吉林省长春市2017届高三质量监测四数学理试题含答案bybao 精品

合集下载

吉林省吉林市普通中学2017届高三毕业班第四次调研测试数学(理)试题+扫描版含答案

吉林省吉林市普通中学2017届高三毕业班第四次调研测试数学(理)试题+扫描版含答案

吉林市普通中学2016—2017学年度高中毕业班第四次调研测试数 学(理科)参考答案与评分标准一、选择题:12题解答:222[(2)][ln (1)]b a b a m m --+--≥-恒成立,左端为点(),ln P b b 与点(2,1)Q a a --距离平方,因为,P Q 分别在曲线:ln C y x =及直线:1l y x =+上,由 11y x '==得1x =,故与l 平行且与:ln C y x =相切的切点为(1,0)所以PQ 最小值d ==22m m -≤,解得12m -≤≤。

故选B . 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13:4 ; 14:3 ; 15. 54 ; 16. 19π三、解答题17解答:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,因为3574,14a a a =+=,所以有112421014a d a d +=⎧⎨+=⎩,解得121a d =⎧⎨=⎩, ---------------------------------------------4分所以2n a n n =+-; ---------------------------------------------5分(1)22n n n S n -=+21(3)2n n =+。

---------------------------------------------6分(Ⅱ)由(1)知211111()1(2)22n n b a n n n n ===--++, ----------------------------------------------9分所以111111(1232435n T =-+-+-+ 1111...)112n n n n +-+--++ 1111(1)2212n n =+--++ ----------------------------------------------11分 34<----------------------------------------------12分18解答:(Ⅰ)由直方图,抽取的50名学生的数学平均成绩为:850.12950.161050.321150.201250.121350.08107.8⨯+⨯+⨯+⨯+⨯+⨯=,所以,该校理科毕业生的数学平均成绩约为:107.8-----------------------------3分(Ⅱ)由直方图知,后两组频率之和为0.2,后两组人数之和为500.210⨯=。

吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)

吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)

吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)长春市普通高中2017届髙三质量监测(四)数学试题卷(文科)考生须钿:h 本试卷分试题卷和答題卡,满分150分,考试时间120分种., x 答题前,在答題卡拾定位匱上填写学桧,班级,■窑和准考证号’ 3, 所有答塞必须写在答题卡上,写在试卷上无效,4. 考试结束"只需上交答题昆第I 卷选摆题:本题共12小题,毎小歡企在每小题给出的四个透项申■只有一项是碍 合题目要求的" (1) f 为虚数单忆则汁孑异屏二(A) 0(B) i(O 2i ①-I(2)己知集合启={即|耳<一2或X 》耳}・2[ 1 <S| f 则=(A) {xj J > 4} (0) {xjx>4} (C ){x i J 5= -2} (D) {x 1J < -2}已辄函数/(x)=;\X 2-2.X <-\则函数f ⑴的恆城为[2X鼻—1(A 〕卜 1+^)(B )卜I,H °)(C ) \—,+U)下曲四个建更閤中可以反映出回归模型担合韩度较軒的为图丨B(A)图 I<B )[§2公元2&3年左右+我国古代数学第刘徽用捌内接正 多边形的面积去遇近圆的面积求园周率JT ・刘穌: 这个方法为“劃圆术3并且把“削圜术”的特点槪 扌舌为声割之弥姗 所失弥少.割壬乂割■以至于不 可割,则与圆周合体而无闻失矣”茁圈是很弼诽诫 的“割圜术"也想设11的亠个卅序阳却」込彳小 程序则输出的/I 的僧为;燼号融fth J3-L732. sin 15^ 0.2588 ・ sinZ5°fc QJ3O5). tA)1 4ft LB) 36(C) 30( in 24033(C)團 3n山〕用」实根之和为 (A)一5(B) -7敕学试题巻(丈科)和“共4恥⑹ 将函数/(x)-cos2x-sin2i 的图象向左平移少个单位后得到函数尸⑴的图 象・则下列说法中正确的是 (A) F(x)&奇函数.最小值是-2(B) F(x)是偶函数,最小值是一2(C)只巧是奇函散.城小优是-Jj (D) F(x)是偶函燈,最小值是一迈某四面体的三视图如图所示,则其四个面中最大 面的瓯积是 (A) 4 (B) 2近 (C) 2v ,f 6(D) 4^2函数的大致gl 象为\nx(9)已知数列8」是等差数列,其前丹项和乞有最大値•且则使得乂 >0 a 20l6的H 的帕大值为 (A) 2016 (B) 2017 (C) 4031 (D) 4033U0J 球面t”有月』工V 点+球心0到平面的距离是球半径的且AB = 2j2^ACl!iC ・则球0的表而积是8 \n 9用 (A)罷兀(B) 9江 (C) —〔D)—44X ? y 2(11) 已知耳,巧是取曲线C-^-^ = \(a>Q,b>Q)的两个嵐虬P 是双曲线E 匕 一点,若| PF 、+1 PF\ >6a * flA PF 、% M 小内角的人小为30°,则认曲纯C 的 渐近线方程是(A ) V2x±y = 0 (EJ) x±V2y -0 c c) 2.V±J=O ⑴】\±2\-0[A 1+ 2 .V£[0J}(12) 己知定义在H 上的前数/⑴满巴/("二临2 | J “2" 5/(x+2) = /(x). «(x) = —△ zd2 ~ =•涔y i 、b t11 1(C)1 '厂则办艸/\x} x(.r) (i 心训6J| I 的所M第【[卷本卷包括必考题和选考題两部分炉第13-2!迺为必考題. 第眈切题为选考題、考生根据要求件答• 二旗空题;本题找4小题’每小题§分。

吉林省普通高中2017届高三数学下学期第四次调研考试试卷 理

吉林省普通高中2017届高三数学下学期第四次调研考试试卷 理

吉林市普通中学2016—2017学年度高中毕业班第四次调研测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共23小题,共150分,考试时间120分钟。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内;2.选择题必须用2B 铅笔填涂;非选择题必须使用0。

5毫米的黑色字迹的签字笔书写,字体工整、笔迹清楚;3.请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1。

设集合2{|230},{|0}A x x x B x x =--<=>,则AB =A .(1,)-+∞B . (,3)-∞C . (0,3)D . (1,3)-2. 复数2(1)1i z i+=-(i 是虚数单位),则复数z 的虚部为A. iB 。

i -C 。

1 D. 1-3. 已知角α终边过点(,2cos60)P m ︒,且cos α=, 则m = A.12B. 12-C 。

2D 。

2-4. 下列说法正确..的是 A . 命题“,0xx R e ∀∈>”的否定是“00,0x x R e∃∈>"B . ,,a b c R ∈, “2b ac ="是“,,a b c 成等比数列”的充要条件C . 命题“已知,,x y R ∈若3x y +≠,则2x ≠或1y ≠"是真命题D . 命题“若1a =-,则函数2()21f x ax x =+-只有一个零点"的逆命题为真命题5. 右边程序框图的算法思路源于数学名著《几何原本》中 的“辗转相除法”,执行该程序框图(图中“m MOD n ” 表示m 除以n 的余数),若输入的m ,n 分别为485,135, 则输出的m = A . 0B . 5C . 25D . 456。

高三数学质量监测试题(四)文(扫描版)(2021年整理)

高三数学质量监测试题(四)文(扫描版)(2021年整理)

吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省长春市2017届高三数学质量监测试题(四)文(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)的全部内容。

吉林省长春市2017届高三数学质量监测试题(四)文(扫描版)长春市普通高中2017届高三质量监测(四)数学(文科)参考答案与评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. A2. D 3。

B 4。

A 5. D 6。

C 7. D8。

A 9. C 10. B 11. A12. B 简答与提示:1. 【命题意图】本题考查复数的基本概念及运算. 【试题解析】A 由21i =-可知,原式110i i =--+=. 故选A 。

2. 【命题意图】本题考查集合交运算。

【试题解析】D 由{|24}A x x x =<->或,{|4}B x x =<,故{|2}A B x x =<-。

故选D.3. 【命题意图】本题考查分段函数的图像与性质。

【试题解析】B 根据分段函数的()f x 的图像可知,该函数的值域为(1,)-+∞。

故选B.4. 【命题意图】本题考查统计学中残差图的概念。

【试题解析】A 根据残差图显示的分布情况即可看出图1显示的残差分布集中,拟合度较好,故选A.5. 【命题意图】本题依据中华传统文化算法割圆术考查程序框图。

【试题解析】D 运行算法可获得结果24,故选D.6. 【命题意图】本题主要考查三角变换公式与三角函数的图像与性质.【试题解析】C 由()cos2sin 2)4f x x x x π=-=+,则())))2842F x x x x πππ=++=+=. 故选C 。

吉林省吉林市普通中学2017届高三数学毕业班第四次调研测试试题 文(扫描版)

吉林省吉林市普通中学2017届高三数学毕业班第四次调研测试试题 文(扫描版)

吉林市普通中学2016—2017学年度高中毕业班第四次调研测试数学(文科)参考答案与评分标准一、选择题二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13 14.7- ; 15. 14π; 16. 112221n n ++--(或11121n +--) 三、解答题17解答(Ⅰ)因为3,a b ==2B A =,所以在ABC ∆中,由正弦定理得3sin sin 2A A =, -----------------------------------------------------2分所以2s n c o26s i n 3A A A =,故c s A =. ------------------------------------------------------4分(Ⅱ)由(Ⅰ)知c o A =。

所以s i o sA == --------------------------------------------5分又因为2B A =,所以21c o s 2c 3B A =-= --------------------------------------------------------7分所以sin 3B ==。

-----------------------------------------------------------------------8分在ABC ∆中,s i n s i n ()s C A B A c o c B A B=+=+ 9=。

------------------------10分所以s i n 5s i na C c A ==。

(也可用余弦定理求解此问,从略。

) -------------------------------------12分18解答.(Ⅰ) 因为a 有3种取法,b 有4种取法,则对应的函数有3×4=12个 ------------------------------2分因为函数f (x )的图象关于直线x =2b a 对称,若事件A 发生,则a >0且2b a ≤1 ------------------------3分数对(a ,b )的取值为(1,-1),(2,-1),(2,1),共3种. -------------------------------------5分所以P (A )=31124= -------------------------------------------------------------------------6分(Ⅱ)集合(){},40,0,0a b a b a b +-≤>>对应的平面区域为Rt△AOB ,如图.其中点A (4,0),B (0,4),则△AOB 的面积为12×4⨯4=8 ----------------------------------8分若事件B 发生,则f (1)<0,即a -4b +2<0. --------------------------------------------------------9分所以事件B 对应的平面区域为△BCD .由40420a b a b +-=⎧⎨-+=⎩,得交点坐标为146(,)55D . 又1(0,)2C ,则△BCD 的面积为12×1(4)2-×145=4910. -----11分所以P (B )=S △BCD S △AOB =4980-------------------------12分 19解答(Ⅰ)证明:PA ⊥面ABCD ,CD ⊂面ABCD ,PA CD ∴⊥ ----------------------------------------2分又,AD CD ⊥PA AD A =。

2020届吉林省长春市2017级高三四模考试理科综合试卷及答案

2020届吉林省长春市2017级高三四模考试理科综合试卷及答案

2020届吉林省长春市2017级高三四模考试理考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷
2020届吉林省长春市2017级高三四模考试理科综合试卷

长春市普通高中2017届高三质量监测数学(理科)试题参考答案及评分标准

长春市普通高中2021届高三质量监测〔二〕 数学〔理科〕试题参考答案及评分标准一、选择题〔本大题共12小题,每题5分,共60分〕1. B2. C3. D4. D5.C6. B7. A8. C9. D 10. A 11. B12. A简答与提示:1. 【命题意图】此题考察集合中元素的计算与交集的运算.【试题解析】B 题意可知,{}1,2,4B =,{}1,2AB =. 应选B.2. 【命题意图】此题考察复数的模、共轭复数、虚部与复数与平面内点的对应关系.【试题解析】C 由,①②④正确,③错误.应选C. 3. 【命题意图】此题考察函数的单调性与奇偶性知识.【试题解析】D A 、B 选项为偶函数,排除,C 选项是奇函数,但在(0,)+∞上不是单调递增函数.应选D.4. 【命题意图】此题考察直线与圆的相关知识.【试题解析】D 圆22(2)4-+=x y的圆心关于直线=y x对称的坐标为,从而所求圆的方程为22(1)(4-+=x y .应选D.5. 【命题意图】此题主要考察空间几何体的体积.【试题解析】C 由,堑堵的体积为12018625465002⨯⨯⨯=. 应选C. 6. 【命题意图】此题主要考察利用平面向量确定点的位置进而解决平几问题.【试题解析】B 由,点D 在AB 边的中位线上,且为靠近BC 边的三等分点处,从而有12ABD ABC S S ∆∆=,13ACD ABC S S ∆∆=,111(1)236BCD ABC ABC S S S ∆∆∆=--=,有13BCD ABD S S ∆∆=.应选B. 7. 【命题意图】此题考察直到型循环构造程序框图运算.【试题解析】A 有,01234201520161008=-+-++-+=S .应选A. 8. 【命题意图】此题考察三角函数的有关性质.【试题解析】C 由,该函数图象关于点11(,1)12π对称.应选C. 9. 【命题意图】此题主要考察考试对统计图表的识别.【试题解析】D 由图可知D 错误.应选D. 10. 【命题意图】此题主要考察几何概型.【试题解析】A 设3=OA ,那么==AB AP由余弦定理可求得=OP 有30∠=︒AOP ,所以扇形AOC 的面积为34π,扇形AOB 的面积为3π,从而所求概率为31434ππ=.应选A. 11. 【命题意图】此题考察双曲线定义的相关知识.【试题解析】B 由双曲线方程为22143-=y x ,设双曲线的上焦点为'F ,那么||||4'=+PF PF ,△PAF 的周长为||||||||4||3'++=+++PF PA AF PF PA ,当P 点在第一象限时,||||'+PF PA 的最小值为||3'=AF ,故△PAF 的周长的最小值为10.应选B.12. 【命题意图】此题是考察导数在研究函数单调性上的应用.【试题解析】A 令()()2=+F x f x x ,有()()20''=+>F x f x ,所以()F x 在定义域内单调递增,由1)1(=f ,得(1)(1)23=+=F f,因为2(log |31|)3|31|-<--x x f 等价于22(log |31|)2log |31|3-+-<x x f ,令2log |31|=-x t ,有()23+<f t t ,那么有1<t ,即2log |31|1-<x ,从而|31|2-<x ,解得1,<x 且0≠x . 应选A.二、填空题〔本大题共4小题,每题5分,共20分〕13. 212+e 14. 9115. 1080 16. 2简答与提示:13. 【命题意图】此题考察定积分的求解.【试题解析】22211111()(ln )12222++=+=+-=⎰eex e e x dx x x .14. 【命题意图】此题考察考生有关数列归纳的相关才能.【试题解析】由三角形数组可推断出,第n 行共有21n -项,且最后一项为2n ,所以第10行共19项,最后一项为100,左数第10个数是91. 15. 【命题意图】此题考察排列组合综合问题.【试题解析】假设甲乙同时参加,有2226222120=C A A 种,假设甲乙有一人参与,有134264960=C C A 种,从而总共的发言顺序有1080种.16. 【命题意图】此题考察四棱锥的外接球问题.【试题解析】如图,由,设三角形PBC 外接圆圆心为1O ,由正弦定理可求出三角形PBC外接圆半径为2,F 为BC 边中点,进而求出112=O F ,设四棱锥的外接球球心为O ,外接球半径的平方为221()42+=BD O F ,所以四棱锥外接球半径为2.三、解答题17. (本小题总分值12分)【命题意图】此题考察等比数列及利用不等式性质证明与数列前n 项和有关的不等式.【试题解析】(1) 由题可知*1113()()22N +-=-∈n n a a n ,从而有13+=n n b b ,11112=-=b a ,所以{}n b 是以1为首项,3为公比的等比数列. 〔6分〕 (2) 由(1)知13-=n n b ,从而1132-=+n n a ,11331log (3)log 312--=+>=-n n n c n ,有12(1)01212-=+++>+++-=n n n n T c c c n ,所以(1)2->n n n T . 〔12分〕18. (本小题总分值12分)【命题意图】本小题主要考察学生对概率统计知识的理解,以及统计案例的相关知识,同时考察学生的数据处理才能.【试题解析】解:(1) 根据统计数据做出22⨯列联表如下:经计算7.287 6.635k ≈>,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关. 〔4分〕 (2) (i) 按照分层抽样的方式抽到的易倒伏玉米共4株,那么X 的可能取值为0,1,2,3,4.416420(0)C P X C ==,13416420(1)C C P X C ⋅==,22416420(2)C C P X C ⋅==, 31416420(3)C C P X C ==,44420(4)C P X C ==即X(ii) 在抗倒伏的玉米样本中,高茎玉米有10株,占5,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,那么2(50,)5B ξ,即250205E np ξ==⨯=,23(1)501255D np p ξ=-=⨯⨯=. 〔12分〕19. (本小题总分值12分) 【命题意图】此题以三棱锥为载体,考察平面与平面垂直,求二面角问题等. 此题考察学生的空间想象才能、推理论证才能和运算求解才能.【试题解析】〔1〕证明:因为AD ⊥平面,BCD ⊂BC 平面BCD ,所以⊥AD BC ,又因为,⊥=AC BC ACAD A ,所以⊥BC 平面,ACD ⊂BC 平面ABC ,所以平面ABC ⊥平面ACD .〔6分〕(2)由可得=CD 如下图建立空间直角坐标系,由(0,0,0)C ,(0,2,0)B ,A ,(3,0,0)D ,1)2E .有31()2=CE ,(3,0,1)=CA ,(3,0,0)=CD ,设平面ACE 的法向量(,,)=n x y z ,有00,1002⎧+=⎧⋅=⎪⎨⋅=++=⎪⎩z n CA n CE x y z ,令1=x ,得(1,0,=-n ,x设平面CED 的法向量(,,)=m x y z,有00,10022⎧=⎧⋅=⎪⎨⋅=++=⎪⎩⎩m CD m CE x y z ,令1=y ,得(0,1,2)m =-,二面角--A CE D的余弦值||23cos ||||25n m n m θ⋅===⋅〔12分〕20. (本小题总分值12分)【命题意图】本小题考察直线与抛物线的位置关系及标准方程,考察学生的逻辑思维才能和运算求解才能.【试题解析】(1) 联立方程有,2402⎧+=⎪⎨=⎪⎩x y px,有280-+=y p ,由于直线与抛物线相切,得28320,4∆=-==p p p ,所以28=y x . 〔4分〕(2) 假设存在满足条件的点(,0)(0)>M m m ,直线:=+l x ty m ,有28=+⎧⎨=⎩x ty my x ,2880--=y ty m ,设1122(,),(,)A x y B x y ,有12128,8+==-y y t y y m ,22222111||()(1)AM x m y t y =-+=+,22222222||()(1)BM x m y t y =-+=+,222122222222222212121111114()()||||(1)(1)(1)(1)4y y t mAM BM t y t y t y y t m +++=+==++++,当4=m 时,2211||||AM BM +为定值,所以(4,0)M . 〔12分〕 21. (本小题总分值12分)【命题意图】本小题主要考察函数与导数的知识,详细涉及到导数的运算,用导数来研究函数的单调性等,考察学生解决问题的综合才能.【试题解析】(1) ()1'=+--af x x a x,因为()f x 存在极值点为1,所以(1)0'=f ,即220,1-==a a ,经检验符合题意,所以1=a . 〔4分〕(2) ()1(1)(1)(0)'=+--=+->a af x x a x x x x①当0≤a 时,()0'>f x 恒成立,所以()f x 在(0,)+∞上为增函数,不符合题意; ②当0>a 时,由()0'=f x 得=x a ,当>x a 时,()0'>f x ,所以()f x 为增函数, 当0<<x a 时,()0'<f x ,所()f x 为减函数, 所以当=x a 时,()f x 获得极小值()f a又因为()f x 存在两个不同零点12,x x ,所以()0<f a ,即21(1)ln 02+--<a a a a a整理得1ln 12>-a a ,作()=y f x 关于直线=x a 的对称曲线()(2)=-g x f a x ,令2()()()(2)()22ln -=-=--=--a xh x g x f x f a x f x a x a x222222()220(2)()a a h x a x x x a a'=-+=-+≥---+所以()h x 在(0,2)a 上单调递增,不妨设12<<x a x ,那么2()()0h x h a >=, 即2221()(2)()()=->=g x f a x f x f x ,又因为212(0,),(0,),-∈∈a x a x a 且()f x 在(0,)a 上为减函数, 故212-<a x x ,即122+>x x a ,又1ln 12>-a a ,易知1>a 成立, 故122+>x x .〔12分〕22. (本小题总分值10分)【命题意图】本小题主要考察极坐标系与参数方程的相关知识,详细涉及到极坐标方程与平面直角坐标方程的互化、把曲线的参数方程和曲线的极坐标方程联立求交点等内容. 本小题考察考生的方程思想与数形结合思想,对运算求解才能有一定要求.【试题解析】 (1) 由22(3sin )12ρθ+=得22143+=x y ,该曲线为椭圆. 〔5分〕 〔2〕将1cos sin x t y t αα=+⎧⎨=⎩代入22143+=x y 得22(4cos )6cos 90t t αα-+-=,由直线参数方程的几何意义,设12||||,||||==PA t PB t ,1226cos ,4cos t t αα-+=- 12294cos t t α-=-,所以122127||||||4cos 2PA PB t t α+=-===-,从而24cos 7α=,由于(0,)2πα∈,所以cos 7α=. 〔10分〕23. (本小题总分值10分) 【命题意图】本小题主要考察不等式的相关知识,详细涉及到绝对值不等式解法及不等式证明等内容. 本小题重点考察考生的化归与转化思想.【试题解析】 (1) 令24,1|1||5|6,1524,5-+≤-⎧⎪=++-=-<<⎨⎪-≥⎩x x y x x x x x ,可知|1||5|6++-≥x x ,故要使不等式|1||5|++-≤x x m 的解集不是空集, 有6≥m .〔5分〕〔2〕由,a b 均为正数,那么要证≥a bb aa b a b ,只需证1--≥a b b aa b,整理得()1-≥a b ab ,由于当≥a b 时,0-≥a b ,可得()1-≥a bab,当<a b 时,0-<a b ,可得()1->a b ab,可知,a b 均为正数时()1-≥a b ab,当且仅当=a b 时等号成立,从而≥a b b a a b a b 成立.〔10分〕。

吉林省长春市2017届高三理综质量监测试题四 精

吉林省长春市2017届高三理综质量监测试题(四)(扫描版)2017年长春市高中毕业班第四次调研测试理科综合生物能力测试评分参考一、选择题1.【命题立意】以立克次氏体为背景,细胞结构和功能的相关知识为载体,考查获取信息能力。

【试题解析】该生物无染色质,为原核生物,原核生物细胞内存在DNA和RNA两种核酸,不能进行无丝分裂。

【参考答案】 D2.【命题立意】以细胞增殖的相关知识为载体,考查理解能力。

【试题解析】果蝇的精原细胞中含6条常染色体和2条性染色体XY,细胞中存在5种形态的染色体。

【参考答案】 A3.【命题立意】以植物体内代谢过程图为背景,光合作用和细胞呼吸的相关知识为载体,考查理解能力。

【试题解析】物质X为ATP,Ⅱ过程中三碳化合物的还原需要ATP,二氧化碳的固定不需要ATP。

【参考答案】 B4.【命题立意】以正交、反交为背景,以遗传基本规律的相关知识为载体,考查综合运用能力。

【试题解析】根据正交和反交实验无法确定控制这对相对性状基因的对数。

【参考答案】 A5.【命题立意】以内环境的相关知识为载体,考查理解能力。

【试题解析】呼吸酶不会出现在内环境中;血浆中多余的HCO3-由泌尿系统排出;毛细淋巴管壁细胞直接生活的内环境为组织液和淋巴。

【参考答案】 B6.【命题立意】以农业生产中的原理和措施为背景,考查综合运用能力。

【试题解析】移栽大型植物时去除部分枝叶,主要是减弱蒸腾作用。

【参考答案】 C二、非选择题29.【命题立意】以科研人员实验过程及结果为背景,考查实验与探究能力和获取信息能力。

【试题解析】(1)细胞癌变的原因是原癌基因和抑癌基因突变。

(2)由题干可知,dATP全称是三磷酸脱氧腺苷,结合ATP的相关知识,得出dATP彻底水解后的产物为腺嘌呤、脱氧核糖、磷酸。

DNA彻底水解后的产物为脱氧核糖、磷酸、腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶。

它们彻底水解后的产物有3种不同。

(3)细胞色素C是线粒体中一种与有氧呼吸有关的蛋白质,实验过程中将癌细胞制成匀浆的目的是将细胞色素C从线粒体释放出来,细胞色素C抗体的作用是除去匀浆中的细胞色素C。

吉林省吉林市2017-2018学年高考数学四模试卷(理科) Word版含解析

2017-2018学年吉林省吉林市高考数学四模试卷(理科)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣5x+6<0},B={x||x|≤2},则∁R A∩B=()A.A B.C R A C.B D.C R B2.在复平面内,复数z=对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.抛物线y=﹣2x2的焦点坐标是()A.(﹣,0)B.(﹣1,0)C.(0,﹣)D.(0,﹣)4.若变量x,y满足约束条件则z=x﹣2y的最大值为()A.4 B.3 C.2 D.15.已知lga+lgb=0,函数f(x)=a x与函数g(x)=﹣log b x的图象可能是()A. B. C. D.6.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d7.已知实数x∈{1,2,3,4,5,6,7,8},执行如图所示的程序框图,则输出的x不小于121的概率为()A .B .C .D .8.下列正确的个数是( )①对于两个分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用y 1=c 1e拟合时的相关指数为R 12,用y 2=bx +a 拟合时的相关指数为R 22,且R 12>R 22,则y 1的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“3a ﹣1>0”发生的概率为;④“a >0,b >0”是“+≥2”的充分不必要条件. A .1B .2C .3D .49.已知A (x 1,y 1)是单位圆O 上任意一点,将射线OA 绕点O 逆时针旋转,与单位圆O交于点B (x 2,y 2),若x=my 1﹣2y 2(m >0)的最大值为2,则m 的值为( )A .1B .2C .2D .310.过双曲线C :x 2﹣的左顶点P 作斜率为1的直线l ,若l 与双曲线C 的两条渐近线分别相交于点Q ,R ,且,则双曲线C 的离心率是( )A .B .C .D .11.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知A=,a=且bsin (+C )﹣csin (+B )=a ,则△ABC 的面积为( )A .B .C .D .12.设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R ,有f (﹣x )+f (x )=x 2,且x ∈(0,+∞)时,f ′(x )>x .若f (2﹣a )﹣f (a )≥2﹣2a ,则实数a 的取值范围为( ) A .[1,+∞) B .(﹣∞,1] C .(﹣∞,2] D .[2,+∞)二.填空题:本大题共4个小题,每小题5分.13.2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N 的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N= .14.二项式(x 2+)6展开式中的常数项为 .15.已知四边形ABCD 中, •=0,||=1,||=2,•=0,则||的最大值为 .16.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为.三.解答题:解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列{a n}中,a3=7,且a2,a4,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足b n=(),设其前n项和为S n,求证:≤S n<.18.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和(Ⅱ)期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201﹣500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.(1)在学生甲获得奖学金条件下,求他获得一等奖学金的概率;(2)已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X的分布列及数学期望附:=,=﹣,=6,=146,x i y i=4420,x i2=182.19.梯形BDEF所在平面垂直于平面ABCD于BD,EF∥BD,EF=DE=BD,BD=BC=CD=AB=AD=2,DE⊥BC.(Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求平面AEF与平面CEF所成的锐二面角的余弦值.20.在平面直角坐标系中,已知A1(﹣2,0),A2(2,0),B1(x,2),B2(x,﹣2),P(x,y),若实数λ使得λ2•=•(O为坐标原点).(Ⅰ)求点P的轨迹C的方程,并讨论点P的轨迹类型;(Ⅱ)当λ=时,是否存在过点B(0,2)的直线l与(Ⅰ)中点P的轨迹C相交于不同的两点E,F (E在B,F之间),且<<1?若存在,求出该直线的斜率k的取值范围;若不存在,请说明理由.21.设函数f(x)=x2﹣bx+alnx.(Ⅰ)若b=2,函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,证明:f(x2)>﹣;(Ⅲ)若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.已知在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.(Ⅰ)求证:AF=DF;(Ⅱ)求∠AED的余弦值.[选修4-4坐标系与参数方程]23.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2﹣4ρcosθ+1=0,直线l的参数方程为:(t为参数),点A的极坐标为(2,),设直线l与曲线C相交于P,Q两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)求|AP|•|AQ|•|OP|•|OQ|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().2016年吉林省吉林市高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣5x+6<0},B={x||x|≤2},则∁R A∩B=()A.A B.C R A C.B D.C R B【考点】交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,求出A补集与B的交集即可.【解答】解:由A中不等式变形得:(x﹣2)(x﹣3)<0,解得:2<x<3,即A=(2,3),∴∁R A=(﹣∞,2]∪[3,+∞),由B中不等式解得:﹣2≤x≤2,即B=[﹣2,2],则∁R A∩B=[﹣2,2]=B,故选:C.2.在复平面内,复数z=对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用两个复数代数形式的除法,虚数单位i的幂运算性质化简复数z等于﹣1﹣3i,它在复平面内对应点的坐标为(﹣1,﹣3),从而得出结论.【解答】解:∵复数===﹣1﹣3i,它在复平面内对应点的坐标为(﹣1,﹣3),故复数对应的点位于在第三象限,故选C.3.抛物线y=﹣2x2的焦点坐标是()A.(﹣,0)B.(﹣1,0)C.(0,﹣)D.(0,﹣)【考点】抛物线的简单性质.【分析】抛物线y=﹣2x2的方程化为:.即可得出.【解答】解:抛物线y=﹣2x2的方程化为:.∴焦点坐标为.故选:C.4.若变量x,y满足约束条件则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x ﹣2y对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=2且y=0时,z达到最大值2.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(1,1),C(3,1).设z=F(x,y)=x﹣2y,将直线l:z=x﹣2y进行平移,观察直线在x轴上的截距变化,可得当l经点A时,目标函数z达到最大值,=F(2,0)=3.∴z最大值故选:C5.已知lga+lgb=0,函数f(x)=a x与函数g(x)=﹣log b x的图象可能是()A. B. C. D.【考点】对数函数的图象与性质;指数函数的图象与性质.【分析】先求出a、b的关系,将函数g(x)进行化简,得到函数f(x)与函数g(x)的单调性是在定义域内同增同减,再进行判定.【解答】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B6.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d【考点】简单空间图形的三视图.【分析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.【解答】解:∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,∵俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上∴俯视图是有2条对角线且为实线的正方形,故选:A.7.已知实数x∈{1,2,3,4,5,6,7,8},执行如图所示的程序框图,则输出的x不小于121的概率为()A.B.C.D.【考点】程序框图.【分析】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于121得到输入值的范围,利用几何概型的概率公式求出输出的x不小于121的概率.【解答】解:经过第一次循环得到x=3x+1,n=2,经过第二循环得到x=3(3x+1)+1,n=3,经过第三次循环得到x=3[3(3x+1)+1]+1,n=3此时输出x,输出的值为27x+13,令27x+13≥121,得x≥4,由几何概型得到输出的x不小于121的概率为:.故选:B.8.下列正确的个数是()①对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;②在相关关系中,若用y1=c1e拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;③利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为;④“a>0,b>0”是“+≥2”的充分不必要条件.A.1 B.2 C.3 D.4【考点】的真假判断与应用.【分析】①根据独立性检验的进行判断,②根据相关关系相关指数为R22,的意义进行判断,③根据几何概型的概率公式进行求解.④根据充分条件和必要条件的定义进行判断.【解答】解:①根据两个分类变量X与Y的随机变量k2的观测值k来说,k2越大,判断“X 与Y有关系”的把握程度越大,故①错误,②在相关关系中,若用y1=c1e拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;正确③利用计算机产生0~1之间的均匀随机数a,由3a﹣1>0得a>,则事件“3a﹣1>0”发生的概率P==;故③正确,④当“a>0,b>0”时“+≥2成立,当a<0,b<0时, +≥2也成立,则“a>0,b>0”是“+≥2”的充分不必要条件,故④错误,故正确的是②③,故选:B.9.已知A(x1,y1)是单位圆O上任意一点,将射线OA绕点O逆时针旋转,与单位圆O交于点B(x2,y2),若x=my1﹣2y2(m>0)的最大值为2,则m的值为()A.1 B.2 C.2D.3【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】设A(cosα,sinα),则B(cos(α+),sin(α+)),则my1﹣2y2=msinα﹣2sin(α+),整理后利用辅助角公式化积,再由x=my1﹣2y2(m>0)的最大值为2列关于m的等式求得m的值.【解答】解:A(x1,y1)是单位圆上任一点,设A(cosα,sinα),则B(cos(α+),sin(α+)),即y1=sinα,y2=sin(α+),则my1﹣2y2=msinα﹣2sin(α+)=msinα﹣2()=(m﹣1)sinα﹣cosα=sin(α+β),∵m>0,my1﹣2y2的最大值为2,∴,解得m=2.故选:B.10.过双曲线C:x2﹣的左顶点P作斜率为1的直线l,若l与双曲线C的两条渐近线分别相交于点Q,R,且,则双曲线C的离心率是()A.B. C.D.【考点】双曲线的简单性质.【分析】先由双曲线线方程可得P的坐标和直线l的方程与双曲线的渐近线联立求得Q和R的横坐标,进而根据且,求得b的值,进而根据c=求得c,最后根据离心率公式答案可得.【解答】解:由题可知P(﹣1,0)所以直线L的方程为y=x+1,两条渐近线方程为y=﹣bx或y=bx联立y=x+1和y=﹣bx得Q的横坐标为x Q=﹣同理得R的横坐标为x R=,∵,∴(﹣1,0)+(,y R)=2(﹣,y Q),∴﹣1+=﹣⇒b=3,c==,∴e==,故选B.11.△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=且bsin(+C)﹣csin(+B)=a,则△ABC的面积为()A.B.C.D.【考点】三角函数的化简求值;正弦定理.【分析】由已知化简整理求得sin(B﹣C)=1,结合角的范围得到B,C的值,再利用正弦定理求得b,代入三角形面积公式求得答案.【解答】解:由bsin(+C)﹣csin(+B)=a,A=,得:sinBsin()﹣sinCsin()=sinA.sinB(+)﹣sinC(sinB+cosB)=,整理得sinBcosC﹣cosBsinC=1,即sin(B﹣C)=1,∵A=,∴B+C=,①即0<B<,0<C<,∴﹣<﹣C<0,则﹣<B﹣C<,从而B﹣C=.②联立①②解得B=,C=.sin=,sin=.由,得=.∴.故选:C.12.设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(﹣x)+f(x)=x2,且x∈(0,+∞)时,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为()A.[1,+∞)B.(﹣∞,1]C.(﹣∞,2]D.[2,+∞)【考点】导数的运算.【分析】令g(x)=f(x)﹣x2,由g(﹣x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是增函数,f(2﹣a)﹣f(a)≥2﹣2a,即g(2﹣a)≥g(a),可得2﹣a≥a,由此解得a的范围.【解答】解:∵f(﹣x)+f(x)=x2,∴f(x)﹣x2+f(﹣x)﹣x2=0,令g(x)=f(x)﹣x2,∵g(﹣x)+g(x)=f(﹣x)﹣x2+f(x)﹣x2=0,∴函数g(x)为奇函数.∵x∈(0,+∞)时,f′(x)>x.∴x∈(0,+∞)时,g′(x)=f′(x)﹣x>0,故函数g(x)在(0,+∞)上是增函数,故函数g(x)在(﹣∞,0)上也是增函数,由f(0)=0,可得g(x)在R上是增函数.f(2﹣a)﹣f(a)≥2﹣2a,等价于f(2﹣a)﹣≥f(a)﹣,即g(2﹣a)≥g(a),∴2﹣a≥a,解得a≤1,故选:B.二.填空题:本大题共4个小题,每小题5分.13.2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=200.【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:由题意可得=,故N=200.故答案为:200.14.二项式(x2+)6展开式中的常数项为3.【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项,【解答】解:二项式(x 2+)6展开式的通项公式为T r+1=•(x 2)6﹣r •x ﹣r =()6﹣r••x 12﹣3r ,令12﹣3r=0,求得r=4,故展开式中的常数项为()2•=3,故答案为:3.15.已知四边形ABCD 中, •=0,||=1,||=2, •=0,则||的最大值为.【考点】平面向量数量积的运算.【分析】如图所示, •=0, •=0,可得AB ⊥BC ,AD ⊥DC .因此四边形ABCD内接于圆O .可得||的最大值为直径AC . 【解答】解:如图所示,∵•=0, •=0, ∴AB ⊥BC ,AD ⊥DC .∴四边形ABCD 内接于圆O .可得⊙O 的直径AC==.则||的最大值为直径.故答案为:.16.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为.【考点】球内接多面体;棱柱、棱锥、棱台的体积.【分析】过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 于P ,设点P 到CD 的距离为h ,则当球的直径通过AB 与CD 的中点时,h 最大为2,从而得到四面体ABCD 的体积的最大值即可.【解答】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P , 设点P 到CD 的距离为h ,则有 V=×2×h ××2,当球的直径通过AB 与CD 的中点时,h 最大为2,则四面体ABCD 的体积的最大值为.故答案为:.三.解答题:解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列{a n}中,a3=7,且a2,a4,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足b n=(),设其前n项和为S n,求证:≤S n<.【考点】数列的求和;数列递推式.【分析】(I)设等差数列{a n}的公差为d≠0,由a3=7,且a2,a4,a9成等比数列.可得a1+2d=7,=(a1+d)(a1+8d),联立解得即可得出.(Ⅱ)由(Ⅰ)知:b n=()==4×.再利用等比数列的前n项和公式、数列的单调性即可得出.【解答】(I)解:设等差数列{a n}的公差为d≠0,∵a3=7,且a2,a4,a9成等比数列.∴a1+2d=7,=a2•a9,即=(a1+d)(a1+8d),联立解得d=3,a1=1.∴数列{a n}的通项公式a n=3n﹣2.(Ⅱ)证明:由(Ⅰ)知:b n=()==4×.∴S n==∈.∴≤S n<.18.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和(Ⅱ)期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201﹣500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.(1)在学生甲获得奖学金条件下,求他获得一等奖学金的概率;(2)已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X的分布列及数学期望附:=,=﹣,=6,=146,x i y i=4420,x i2=182.【考点】线性回归方程;离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(Ⅰ)求出、,从而求出回归方程,将x=8代入求出即可;(Ⅱ)设事件A为“学生甲获得奖学金”,事件B为“学生甲获得一等奖学金”,求出概率即可;(Ⅲ)计算对应的P(X)的值,求出其分布列和期望值即可.【解答】解:(Ⅰ)===20…=﹣x=146﹣20×6=26…∴=20x=26,当x=8时,=20×8+26=186(元)即某天售出8箱水的预计收益是186元…(Ⅱ)(1)设事件A为“学生甲获得奖学金”,事件B为“学生甲获得一等奖学金”,则P===,即学生甲获得奖学金的条件下,获得一等奖学金的概率为…(2)X的取值可能为0,300,500,600,800,1000P(X=0)=×=,P(X=300)=××=,P(X=500)=××=,P(X=600)==,P(X=800)=××=,P(X=1000)==,X0 300 500 600 800 1000X的数学期望E(X)=0×+300×+500×+600×+800×+1000×=600(元)…19.梯形BDEF所在平面垂直于平面ABCD于BD,EF∥BD,EF=DE=BD,BD=BC=CD=AB=AD=2,DE⊥BC.(Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求平面AEF与平面CEF所成的锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)连接AC,交BD于O,推导出AC⊥BD,从而AC⊥平面BDEF,进而DE⊥AC,再由DE⊥BC,能证明DE⊥平面ABCD.(Ⅱ)分别以OA,OB,OC为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出平面AEF与平面CEF所成的锐二面角的余弦值.【解答】证明:(Ⅰ)连接AC,交BD于O,∵BD=BC=CD,且AB=AD,∴AC⊥BD,∵平面BDEF⊥平面ABCD,交线为BD,且AC⊂平面ABCD,∴AC⊥平面BDEF,∵DE⊂平面BDEF,∴DE⊥AC,又DE⊥BC,且AC∩BC=C,∴DE⊥平面ABCD.…解:(Ⅱ)∵EF∥BD,EF=BD,且O是BD中点,∴ODEF是平行四边形,∴OF∥DE,∴OF⊥平面ABCD,…分别以OA,OB,OC为x轴,y轴,z轴建立空间直角坐标系,A(1,0,0),C(﹣,0,0),E(0,﹣1,1),F(0,0,1),=(﹣1,0,1),=(0,1,0),=(),设平面AEF的法向量=(x,y,z),则,取x=1,得=(1,0,1),…设平面CEF的法向量,则,取a=1,得=(1,0,﹣),…∴cos<>===.即平面AEF与平面CEF所成的锐二面角的余弦值为.…20.在平面直角坐标系中,已知A1(﹣2,0),A2(2,0),B1(x,2),B2(x,﹣2),P(x,y),若实数λ使得λ2•=•(O为坐标原点).(Ⅰ)求点P的轨迹C的方程,并讨论点P的轨迹类型;(Ⅱ)当λ=时,是否存在过点B(0,2)的直线l与(Ⅰ)中点P的轨迹C相交于不同的两点E,F (E在B,F之间),且<<1?若存在,求出该直线的斜率k的取值范围;若不存在,请说明理由.【考点】轨迹方程;平面向量数量积的运算.【分析】(Ⅰ)由题设条件,知(1﹣λ2)x2+y2=4(1﹣λ2),由此进行分类讨论能得到P点的轨迹类型.(Ⅱ)当λ=时,点P的轨迹C的方程为=1.S△OBE:S△OBF=|x1|:|x2|,由<<1,即<<1.设直线EF直线方程为y=kx+2,联立方程可得,:(1+2k2)x2+8kx+4=0,由此能够推导出直线的斜率的取值范围.【解答】解:(Ⅰ)由λ2•=•得:λ2(x2﹣4)=x2﹣4+y2,即(1﹣λ2)x2+y2=4(1﹣λ2)为点P的轨迹C的方程…①λ=±1时方程为y=0轨迹为一条直线,…②λ=0时方程为x2+y2=4轨迹为圆,…③λ∈(﹣1,0)∪(0,1)时方程为+=1轨迹为椭圆,…④λ∈(﹣∞,﹣1)∪(1,+∞)时方程为﹣=1轨迹为双曲线…(Ⅱ)当λ=时,点P的轨迹C的方程为=1 …设E(x1,y1),F(x2,y2),∴S△OBE:S△OBF=|x1|:|x2|由<<1,即<<1,由题意可得x1,x2同号,∴<<1…由题意得直线EF的斜率存在,设其方程为y=kx+2代入椭圆方程得:(1+2k2)x2+8kx+4=0∵△=64k2﹣16(1+2k2)>0,∴k2>,x1+x2=﹣,x1x2=…设,则,∴,∴,,∵,∴即,∴,∴k∈(,)∪(,)为所求…21.设函数f(x)=x2﹣bx+alnx.(Ⅰ)若b=2,函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,证明:f(x2)>﹣;(Ⅲ)若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出f(x)的导数,结合二次函数的性质求出a的范围即可;(Ⅱ)求出f(x2)=﹣2x2+(2x2﹣2)lnx2,令F(t)=t2﹣2t+(2t﹣2t2)lnt,(<t<1),得到F(t)=2(1﹣2t)lnt,根据函数的单调性求出F(t)>F(),从而证出结论;(Ⅲ)令g(b)=﹣xb+x2+alnx,b∈[1,2],得到在x∈(1,e)上g(b)max=g(1)=﹣x+x2+alnx <0有解,令h(x)=﹣x+x2+alnx,通过讨论a的范围,求出函数的单调性,从而确定a的范围即可.【解答】解:(Ⅰ)由已知,b=2时,f(x)=x2﹣2x+alnx,f(x)的定义域为(0,+∞),求导数得:f′(x)=,∵f(x)有两个极值点x1,x2,f′(x)=0有两个不同的正根x1,x2,故2x2﹣2x+a=0的判别式△=4﹣8a>0,即a<,且x1+x2=1,x1•x2=>0,所以a的取值范围为(0,);(Ⅱ)由(Ⅰ)得,<x2<1且f′(x2)=0,得a=2x2﹣2,∴f(x2)=﹣2x2+(2x2﹣2)lnx2,令F(t)=t2﹣2t+(2t﹣2t2)lnt,(<t<1),则F(t)=2(1﹣2t)lnt,当t∈(,1)时,F′(t)>0,∴F(t)在(,1)上是增函数∴F(t)>F()=,∴f(x2)>﹣;(Ⅲ)令g(b)=﹣xb+x2+alnx,b∈[1,2],由于x∈(1,e),所以g(b)为关于b的递减的一次函数,根据题意,对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,则x∈(1,e)上g(b)max=g(1)=﹣x+x2+alnx<0有解,令h(x)=﹣x+x2+alnx,则只需存在x0∈(1,e)使得h(x0)<0即可,由于h′(x)=,令ω(x)=2x2﹣x+a,x∈(1,e),ω′(x)=4x﹣1>0,∴ω(x)在(1,e)上单调递增,∴ω(x)>ω(1)=1+a,①当1+a≥0,即a≥﹣1时,ω(x)>0,∴h′(x)>0,∴h(x)在(1,e)上是增函数,∴h(x)>h(1)=0,不符合题意,②当1+a<0,即a<﹣1时,ω(1)=1+a<0,ω(e)=2e2﹣e+a,(ⅰ)若ω(e)<0,即a≤2e2﹣e<﹣1时,在x∈(1,e)上ω(x)>0恒成立即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,∴存在x0∈(1,e),使得h(x0)<h(1)=0,符合题意,(ⅱ)若ω(e)>0,即2e2﹣e<a<﹣1时,在(1,e)上存在实数m,使得ω(m)=0,∴在(1,m)上,ω(x)<0恒成立,即h′(x)<0恒成立∴h(x)在(1,e)上单调递减,∴存在x0∈(1,e),使得h(x0)<h(1)=0,符合题意,综上所述,当a<﹣1时,对任意b∈[1,2],都存在x∈(,1e)(e为自然对数的底数),使得f(x)<0成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.已知在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.(Ⅰ)求证:AF=DF;(Ⅱ)求∠AED的余弦值.【考点】与圆有关的比例线段.【分析】(Ⅰ)欲证AF=DF,可以证明△AEF≌△DEF得出;(Ⅱ)求∠AED的余弦值,即求ME:DM,由已知条件,勾股定理,切割线定理的推论可以求出.【解答】证明:(Ⅰ)∵AD平分∠BAC,∴∠BAD=∠DAC.∵∠B=∠CAE,∴∠BAD+∠B=∠DAC+∠CAE.∵∠ADE=∠BAD+∠B,∴∠ADE=∠DAE.∴EA=ED.∵DE是半圆C的直径,∴∠DFE=90°.∴AF=DF.…解:(Ⅱ)连结DM,∵DE是半圆C的直径,∴∠DME=90°.∵FE:FD=4:3,∴可设FE=4x,则FD=3x.由勾股定理,得DE=5x.∴AE=DE=5x,AF=FD=3x∵AF•AD=AM•AE∴3x(3x+3x)=AM•5x∴AM=3.6x∴ME=AE﹣AM=5x﹣3.6x=1.4x在Rt△DME中,cos∠AED==.…[选修4-4坐标系与参数方程]23.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2﹣4ρcosθ+1=0,直线l的参数方程为:(t为参数),点A的极坐标为(2,),设直线l与曲线C相交于P,Q两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)求|AP|•|AQ|•|OP|•|OQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)利用极坐标与直角坐标互化直接写出曲线C的直角坐标方程,消去参数即可得到直线l的普通方程;(Ⅱ)点A的直角坐标为(3,),设点P,Q对应的参数分别为t1,t2,点P,Q的极坐标分别为(),().将(t为参数)与(x﹣2)2+y2=3联立,得:t1t2=1,|AP||AQ|=1,转化求解|AP|•|AQ|•|OP|•|OQ|的值.【解答】解:(Ⅰ)曲线C的直角坐标方程为:x2+y2﹣4x+1=0,即(x﹣2)2+y2=3…直线l的普通方程为x﹣y=0 …(Ⅱ)点A的直角坐标为(3,),设点P,Q对应的参数分别为t1,t2,点P,Q的极坐标分别为(),().将(t为参数)与(x﹣2)2+y2=3联立得:t2+2t+1=0,由韦达定理得:t1t2=1,|AP||AQ|=1 …将直线的极坐标方程θ=(ρ∈R)与圆的极坐标方程ρ2﹣4ρcosθ+1=0联立得:,由韦达定理得:ρ1ρ2=1,即|OP||OQ|=1 …所以,|AP||AQ||OP||OQ|=t1t2|ρ1ρ2|=1.…[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().【考点】绝对值不等式的解法;不等式的证明.【分析】(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2>0,从而得到所证不等式成立.【解答】解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.2016年8月23日。

吉林省吉林市普通中学高三数学毕业班第四次调研测试试

吉林市普通中学2016—2017学年度高中毕业班第四次调研测试数学(文科)参考答案与评分标准一、选择题1 2 3 4 5 6 7 8 9 10 11 12 ABCCCBDDBACA二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.13 ;14.7- ;15. 14π;16. 112221n n ++--(或11121n +--)三、解答题 17解答(Ⅰ)因为3,26,a b ==2B A =,所以在ABC∆中,由正弦定理得326sin sin 2A A=,-----------------------------------------------------2分所以2s i nc os 26sin3A AA=,故6cos 3A =.------------------------------------------------------4分 (Ⅱ)由(Ⅰ)知6c o s3A =。

所以23s i n 1c os3A A =-= --------------------------------------------5分又因为2B A=,所以21c os 2c3B A =-=--------------------------------------------------------7分所以222sin 1cos 3B B =-=。

-----------------------------------------------------------------------8分在ABC∆中,s i n s i n ()s C A B A c o c BA B=+=+ 539=。

------------------------10分所以s i n5s i na C c A ==。

(也可用余弦定理求解此问,从略。

)-------------------------------------12分 18解答.(Ⅰ) 因为a 有3种取法,b 有4种取法,则对应的函数有3×4=12个 ------------------------------2分因为函数f (x )的图象关于直线x =2ba对称,若事件A 发生,则a >0且2ba≤1------------------------3分数对(a ,b )的取值为(1,-1),(2,-1),(2,1),共3种. -------------------------------------5分所以P (A )=31124= -------------------------------------------------------------------------6分 (Ⅱ)集合(){},40,0,0a b a b a b +-≤>>对应的平面区域为Rt△AOB ,如图.其中点A (4,0),B (0,4),则△AOB 的面积为12×4⨯4=8----------------------------------8分 若事件B 发生,则f (1)<0,即a -4b +2<0.--------------------------------------------------------9分所以事件B 对应的平面区域为△BCD .由40420a b a b +-=⎧⎨-+=⎩,得交点坐标为146(,)55D .又1(0,)2C ,则△BCD 的面积为12×1(4)2-×145=4910. -----11分所以P (B )=S △BCD S △AOB =4980-------------------------12分19解答 (Ⅰ)证明:PA ⊥面ABCD ,CD ⊂面ABCD ,PA CD ∴⊥ ----------------------------------------2分又,AD CD ⊥PA AD A =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春市普通高中2017届高三质量监测(四)数学(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.i 为虚数单位,则234i i i i +++=A. 0B. iC. 2iD.1-2.已知集合{}{}21|412,|28x A x x x x B x -=-+>+=<,则()R AC B =A. {}|4x x ≥B. {}|4x x >C. {}|2x x ≥-D.{}|24x x x <-≥或3.已知函数()2x 2,1=2-1,x -1x x f x ⎧-<-⎪⎨≥⎪⎩,则函数()f x 的值域为A. [)1,-+∞B. ()1,-+∞C. 1,2⎡⎫-+∞⎪⎢⎣⎭D.R 4. 下面四个残差图中可以反映出回归模型拟合精度较好的为A. 图1B. 图2C. 图3D. 图35.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.右图是根据刘徽的“割圆术”思想设计的一个程序框图.运行该程序,则输出的n 的值为:(参考数据:3 1.732,sin150.2588,sin7.50.1305=≈≈)A. 48B. 36C. 30D. 24 6.将函数()cos2sin 2f x x x =-的图象向左平移8π个单位后得到函数()F x 的图象,则下列说法中正确的是A. ()F x 是奇函数,最小值为-2B. ()F x 是偶函数,最小值为-2C. ()F x 是奇函数,最小值为2-D. ()F x 是偶函数,最小值为2- 7.某几何体的三视图如图所示,则该几何体的表面积为 A. 64226++ B. 46225++C. 42526++D.46226++8.二项式1022x x ⎛⎫- ⎪ ⎪⎝⎭的展开式中,x 项的系数为A. 152B. 152- C. 15 D. -159.据统计,某城市的火车站春运期间日接送旅客人数X (单位:万)服从正态分布()26,0.8XN ,则日接送人数在6万到 6.8万之间的概率为(()()()0.6826,20.9544,30.9974P X P X P X μσμσμσ-<=-<=-<=) A. 0.6826 B. 0.9544 C. 0.9974 D.0.3413 10.球面上有A,B,C 三点,球心O 到平面ABC 的距离是球半径的13,且22,AB AC BC =⊥,则球O 的表面积是A. 81πB. 9πC.814π D.94π11.已知12,F F 是双曲线()2222:10,0x y C a b a b-=>>的两个焦点,P 是双曲线C 上的一点,若126PF PF a +=,且12PF F ∆的最小内角的大小为30,则双曲线C 的渐近线方程为A.20x y ±= B. 20x y ±= C. 20x y ±= D.20x y ±=12.已知函数()22ln x e f x k x x x ⎛⎫=-+ ⎪⎝⎭,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围为A. (],e -∞B. []0,eC. (),e -∞D.[)0,e二、填空题:本大题共4小题,每小题5分,共20分.13. 已知实数,x y 满足约束条件2201x y x y x ≥⎧⎪+-≥⎨⎪≤⎩,则2z y x =-的最小值为 .14. 若非零向量,a b 满足2,a b a b ==+,则向量,a b 夹角的余弦值为 . 15. 已知锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c ,2sin 3,2,3a B b b c ===,AD 是角A 的平分线,D 在BC 上,则BD = .16. 有甲、乙两人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m 月n日,张老师把m 告诉了甲,把n 告诉了乙,然后张老师列出了如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道”,乙听了甲的话后说,“本来我不知道,但现在我知道了”,甲接着说“哦,现在我也知道了”,请问:张老师的生日是 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分) 等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足11225233,1,10,2.a b b S a b a ==+=+=,(1)求数列{}n a 和{}n b 的通项公式;(2)若2,,n n nn S c b n ⎧⎪=⎨⎪⎩为奇数为偶数,设数列{}n c 的前n 项和为n T ,求2n T .18.(本题满分12分)某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月,12个月,18个月,24个月,36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如下表:以上表中各种贷款期限的频率作为2017年自主创业人员选择各种贷款期限的概率.(1)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率; (2)设给某享受此项政策的自主创业人员补贴为X 元,写出X 的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.19.(本题满分12分)如图,四棱柱1111ABCD A BC D -中,底面ABCD 是菱形,1AA ⊥平面ABCD ,E 为1B D 的中点.(1)证明:平面ACE ⊥平面ABCD ;(2)若二面角D AE C --为60,11,AA AB ==求三棱锥C AED -的体积.20.(本题满分12分)如图,在矩形ABCD 中,4,2,AB AD O ==为AB 的中点,,P Q 分别是AD ,CD 的上的点,且满足:①AP DQAD DC=;②直线AQ 与BP 的交点在椭圆()2222:10x y E a b a b +=>>上. (1)求椭圆E 的方程;(2)设R 为椭圆E 的右顶点,M 为椭圆E 第一象限部分上一点,作MN 垂直于y 轴,垂足为N,求梯形ORMN 的面积的最大值.21.(本题满分12分) 已知函数()2.ax f x x e =(1)当0a <时,讨论函数()f x 的单调性;(2)在(1)的条件下,求函数()f x 在区间[]0,1上的最大值; (3)设函数()ln 2xxg x e x=-,求证:当1a =时,对()()()0,1,2x g x xf x ∀∈->恒成立.请考生在第22、23两题中任选一题作答,如果多做,则按照所做的第一题计分. 22.(本题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xoy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为,曲线222cos :2sin x C y θθ=+⎧⎨=⎩(θ为参数).的极坐标方程为,曲线(为参数).(1)求曲线1C 的直角坐标方程和2C 的普通方程; (2)极坐标系中两点()1020,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭都在曲线1C 上,求221211ρρ+的值.23.(本题满分10分)选修4-5:不等式选讲(1)已知函数()()10f x x x a a =++->,若不等式()5f x ≥的解集为{}|23x x x ≤-≥或,求a 的值; (2)已知实数,,a b c R +∈,且a b c m ++=,求证:1119.2a b a c c b m++≥+++长春市普通高中2017届高三质量监测(四) 数学(理科)参考答案与评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. A2. B3. B4. A5. D6. C7. D8. B9. D10. B11. A12. A简答与提示:1. 【命题意图】本题考查复数的基本概念及运算.【试题解析】A 由错误!未找到引用源。

可知,原式错误!未找到引用源。

. 故选A.2.【命题意图】本题考查集合交、补运算.【试题解析】B 由错误!未找到引用源。

,错误!未找到引用源。

,故错误!未找到引用源。

. 故选B.3.【命题意图】本题考查分段函数的图像与性质.【试题解析】B 根据分段函数的错误!未找到引用源。

的图像可知,该函数的值域为错误!未找到引用源。

.故选B.4.【命题意图】本题考查统计学中残差图的概念.【试题解析】A 根据残差图显示的分布情况即可看出图1显示的残差分布集中,拟合度较好,故选A.5.【命题意图】本题依据中华传统文化算法割圆术考查程序框图.【试题解析】D 运行算法可获得结果24,故选D.6.【命题意图】本题主要考查三角变换公式与三角函数的图像与性质.【试题解析】C 由错误!未找到引用源。

,则错误!未找到引用源。

. 故选C.7.【命题意图】本题考查三视图.【试题解析】D 由图形补全法,将图形补全为长方体,进而获得该几何体的直观图,再求得该几何体的表面积为:错误!未找到引用源。

.故选D.8.【命题意图】本题考查二项式相关问题.【试题解析】B 错误!未找到引用源。

的展开式中,错误!未找到引用源。

的系数是错误!未找到引用源。

. 故选B.9.【命题意图】本题主要考查正态分布的相关知识.【试题解析】D 错误!未找到引用源。

. 故选D.10.【命题意图】本题主要考查球内的几何体的相关性质.【试题解析】B 由题可知错误!未找到引用源。

为△错误!未找到引用源。

的直径,令球的半径为错误!未找到引用源。

,则错误!未找到引用源。

,可得错误!未找到引用源。

,则球的表面积为错误!未找到引用源。

. 故选B.11.【命题意图】本题考查双曲线的定义.【试题解析】A 不妨设错误!未找到引用源。

,则错误!未找到引用源。

,则错误!未找到引用源。

,错误!未找到引用源。

,且错误!未找到引用源。

,即错误!未找到引用源。

为最小边,即错误!未找到引用源。

,则△错误!未找到引用源。

为直角三角形,且错误!未找到引用源。

,即渐近线方程为错误!未找到引用源。

,故选A.12.【命题意图】本题是考查函数与导数的应用问题.【试题解析】A 已知错误!未找到引用源。

相关文档
最新文档