的定义域,分别求出两个函数的单调区间,根据复合函数的单调性符合“同增异减”的原则,即可得出答案.【详解】解:令22x x m =-+,则ln y m =,220x x -+>,则02x <<,所以函数()f x 的定义域为()0,2,而()22211x x x -+=--+,以1x =为对称轴,所以函数m 在()0,1单调递增,在()1,2单调递减,而函数ln y m =为增函数,根据复合函数的单调性可知,函数()2()ln 2f x x x =-+的单调递增区间是()0,1,故选:C.5. 小明买了4个大小相同颜色不同的冰墩墩(北京冬奥会吉祥物)随机放入3个不同袋子中,则每个袋子至少放入一个冰墩墩的概率是( )A. 34 B. 227 C. 916 D. 49的.【答案】D【解析】【分析】由计数原理可求出4个冰墩墩随机放入3个不同袋子的种数,利用组合中的分组分配问题求出每个袋子至少放入一个冰墩墩的种数,根据古典概型概率公式可求得结果.【详解】小明将4个大小相同颜色不同的冰墩墩随机放入3个不同袋子中,有4381=种不同的放法,若每个袋子至少放入一个冰墩墩,则分2步进行分析:①将4个冰墩墩分为3组,有24C 6=种分组方法,②将分好的3组放入3个不同的袋子中,有33A 6=种情况,则有6636´=种方法,所以所求的概率为364819=.故选:D 6. 已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,O 为坐标原点,A 是双曲线C 的右支上的一点,若2AOF △是等边三角形,则双曲线C 的离心率为( )A.B.C. 1D. 1+【答案】D【解析】【分析】由2AOF △是等边三角形,可得点P 的坐标,代入抛物线的方程结合222a b c +=以及c e a=即可求解.【详解】因为2AOF △是等边三角形,且边长为c ,所以2OF 中点的横坐标为12c ,2OF,所以12P c æöç÷ç÷èø,代入双曲线可得22223144c c a b-=,因222a b c +=,由c e a=,可得42840e e -+=,解得:24e =+24e =-(舍),可得1e =,故选:D.为【点睛】求椭圆或双曲线的离心率(或离心率的取值范围)问题,常见的两种方法:①求出a ,c ,代入公式c e a=求解;②根据条件得到关于a ,b ,c 的齐次式,结合a ,b ,c 的关系转化为关于a ,c 的齐次式,然后转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (或e 的取值范围).7. 如图,正四棱台1111ABCD A B C D -中,点,,E F G 分别是棱111111,,C D D A A B 的中点,则下列判断中,不正确的是( )A. 11,,,B B D D 共面B. F Î平面ACEC. FG ^平面ACED. 11//A C 平面ACE【答案】C【解析】【分析】根据正棱台的概念及正棱锥的性质结合条件逐项分析即得.【详解】延长正四棱台1111ABCD A B C D -的侧棱相交于S ,则三棱锥S ABCD -为正四棱锥,连接BD ,11,,,B B D D 都在平面SBD 内,故A 正确;因为,E F 分别是棱1111,C D D A 的中点,所以11//EF A C ,由正棱锥的性质可知11//AC A C ,所以//EF AC ,即F Î平面ACE ,故B 正确;因为点,E G 分别是棱1111,C D A B 的中点,所以11//EG D B ,11EG AC ^,设1111A B C D O =I ,则SO ^平面1111D C B A ,EG Ì平面1111D C B A ,∴SO EG ^,11,SO A C SO O =ÌI 平面SAC ,11AC Ì平面SAC ,∴EG ^平面SAC ,显然平面SAC 与平面ACE 不平行,故C 错误;因为11//AC A C ,AC Ì平面ACE ,11A C Ë平面ACE ,所以11//A C 平面ACE ,故D 正确.故选:C.8. 已知1F ,2F 分别为双曲线:22221(0,0)y x a b a b-=>>的上,下焦点,点P 为双曲线渐近线上一点,若12PF PF ^,121tan 3PF F Ð=,则双曲线的离心率为( )A. 53 B. 54 C. 45 D. 35【答案】B【解析】【分析】由题可得2122POF PF F Ð=Ð,然后利用二倍角公式结合条件可得34b a =,然后根据离心率公式即得.【详解】因为12PF PF ^,O 为12F F 的中点,所以1F O OP =,121PF F F PO =ÐÐ,所以2122POF PF F Ð=Ð,又121tan 3PF F Ð=, 2tan POF b a Ð=,所以212334113b a ´==æö-ç÷èø,所以5e 4c a ====.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,答案有两个选项只选一个对得3分,错选不得分;答案有三个选项只选一个对得2分,只选两个都对得4分,错选不得分.9. 已知随机变量X 满足:()()()34,,01,2X B p p E X D X ~<<=,则( )A. 23p = B. ()43E X =C. ()11213E X +=D. ()32219D X +=【答案】BCD【解析】【分析】根据二项分布的期望公式和方差公式列方程求出p ,然后根据期望性质和方差性质依次判断即可.【详解】对A ,因为()()()34,,2X B p E X D X ~=,所以()34142p p p ´-=,解得13p =,故A 错误;对B ,由上知()14433E X =´=,故B 正确;对C ,()()1121213E X E X +=+=,故C正确;对D ,()()1132214441339D X D X æö+==´´-=ç÷èø,故D 正确.故选:BCD .10. 已知5nx æçè的展开式中,二项式系数之和为64,下列说法正确的是( )A. 2,n ,10成等差数列B. 各项系数之和为64C. 展开式中二项式系数最大的项是第3项D. 展开式中第5项为常数项【答案】ABD【解析】【分析】先根据二项式系数之和求出n 的值,再令1x =可求系数和,根据展开式的总项数可得二项式系数最大项,利用展开式的通项公式求第5项.【详解】由5n x æçè的二项式系数之和为264n =,得6n =,得2,6,10成等差数列,A 正确;令1x =,665264x æ==çè,则65x æçè的各项系数之和为64,B 正确;65x æçè的展开式共有7项,则二项式系数最大的项是第4项,C 不正确;65x æçè的展开式中的第5项为4426C (5)152581x æ=´´çè为常数项,D 正确.故选:ABD11. 如图四棱锥P ABCD -,平面PAD ^平面ABCD ,侧面PAD 是边长为ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A. CQ 在平面PAB 外B. PC 与平面ACQC. 三棱锥B ACQ -的体积为D. 四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】ABD【解析】【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ^平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可.【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ^,因为平面PAD ^平面ABCD ,所以OP ^平面 ABCD ,因为AD OE ^,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A,(P C B ,因为点Q 是PD的中点,所以Q ,设平面PCD Ç平面=PAB l ,因为//CD AB ,则//CD 平面PAB ,则//CD l ,面CQ Ì平面PCD ,且CQ CD C Ç=,则CQ 在平面PAB 外,所以A正确;PC AQ AC =-==uuu r uuu r uuu r ,设平面AQC 的法向量为(,,)n x y z =r,则0{0n AQ x z n AC ×=+=×=+=uuu r r uuu r r ,令=1x,则y z ==,所以(1,n =r ,设PC 与平面AQC 所成角为q ,则1sin 3=,所以cos q =B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABC V V S OP --==×V1116322=´´´´=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以222222aa æ++-=++ççè,解得0a=,即M为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,x,所以2236x ö=÷÷ø,得224x =,所以正四面体的表面积为24x =,所以D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12. “x a ³”是“2x ³”的必要而不充分条件,则实数a 的取值范围为______.【答案】{}2a a <【解析】【分析】根据必要不充分条件的定义求解即可.【详解】由题意得{}2x x ³是{}x x a ³的真子集,故2a <.故答案为:{}2a a <13. 若四棱锥P ABCD -的各顶点都在同一个球O 的表面上,PB ^底面ABCD ,2PB =,1AB CD ==,2AD BC ==,BC AD ∥,则球O 的体积为______.【解析】【分析】设球心O 到平面ABCD 的距离为h ,AD ,BC 的中点分别为F ,E ,由已知条件得,四边形ABCD 所在的截面圆的圆心G 必在线段EF 的延长线上,OG ^平面ABCD ,然后由直角三角形、直角梯形中求得球半径,得球体积.【详解】设球心O 到平面ABCD 的距离为h ,AD ,BC 的中点分别为F ,E ,由已知条件得,四边形ABCD 所在的截面圆的圆心G 必在线段EF 的延长线上,OG ^平面ABCD ,h OG =,因为GA GB =,所以2222AF GF BE EG +=+,所以2222GF GF ö+=++÷÷ø,解得GF =,GA ==因为OP OA ==,因为OB OP =,所以2PBOG =所以球O =,所以球O 的体积为34π3=.14. 如图,在梯形ABCD 中,//AB DC ,1AD BC ==;2AB =,π3ABC Ð=,E 是BC 的中点,则DB AE ×=uuu r uuu r_________.【答案】94【解析】【分析】根据给定条件,用平面向量基底,BA BC uuu r uuu r表示,DB AE uuu r uuu r ,再利用数量积运算律求解作答.【详解】在梯形ABCD 中,依题意,12CD BA =uuu r uuu r ,而E 是BC 的中点,则12DB DC CB BA BC =+=--uuu r uuu r uuu r uuur uuu r ,12AE BE BA BA BC =-=-+uuu r uuu r uuu r uuu r uuu r ,又22AB BC ==,π3ABC Ð=,所以2211113)()2224(2D BA BC BA BC BA B B AE C BA BC×=--×-+=-+×uuu r uuu r uuur uuu r uuu r uuu r uuu r uuu r uuu r uuu r 2113π9221cos 22434=´-+´´´=.故答案为:94四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+(1)求B ;(2)若6b AB CB =×=uuu r uuu r,求ABC V 的周长【答案】(1)3B p=;(2).【解析】【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ×=uuu r uuu r求得ac 代入即可.【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+,所以()sin sin cos cos cos 2cos a A B A B c A b B -+=,所以cos()cos 2cos a A B c A b B -++=所以cos cos 2cos a C c A b B+=由正弦定理得sin cos sin cos 2sin cos A C C A B B +=整理得()sin 2sin cos sin A C B B B +==因为在ABC V 中,所以sin 0B ¹,则2cos 1B =所以3B p=(2)由余弦定理得2222cos b a c ac B =+-,即()2312a c ac +-=,因为1cos 62AB CB BA BC ac B ac ×=×===uuu r uuu r uuu r uuu r ,所以12ac =,所以()23612a c +-=,解得a c +=.所以ABC V的周长是【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16. 已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-ÎN .(1)求数列{}n a 的通项公式;(2)设13log n n b a =,n C =,求数列{}nC 的前n 项和n T【答案】(1)13n na = (2)1n T =-【解析】【分析】(1)由n a 与n S 关系可推导证得数列{}n a 为等比数列,由等比数列通项公式可得n a ;(2)由(1)可推导得到,n n b C ,采用裂项相消法可求得n T .【小问1详解】当1n =时,111221a S a =-=,解得:113a =;当2n ³时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,\数列{}n a 是以13为首项,13为公比的等比数列,1133nn na æö\==ç÷èø.【小问2详解】由(1)得:131log 3nn b n æö==ç÷èø,nC \==,11n T \=-+×××=17. 吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(,)r y 到直线y bx a =+的距离的平方和21()ni i i S bx a y ==+-å来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程ˆˆy bx a =+.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:121()()ˆ()nii i nii xx y y bxx ==--=-åå,ˆˆa y bx=-.【答案】(1)13; (2)1120147y x =+,10011【解析】【分析】(1)列举出试验的全体基本事件,利用古典概率及条件概率公式计算得解.(2)利用表格中数据求出最小二乘法公式中的相关量,求出回归直线方程,再利用方程求出估计值.小问1详解】这4名吸烟者中,损伤度为8吸烟者的吸烟量为4,从4名吸烟者中任取2名,全部基本事件有(1,4),(1,5),(1,6),(4,5),(4,6),(5,6),其中有1名吸烟者的吸烟量为4的共有3种情形,记事件A :有1名吸烟者的吸烟量为4,事件B :有1名吸烟者的吸烟量为6,则311(),()626P A P AB ===,所以另1吸烟者的吸烟量为6的概率为()1(|)()3P AB P B A P A ==.【小问2详解】145644x +++==,386764y +++==,14()()(3)(3)02102111ii i xx y y =--=-´-+´+´+´=å,4222212(34)01(21i i x x ==-+++-=å,【的因此24114()()11ˆ14()ii i ii xx y y bxx ==--==-åå,1120ˆˆ64147ay bx =-=-´=,所以经验回归直线方程为1120147y x =+,当10y =时,10011x =,所以损伤度为10时,估计吸烟量为10011.18. 如图,在三棱锥P ABC -中,AB 是ABC V 外接圆的直径,PC 垂直于圆所在的平面,D 、E 分别是棱PB 、PC 的中点.(1)求证:DE ^平面PAC ;(2)若二面角A DE C --为π3,4AB PC ==,求AE 与平面ACD 所成角的正弦值.【答案】(1)证明见解析 (2【解析】【分析】(1)BC AC ^, BC PC ^,由线面垂直的判定定理可得^BC 平面PAC ,再由三角形中位线定理可得答案;(2)以C 为坐标原点,CB CA CP uuu r uuu r uuu r、、的方向分别为x 轴、y 轴、z 轴的正方向,建立的空间直角坐标系-C xyz ,求出AE uuu r、平面ACD 的一个法向量,由线面角的向量求法可得答案.【小问1详解】因为AB 是圆的直径,所以BC AC ^,因为PC 垂直于圆所在的平面,ÌBC 平面ABC ,所以BC PC ^,又因为AC PC C =I ,AC Ì平面PAC ,PC Ì平面PAC ,所以^BC 平面PAC ,因为D E 、分别是棱PB PC 、的中点,所以//BC DE ,从而有DE ^平面PAC;【小问2详解】由(1)可知,DE ^平面PAC ,AE EC Ì、平面PAC ,所以,DE AE DE EC ^^,AE Ì平面DAE ,EC Ì平面DEC ,所以AEC Ð为二面角A DE C --的平面角,从而有π3AEC Ð=,则12,2EC PC AC ===又BC AC ^,4AB =得2BC =,以C 为坐标原点,CB CA CP uuu r uuu r uuu r、、的方向分别为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系-C xyz ,()0,0,0C,()0,A ,()0,0,2E ,()2,0,0B ,()0,0,4P ,()1,0,2D ,所以()0,2AE =-uuu r,()0,CA =uuu r ,()1,0,2CD =uuu r,设(),,n x y z =r是平面ACD 的一个法向量,则00n CA n CD ì×=ïí×=ïîuuu r r uuu rr,即020x z ì=ïí+=ïî,可取()2,0,1n =-r ,设AE 与平面ACD 所成角为故sin q=所以AE 与平面ACD 19. 已知函数()f x ax =,()ln g x x =,其中a R Î,( 2.718e »).(1)若函数()()()F x f x g x =-有极值1,求a 的值;(2)若函数()(sin(1))()G x f x g x =--在区间(0,1)上为减函数,求a 的取值范围;(3)证明:211sin ln 2(1)nk k =<+å.【答案】(1)1a =(2)1a £(3)见解析【解析】【详解】试题分析:(1)先对函数()F x 求导,再对a 的取值范围讨论来判断函数()F x 在()0,+¥上的单调性,进而可得函数()F x 在()0,+¥上的极值,利用函数()()()F x f x g x =-有极值1,即可得a 的值;(2)由已知得:1'()cos(1)0G x a x x=--£在(0,1)上恒成立,进而可得1cos(1)a x x £-在(0,1)上恒成立,设1()cos(1)H x x x =-,对函数()x H 求导,再判断函数()x H 在()0,1上的单调性,进而可得函数()x H 在()0,1上的取值范围,即可得a 的取值范围;(3)由(2)可得1sin(1)lnx x-<,进而可得22211(1)sin ln ln 1(1)(2)1(1)k k k k k +<=++-+,代入,化简,即可证211sin ln 2(1)nk k =<+å.试题解析:(1)解:∵()ln F x ax x =-,(0)x >∴1'()F x a x=-①若0a £,则对任意的(0,)x Î+¥都有'()0F x <,即函数()F x 在(0,+∞)上单调递减函数()F x 在(0,+∞)上无极值 ②若0a >,由'()0F x =得1x a=当1(0,x aÎ时'()0F x <,当1(,)x a Î+¥时,'()0F x >即函数()F x 在1(0,)a 单调递减,在1(,)a+¥单调递增∴函数()F x 在1x a=处有极小值∴1()F a 11ln 1a=-=∴1a =(2)解法1:∵函数()(sin(1))()G x f x g x =--=sin(1)ln a x x --在区间(0,1)上为减函数且当(0,1)x Î时,cos(1)0x ->∴1'()cos(1)0G x a x x=--£在(0,1)上恒成立1cos(1)a x x Û£-在(0,1)上恒成立设1()cos(1)H x x x =-,则()()()()()2222cos 1sin 1sin 1cos 1'()cos (1)cos (1)x x x x x x H x x x x x -------==--当()0,1Îx 时,()sin 10x -<,()cos 10x ->所以'()0H x <在()0,1上恒成立,即函数()H x 在()0,1上单调递减 ∴当()0,1Îx 时,()(1)1H x H >=∴1a £解法2:∵函数()(sin(1))()G x f x g x =--=sin(1)ln a x x --在区间(0,1)上为减函数∴对(0,1)x "Î,1'()cos(1)0G x a x x=--£(*)恒成立 ∵(0,1)x Î∴cos(1)0x ->当0a £时,(*)式显然成立 当0a >时,(*)式Û1cos(1)x x a³-在(0,1)上恒成立设()cos(1)h x x x =-,易知()h x 在(0,1)上单调递增 ∴()(1)1h x h <=∴11a³01a Þ<£ 综上得(,1]a Î-¥(3)证法1:由(2)知,当1a =时,()sin(1)ln G x x x =--(1)0G >=sin(1)ln x x Þ->1sin(1)ln x xÞ-<∵对任意的k *ÎN 有21(0,1)(1)k Î+∴211(0,1)(1)k -Î+∴22211(1)sin ln ln 1(1)(2)1(1)k k k k k +<=++-+∴22222211123(1)sin sin sinln ln ln 23(1)1324(2)n n n n ++++<++++´´+L L 22223(1)2(1)ln[ln 1324(2)2n n n n n ++=×××=´´++L ln 2<即211sinln 2(1)nk k =<+å[证法2:先证明当02x p<<时,sin ,x x <令()sin p x x x =-,则()cos 10p x x ¢=-<对任意的02x pÎ(,)恒成立∴函数()p x 在区间(0,)2p上单调递减∴当02x p<<时,()(0)0p x p <=sin x x \<∵对任意的k *ÎN ,21(0,)2k pÎ而2214112(412121k k k k <=×---+ ∴221111sin2()(1)(1)2123k k k k <<×-++++232111111112sin 2(ln ln 2(1)355721233nk e k n n =\<-+-++-<=<=+++åL 1考点:1、利用导数研究函数的极值;2、利用导数研究函数的单调性;3、不等式的恒成立;4、不等式的证明;5、放缩法.。

陕西省西安2024-2025学年高三上学期10月月考数学试题含答案

陕西省西安高2025届高三第一次质量检测考试数学试题(答案在最后)(时间:120分钟满分:150分命题人:)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ()A.{}10x x -≤≤ B.{}10x x -<≤ C.{}10x x -≤< D.{}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2.“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4.已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则()A.c b a >>B.c a b>> C.a b c>> D.b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5.已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6.已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[)e,+∞ C.{}1,0e 8⎛⎫- ⎪⎝⎭D.{}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=的图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x在(,3-∞-,)3+∞上单调递增,(,)33-上单调递减,所以3x =±是极值点,故A 不正确;对应B ,因323()1039f -=+>,323()1039f =->,()250f -=-<,所以,函数()f x 在3,3⎛⎫-∞ ⎪ ⎪⎝⎭上有一个零点,当3x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数14,y t y x x==+相切时符合题意,因为4424x x x x+≥⋅=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大的根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211()x x '=-B.(e )e x x--'= C.21(tan )cos x x'=D.1(ln )x x'=【答案】ACD 【解析】【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x +''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以<1或>2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227ln z y = 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆn i i i n i i x y nx yb x nx ==-⋅=-∑∑,ˆˆa y bx =-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83e x y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b 则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i ii i i x z x zb x x ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83a z bx =-≈--⨯=,所以ˆˆln 0.26 4.83z y x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或224t +≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<<1,则+1≥(2−1)22−1>0,∴42−5≤0>12⇒12<≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ单调递减,当4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U <--≤-t 的取值范围为:2t ≤-或2.4t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得24t ±=,又1212x x t ==-(]1,2∈-⇒224t +=;②在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有>0Δ>0−1<−12<2o −1)>0o2)>0或<0Δ>0−1<−12<2o −1)<0o2)<0,解得214t +<<,综上可知:t 的取值范围为2t ≤-或2.4t ≥18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16(2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x 二次求导,判断()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>,()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e 2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x -'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。

高三数学-10月月考数学试题参考答案

2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- ∵b1+b2=3,∴b1+b1q=3,∴b1=1,bn=2n 1, , = , , -
- - ∴an·bn=(2n-1)· 2n-1 . n-2 n-1 ∴Tn=1×1+3×2+5×22+…+(2n-3)· 2 - +(2n-1)· 2 - , + + - - n-1 2 3 - n 则 2Tn=1×2+3×2 +5×2 +…+(2n-3)· 2 + - +(2n-1)·2 , -
而 q ∈ Z , q = 2, a1 = 2, S8 =
2(1 − 28 ) = 29 − 2 = 510 1− 2
二、填空题: × 10=30 分) (3 7、锐角三角形 8、 x x <

10 6 且x ≠ − 3 5
9、{x∣2kπ+π/6<x<2kπ+5π/6,x≠2kπ+π/2,k∈Z} 10、sin(x/2+π/6) 1 π 11、 y = sin(2 x − ) + 1 2 2 12、3/4 13、5 14、4 15、 a n =
5π 2 π 2 3π 2 7π 2 x
π 2π (1) T = 2 sin 2 x + , =π ; 2 4
(2)[kπ+π/8, kπ+5π/8],(k∈Z) 20、解:(1)∵数列{an}是等差数列, 解 ∵数列 是等差数列, 是等差数列 ∴S6=3(a1+a6)=3(a2+a5)=36. = = ∵a2=3,∴a5=9,∴3d=a5-a2=6,∴d=2, , , = , = , 又∵a1=a2-d=1,∴an=2n-1. = , - (2)由等比数列 n}满足 b1+b2=3,b4+b5=24, 由等比数列{b 满足 由等比数列 , , b4+ b 5 3 得 =q =8,∴q=2, , = , b 1+ b 2
1 n −1 2 ⋅ 3
(n = 1) ( n ≥ 2)
16、 三、解答题: (52 分) 17、解: 设 OC =(x,y) , ∵ OC ⊥ OB ,∴ OC ⋅ OB = 0 ,∴2y – x =0,① 又∵ BC ∥ OA , BC =(x+1,y-2) ,∴3( y-2) – (x+1)=0,即:3y – x-7=0,② 由①、②解得,x=14,y=7,∴ OC =(14,7) ,则 OD = OC - OA =(11,6) 18、解:一、列表 x -
π
2
π π
2 2
1 π x+ 2 4
3π 2πFra bibliotek05π 2 3π 2
7π 2

y 二、画图 先把 y=sinx 的图象向左平移
1
3
1
y 3 2 1 O π -1 2
-1
1
π
4
个单位, 再把得到的图象的
横坐标变为原来的 2 倍,然后再把得到的图象的纵坐标伸 长到原来的 2 倍, 最后再把得到的图象向上平移 1 个单位。 19、 f ( x ) =
高三数学(文)10 月月考试卷答案 高三数学( 月月考试卷答案
班级 座号 一、选择题: × 6=18 分) (3 1、A 2、D 3、B 4、B 5、C 6、C
3 2
姓名
成绩
1 + q3 3 1 a1 (1 + q ) = 18, a1 (q + q ) = 12, = , q = 或q = 2, 2 q+q 2 2
- n-1 两式相减得(1- + + - 两式相减得 -2)Tn=1×1+2×2+2×22+…+2·2n 2+2· 2 - -(2n-1)·2n,即 -
n-1 -Tn=1+2(21+22+…+2 2 - )-(2n-1)·2n + - -
=1+2(2n-2)-(2n-1)·2n=(3-2n)·2n-3, + - - - , ∴Tn=(2n-3)·2n+3 21、
相关文档
最新文档