2016浙江省杭州市5月下数学中考模拟试卷 (8)
杭州市启正中学2013年5月中考数学模拟试卷

某某市启正中学2013年5月中考数学模拟试卷温馨提醒:球的体积334R v π=(其中R 是球的半径) 一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1. 要反映某某市一天内气温的变化情况, 比较适宜采用的是 ( )(A) 折线统计图 (B) 条形统计图 (C) 扇形统计图 (D) 频数分布统计图 2. 无理数3732++在两个相邻的整数之间的是 ( )(A) 5和6 (B) 4和5 (C) 3和4 (D) 2和3 3.如图, ABC ∆内接于⊙O , 若28=∠OAB , 则=∠C ( ) (A)56 (B)62 (C)67 (D)644. 已知113a b +=(a b ≠),则()()a b b a b a a b ---的值为 ( ) (A) 3 (B) 32 (C) 2 (D) 15. 如图, 在四边形ABDC 中, EDC ∆是由ABC ∆绕顶点C 旋转40所得, 顶点A 恰好转到AB 上一点E 的位置, 则=∠+∠21 ( )(A)90 (B)100 (C)110 (D) 1206. 直角三角形的斜边长是|3|-x , 一条直角边的长是|3-4|x , 那么当另一条直角边达到最大时, 这个直角三角形的周长的X 围大致在 ( )(A) 3与4之间 (B) 4与5之间 (C) 5与6之间 (D) 6与7之间 7.如图,在四边形ABCD 中,=AB 4,=CD 13,=DE 12,∠=DAB=∠DEC 90°,∠=ABE 135°, 四边形ABCD 的面积是 ( )(A) 94 (B) 90 (C) 84 (D) 788. 以数形结合的观点解题, 方程210x x +-=的实根可看成函数2x y =与函数x y -=1的图象的横坐标, 也可以看成函数1y x =+与函数x y 1=的图象交点的横坐标. 那么用此方法可推断方程310x x +-=的一个实根x 所在的X 围为 ( ) (A) 021<<-x (B) 210<<x (C) 121<<x (D) 231<<x9.一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛(第3题)(第5题)(第7题)有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到 ( )(A) 38厘米 (B) 4厘米 (C) 3厘米 (D) 417厘米10. 设b a ,是两个任意独立的一位正整数, 则点(b a ,)在抛物线bx ax y -=2上方的概率是 ( )(A )8111 (B )8113 (C )8117 (D )8119二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.3<x 的代数式:12. 已知012=-+m m ,则=++3201223m m _______ .13.小明用48元钱按零售价买了若干练习本. 如果按批发价购买, 每本便宜2元, 恰好多买4本. 那么零售价每本 _______ 元.14. 如图,在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),开始时,骰子如左图所示摆放,朝上的点数是2,最后翻动到如右图所示位置,若要求翻动次数最少,则最后骰子朝上的点数为2的概率是 _______ . 1△ABC 的两条高线的长分别为5和20, 若第三条高线的长也是整数,则第三条高线长的最大值为 _______ .16. 如图, 边长是5的正方形ABCD 内, 半径为2的⊙M 与边DC 和CB 相切, ⊙N 与⊙M 外切于点P , 并且M 与边DA 和AB 相切. EF 是两圆的内公切线, 点E 和F 分别在DA 和AB 上. 则EF 的长等于 _______ . 三. 全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己 能写出的解答写出一部分也可以. 17.(本小题满分6分)某足球联赛记分规则为胜一场积3分, 平一场积1分, 负一场积0分. 当比赛进行到14轮结束时, 甲队积分28分. 判断甲队胜, 平, 负各几场, 并说明理由.(第13题)第16题第9题18. (本小题满分8分)某一空间图形的三视图如右图所示, 其中主视图:半径为1的半圆以及高为1的矩形; 左视图:半径为1的41圆以及高为1的矩形; 俯视图:半径为1的圆. 求此图形的体积.19. (本小题满分8分)如图是一个锐角为=∠B30的直角三角形, C ∠是直角.(1) 用直尺和圆规在此三角形中作出一个半圆, 使它的圆心在线段BC 上, 且与AC AB ,都相切(保留作图痕迹,不必写出作法);(2) 求(1)中所作半圆与三角形的面积比(保留一个有效数字). (7.13,4.12,14.3≈≈≈π)20. (本小题满分10分)在ABC ∆中,120,4=∠==ABC BC AB , 将ABC ∆绕点B 顺时针旋转角)900(<<αα, 得11BC A ∆, B A 1交AC 于点E ,11C A 分别交BC AC ,于F D ,两点.(1) 在旋转过程中, 线段1EA 与FC 有怎样的数量关系? 证明你的结论;(2) 当30=α时, 试判断四边形DA BC 1的形状, 并说明理由; (3) 在(2)的情况下, 求线段ED 的长.(第18题)(第19题)(第20题)21. (本小题满分10分)对关于x 的一次函数241k k kx y --=和二次函数)0(2>++=a c bx ax y . (1) 当0<c 时, 求函数2013||22+++-=c bx ax s 的最大值;(2) 若直线241k k kx y --=和抛物线)0(2>++=a c bx ax y 有且只有一个公共点, 求333c b a ++的值.22. (本小题满分12分) 如图,已知二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点P ,顶点为C (1,-2). (1)求此函数的关系式;(2)作点C 关于x 轴的对称点D ,顺次连接A 、C 、B 、D.若在 抛物线上存在点E ,使直线PE 将四边形ABCD 分成面积相等 的两个四边形,求点E 的坐标;(3)在(2)的条件下,抛物线上是否存在一点F ,使得△PEF 是以P 为直角顶点的直角三角形?若存在,求出点F 的坐标 及△PEF 的面积;若不存在,请说明理由.23. (本小题满分12分)已知AB 是半圆O 的直径, 点C 在BA 的延长线上运动(点C 与点A 不重合), 以OC 为直径的半圆M 与半圆O 交于点DCB D ∠,的平分线与半圆M 交于点E .(1) 如图甲, 求证: CD 是半圆O 的切线;(2) 如图乙, 作AB EF ⊥于点F , 猜想EF 与已有的哪条线段的一半相等, 并加以证明; (3) 如图丙, 在上述条件下, 过点E 作CB 的平行线交CD 于点N , 当NA 与半圆O 相切时, 求EOC ∠的正切值.启正中学2013年中考模拟卷(5月)数学模拟试卷参考答案及评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)号12 3 4 5 6 7 8 9 10案AD B A C B A C B D二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.略 12.2014 13. 6 14. 31 15. 6 16. 426- 三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)设甲队胜x 场,平y 场, 则283=+y x , 由0328≥-=x y , 得328≤x ; 又由14228≤-=+x y x ,得7≥x . 所以x 可取7或8或9.甲队胜, 平, 负的场数可以是: 7,7,0; 或8,4,2; 或9,1,4.18. (本小题满分8分)根据题意,该图形为圆柱和一个1/4的球的组合体, 其体积应为πππ34334412)1(1)1(=⋅⋅⋅+⋅⋅.甲 乙 丙 (第23题)19. (本小题满分8分) (1) 所作半圆O 如图: (2) 设边a AC =, 则6.03:)2123321≈⋅⋅=2a a S S (:三角形半圆π. 20. (本小题满分10分)(1) 1EA =FC . 由旋转可证明BF C ABE 1∆≅∆, 或者CBE BF A ∆≅∆1, 所以可得结论; (2) 四边形DA BC 1为菱形. 先证四边形DA BC 1为平行四边形, 再由1BC AB =, 所以得菱形; (3) 过点E 作AB EG ⊥于G , 在AEG Rt ∆中, 可求得332=AE ,所以3232-=-=AE AD ED . (也可从90=EBC , 先求得BE , 再求得ED EA =1.) 21. (本小题满分10分)(1) 因为0,0<>c a , 所以判别式042>-ac b , 函数c bx ax y ++=2和x 轴必有两个交点,则函数y 的最小值为0, 则函数2013||22+++-=c bx ax s 的最大值应为2013;(2) 将直线与抛物线解析式联立, 消去y , 得0)()(2412=+++-+c k k x k b ax , 因为直线与抛物线有且只有一个公共点, 所以判别式等于零, 化简整理成0)4()2(2)1(22=-++--ac b k b a k a , 对于k 取任何实数, 上式恒成立, 所以应有04,02,012=-=+=-ac b b a a 同时成立, 解得1,2,1=-==c b a , 所以6333-=++c b a .22. (本小题满分12分)1)∵c bx x y ++=2的顶点为C (1,-2),∴2)1(2--=x y ,122--=x x y . ————————————————2 2)设直线PE 对应的函数关系式为b kx y +=.由题意,四边形ACBD 是菱形. 故直线PE 必过菱形ACBD 的对称中心M . ————————————————1 由P (0,-1),M (1,0),得⎩⎨⎧=+-=01b k b .从而1-=x y , ————————2设E (x ,1-x ),代入122--=x x y ,得1212--=-x x x .解之得01=x ,32=x ,根据题意,得点E (3,2)—————————23)假设存在这样的点F ,可设F (x ,122--x x ).过点F 作FG ⊥y 轴,垂足为点G .在Rt △POM 和Rt △FGP 中,∵∠OMP +∠OPM =90°,∠FPG +∠OPM =90°, ∴∠OMP =∠FPG ,又∠POM =∠PGF ,∴△POM ∽△FGP . ∴GFGP OP OM =.又OM =1,OP =1,∴GP =GF ,即x x x =----)12(12. 解得01=x ,12=x ,根据题意, 得F (1,-2).故点F (1,-2)即为所求.322211221=⨯⨯+⨯⨯=+=MFE MFP PEF S S S △△△.23. (本小题满分12分)(1) 如图甲, 连接OD , 则OD 为半圆O 的半径, 而OC 为半圆M 的直径, 所以90=∠CDO , 即CD 是半圆O 的切线; (2) 猜想: OA EF 21=.证1: 如图乙, 以OC 为直径作⊙M , 延长EF 交⊙M 于点P ,连接OD , ∵OC EF ⊥, ∴,21EP PF EF ==∵CE 平分DCB ∠, ∴DE OP OE 弧弧弧==,∴EP OD =, ∴OA OD EP EF 212121===;证2: 如图丙, 连接ME OD ME OD ,,,相交于点H . ∵CE 平分DCB ∠, ∴DE OE 弧弧=,∴OD OH OD ME 21,=⊥, ∴可证MOH MEF ∆≅∆, ∴OA OD OH EF 2121===;(3) 如图丁, 延长OE 交CD 于点K , 设y EF x OF ==,, 则y OA 2=,甲 乙 丙 丁 OxyPEA B DCM MB A EPyxOG)∵四边形AFEN 是矩形, ∴x y OF OA AF NE -=-==2, 同(2)证法E 是OK 中点, ∴N 是CK 中点, ∴x y OF CO CF x y NE CO 34),2(22-=-=-==,可证CEF Rt ∆∽EOF Rt ∆, ∴OF CF EF ⋅=2, 即)34(2x y x y -=, 解得3=x y 或1=x y.当1=xy 时, 点C 与点A 重合, 舍去; 当3=xy时, 3tan ===∠xyOFEFEOC .。
杭州市初三中考数学一模模拟试题

杭州市初三中考数学一模模拟试题一.选择题(满分30分,每小题3分)1.估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.3.下列计算正确的是()A.3x2﹣2x2=1 B. +=C.x÷y•=x D.a2•a3=a54.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二.填空题(满分18分,每小题3分)11.因式分解:a3﹣9a=.12.方程=的解是.13.已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.已知点A是双曲线y=在第一象限的一动点,连接AO,过点O做OA⊥OB,且OB=2OA,点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.16.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.三.解答题17.(9分)(x+3)(x﹣1)=12(用配方法)18.(9分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.19.(10分)先化简,再求值(1﹣)÷,其中x=4.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(12分)如图,在⊙O 中,点A 是的中点,连接AO ,延长BO 交AC 于点D . (1)求证:AO 垂直平分BC .(2)若,求的值.22.(12分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =(x >0)的图象与边BC 交于点F(1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =(x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣,过点A(﹣3,2)和点B(2,),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx﹣的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案1.B.2.B.3.D.4.D.5.B.6.A.7.C.8.C.9.A.10.D.11.a(a+3)(a﹣3).12.x=﹣413.π+.14.x=3.15.y=﹣.16..17.解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)18.解:(1)如图点P即为所求;(2)如图点Q即为所求;19.解:原式=(﹣)÷=•=,当x=4时,原式==.20.解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(1)证明:延长AO交BC于H.∵=,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH==,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k﹣r)2,∴r=k,∴OH=AH=OA=k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA∥CK,∵BO=OK,BH=HC,∴CK=2OH=k,∵CK∥OA,∴△AOD∽△CKD,∴===.22.解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=的图象上,∴E(,2),F(4,),∴EB=EB′=4﹣,BF=B′F=2﹣,∴=,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+()2=(2﹣)2,解得:k=3,答:k的值为:3.23.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.24.解:(1)∵抛物线y=ax2+bx﹣过点A(﹣3,2)和点B(2,)∴解得:∴抛物线的函数表达式为:y=x2+x﹣(2)当x=0时,y=ax2+bx﹣=﹣∴C(0,﹣)设直线AC解析式为:y=kx+c∴解得:∴直线AC解析式为y=﹣x﹣当y=0时,﹣x﹣=0,解得:x=﹣1∴D(﹣1,0)(3)如图1,连接AB∵A(﹣3,2),B(2,)∴OA2=32+(2)2=21,OB2=22+()2=7,AB2=(2+3)2+()2=28 ∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得△OC'D'(即△OMD)∴OM=OC=,OD'=OD=1,∠MOD'=∠COD=90°∴MD'==2,∠MD'O=60°,∠OMD'=30°∵∠MOD'=∠AOB=90°∴∠MOD'+∠BOM=∠AOB+∠BOM即∠BOD'=∠AOM∵OA=,OB=∴∴△BOD'∽△AOM∴∠BD'O=∠AMO=60°,∴∠AMD'=∠AMO+∠OMD'=60°+30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'﹣MD'=t﹣2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t﹣2)2=28解得:t1=﹣2(舍去),t2=3∴AM=3,BM=1∵S△AMB=AM•BM=AB•MH∴MH=②如图3,当点M与点C′重合且在y轴左侧时,∴∠MOD'﹣∠AOD'=∠AOB﹣∠AOD'即∠AOM=∠BOD'∴同理可证:△AOM∽△BOD'∴∠AMO=∠BD'O=180°﹣∠MD'O=120°,∴∠AMD'=∠AMO﹣∠OMD'=120°﹣30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'+MD'=t+2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t+2)2=28解得:t1=2,t2=﹣3(舍去)∴AM=2,BM=4=AM•BM=AB•MH∵S△AMB∴MH=综上所述,点M到AB的距离为或.25.(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.中学数学一模模拟试卷一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.中学数学一模模拟试卷一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.。
最新2022独家原创中考数学模拟试卷(5月份) (解析版)

一、选择题1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或52.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1073.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5 4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.105.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.47.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和299.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3二、填空题(每小题3分,共15分)11.化简:2﹣=.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.13.不等式组的解集为.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有人.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=°时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:;性质二:.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b=时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是;②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.参考答案一、选择题(每小题3分,共30分)1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或5【分析】当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;所以若一个数的绝对值是5,则这个数是±5,据此判定即可.解:若一个数的绝对值是5,则这个数是±5.故选:C.2.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1300000用科学记数法表示为:1.3×106.故选:C.3.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5【分析】根据整式的运算法则即可求出答案.解:(A)a4+a4=2a4,故A错误;(B)a5•a4=a9,故B错误;(C)a4÷a=a3,故B正确;(D)(﹣a3)2=a6,故D错误;故选:C.4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.解:如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB=BE=AF,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴OA=OE,OB=OF=3,在Rt△AOB中,∵∠AOB=90°,∴OA==4,∴AE=2OA=8.故选:C.5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.7.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°【分析】由平行四边形的性质得出∠DCB=180°﹣∠D=110°,∠B =∠D=70°,由圆内接四边形的性质得到∠AEB=∠D=70°,由三角形的内角和定理即可得到结论.解:∵四边形ABCD是平行四边形,∠D=70°,∴∠DCB=180°﹣∠D=110°,∠B=∠D=70°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∴∠BAE=180°﹣70°﹣70°=40°,故选:C.8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和29【分析】根据中位数、平均数的计算方法进行计算即可.解:6名同学的体育成绩从小到大排列处在第3、4位的数都是26分,因此中位数是26分,平均数为=26(分),故选:A.9.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)【分析】连接ED交BC于H,根据正方形的性质得到OC=BC=2,根据菱形的性质求出EH,根据坐标与图形的性质解答即可.解:连接ED交BC于H,∵四边形ABCO是正方形,∴OC=BC=2,∵四边形BDCE是菱形,∴∠EBC=∠EBD=60°,EB=EC,CE=BH=BC=1,∴EH=BH×tan∠EBC=,∴点E的坐标是(2﹣,﹣1),故选:B.10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3【分析】首先由y=2x2﹣4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2﹣4x+8,得到y=14,所以CD=14﹣6=8,又DE=3,所以可知杯子高度.解:∵y=2x2﹣4x+8=2(x﹣1)2+6,∴抛物线顶点D的坐标为(1,6),∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x+8,得到y=14,∴CD=14﹣6=8,∴CE=CD+DE=8+3=11.故选:B.二、填空题(每小题3分,共15分)11.化简:2﹣=5.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.解:原式=6﹣=5.故答案为5.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中两个球上的汉字能组成“文明”的有2种结果,∴两个球上的汉字能组成“文明”的概率为=,故答案为:.13.不等式组的解集为2<x<6 .【分析】分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是8﹣π.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF 的面积、利用扇形面积公式计算即可.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案为:8﹣π.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为2或.【分析】本题分两种情况:第一种情况,如图(1),当D为AB 的中点时,此时△DBE是等边三角形,腰长也是边长是AB的一半2;第二种情况,如图(2),当边CE与CB重合时,此时△DBE是等腰三角形,腰长BE=BD=,问题得解.解:(1)第一种情况,如图(1),当D为AB的中点时,∵∠ACB=90°,∠A=30°,AB=4,∴AD=BD=CD=AB=2,∴∠DCA=∠A=30°,∴∠BDC=60°,∵把△ADC沿CD翻折得到△DCE,∴∠DEC=∠A=30°,AD=DE=CD,∴∠ECD=∠A=30°,∴∠EDC=120°,∴∠BDE=60°,∴△BED是等边三角形,∴BD=DE=BE=2;(2)第二种情况,如图(2),当边CE与CB重合时,此时△DBE 是等腰三角形,∵把△ADC沿CD翻折得到△DCE,∴CE=AC,∵CB=2,AB=4,∴AC==2,∴CE=2,∴腰长BE=BD=CE﹣BC=.故答案为:2或.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解:原式=•=•=,当a=1+,b=1﹣时,原式==.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120 名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150 人.【分析】(1)根据一般的人数和所占的百分比求出抽取的总人数;(2)用总人数乘以较强的人数所占的百分比,求出较强的人数,从而补全统计图;(3)用360°乘以“很强”的人数所占的百分比即可得出答案;(4)用该社区的人数乘以“淡薄”层次的人数所占的百分比即可得出答案.解:(1)18÷15%=120(名),即本次调查一共随机抽取了120名居民;故答案为:120;(2)“较强”层次的有:120×45%=54(名),补全统计图如下:(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),答:估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150人;故答案为:150.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=72 °时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是 3 .【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得,则AB=BC,即可得出结论;(2)①由题意得出∠AOF=∠EOF=m,证出∠ABE=∠ADE=m,则∠OAF=∠OFA=∠EOF+∠ADE=2m,由三角形内角和定理得出方程,解方程即可;②先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程求出x的值,证△AOF是等边三角形,得出OF=AF=3即可.【解答】(1)证明:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)解:如图所示:①F为弧AE的中点,则∠AOF=∠EOF,设∠AOF=∠EOF=m,∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADE,∵∠AOD=2∠ABE,∴∠ABE=∠ADE=m,∴∠OAF=∠OFA=∠EOF+∠ADE=2m,∵∠AOF+∠OAF+∠OFA=180°,∴2m+2m+m=180°,∴m=36°,∴∠ABE=72°,即∠ABC=72°时,点F为弧AE的中点,故答案为:72;②∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180°﹣3x),∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180°﹣3x)=180°,解得:x=20°,∴∠AOF=3x=60°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,即⊙O的半径是3;故答案为:3.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意列方程组解答即可;(2)设购买N95罩z个,购买口罩的花费为W元,根据题意列不等式求出z的取值范围,并求出W与z之间的函数关系式,再根据一次函数的性质解答即可.解:(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意,得:,∴,∴N95口罩单价为6元,一次性医用口罩单价2.5元;(2)设购买N95罩z个,则购买一次性医用口罩为(50﹣z)个,购买口罩的花费为W元,由题意可知,z≥(50﹣z),∴z≥12.5,W=6z+2.5(50﹣z)=3.5z+125,∵3.5>0,∴W随z的增大而增大,∴当z=13时,W有最小值为170.5元,即购买N95口罩13个,购买一次性医用口罩37个,花费最少.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b= 2 时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是(1,1);②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.【分析】(1)描点即可绘制完整图象;(2)指出函数的性质即可,答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,由△=b2﹣4=0,求得b=2;②由①知,当b=2时,两个函数有两个交点;故当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;解:(1)绘制完整图象如下图:(2)性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;故答案为:图象有两个分支,分别在第一、第二象限;图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;说明:答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,∵两个函数只有一个交点,故△=b2﹣4=0,解得:b=±2(舍去负值),故b=2,则,解得:,故当b=2时,点A的坐标为(1,1),答案为:2,(1,1);②由①知,当b=2时,两个函数有两个交点;∴当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为 2 .【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.【分析】【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.设BM=a,求出DM,GD即可解决问题.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.证明△BGD∽△BFM,可得结论.【问题解决】分两种情形:如图(3)﹣1中,当点G在线段AF 上时,如图(3)﹣2中.当点G在线段AF的延长线上时,分别求解即可.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.【分析】(1)由题意得:,即可求解;(2)①当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值,进而求出直线m的表达式,即可求解;②分点M在CB的上方和下方两种情况,分别求解即可.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.。
2016年浙江省杭州市中考数学试卷附详细答案(原版+解析版)

2016年浙江省杭州市中考数学试卷一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.52.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C. D.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.2016年浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.5【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.【点评】考查了算术平方根,注意非负数a的算术平方根a有双重非负性:①被开方数a 是非负数;②算术平方根a本身是非负数.2.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.3.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键.6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【点评】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x 的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.【点评】本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型.9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【点评】本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).【点评】此题主要考查了平行四边形的性质以及关于原点对称点的性质,正确得出D点坐标是解题关键.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是<m<.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<【点评】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.根据x取值范围得到的取值范围是解题的关键.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.【点评】本题考查折线统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.【点评】本题考查了二次函数的综合应用,解题的关键是:(1)结合点的坐标利用待定系数法求出函数系数;(2)①函数y1的顶点坐标代入y2中,找出a、b间的关系;②分a>0或a<0两种情况考虑.本题属于中档题,难度不大,解决该题时,利用配方法找出函数y1的顶点坐标,再代入y2中找出a、b间的关系是关键.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.【点评】此题是四边形综合题,主要考查了平行线的性质,角平分线的性质,直角三角形的性质,勾股定理,解本题的关键是用勾股定理计算线段.参与本试卷答题和审题的老师有:HJJ;gsls;三界无我;sjzx;sd2011;1987483819;曹先生;弯弯的小河;zgm666;lantin;星期八;sks;szl;星月相随(排名不分先后)菁优网2016年9月8日。
浙江省杭州市建兰中学2023-2024学年八年级下学期期中数学试题(解析版)

2023-2024学年浙江省杭州市建兰中学八年级(下)期中数学模拟试卷一.选择题(本题有10小题,每小题3分,共30分)1. 提高交通安全意识是每一位青少年的“必修课”,以下有关交通安全的标识图,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查的是中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.根据中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【详解】A .既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;B .是轴对称图形,也是中心对称图形,故此选项符合题意;C .不是中心对称图形,是轴对称图形,故此选项不符合题意;D .不是中心对称图形,是轴对称图形,故此选项不符合题意;故选:B .2. 当)A. 2B. C. D. 【答案】D【解析】【分析】先判断出,再根据二次根式的性质化简即可得.【详解】解:,,,故选:D .【点睛】本题考查了二次根式的化简,熟练掌握二次根式的性质是解题关键.2a <a2a -2a -20a -<2a < 20a ∴-<22a a =-=-3. 下列方程是一元二次方程的是( )A. B. C. D. 【答案】D【解析】【分析】根据一元二次方程的定义即形如的整式方程判断.本题考查了一元二次方程的定义即形如的整式方程,熟练掌握定义是解题的关键.【详解】A. ,,不符合题意;B. ,不一定是一元二次方程,不符合题意C.,不是整式方程,不符合题意;D. 符合题意;故选D .4. 在平行四边形中,,则等于( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,先根据平行四边形对边平行推出,再由已知条件得到,则.【详解】解;∵四边形是平行四边形,∴,∴,∴,∵,∴,∴,故选;D .()()232x x x --=20ax bx c ++=21210x x ++=210x +=()200ax bx c a ++=≠()200ax bx c a ++=≠()()232x x x --=560x -+=20ax bx c ++=21210x x++=210x +=ABCD 100A C ∠+∠=︒D ∠50︒80︒100︒130︒A C ∠=∠50A C ∠=∠=︒130D ∠=︒ABCD AB CD AD BC ∥,∥180AD C D +=︒=+∠∠∠∠A C ∠=∠100A C ∠+∠=︒50A C ∠=∠=︒130D ∠=︒5. 为了建设“书香校园”,某校开展捐书活动.某班名学生捐书情况统计如表:捐书本数123458捐书人数588421则该班学生所捐书本的中位数和众数分别是( )A. 3,3B. 4,C. ,3D. 3,【答案】A【解析】【分析】本题考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】解:中位数为第个数据的平均数,所以这组数据的中位数为,由表可知,3出现次数最多.故选:A .6. 一个多边形的内角和与它的外角和的和为,则这个多边形的边数为( )A. 11B. 10C. 9D. 8【答案】B【解析】【分析】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.设这个多边形的边数为n ,根据题意列方程求解即可.【详解】解:设这个多边形的边数为n ,则依题意可得,解得,所以这个多边形是十边形.40101212 3.5122021、3332+=1800︒()21803601800n -⨯︒+=︒10n =故选:B .7. 体育委员小聪要帮体育老师分析本班的跳远成绩,将各统计量计算好后却发现由于场地布置失误,导致每位同学的成绩都少记录了,则实际成绩与记录成绩相比( )A. 众数改变,方差改变B. 众数不变,平均数改变C. 中位数改变,方差不变D. 中位数不变,平均数不变【答案】C【解析】【分析】本题主要考查了中位数,平均数,众数,方差.根据中位数,平均数,众数,方差的意义,逐项判断即可求解.【详解】解:∵每位同学的成绩都少记录了,∴实际成绩与记录成绩相比,众数增加,方差不变,平均数增加,中位数增加,故选:C .8. 股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x ,则x 满足的方程是( )A. B. C. D. 【答案】A【解析】【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x 表示每天下跌的百分率,从而有110%•(1-x )2=1,这样便可找出正确选项.【详解】设x 为平均每天下跌的百分率,则:(1+10%)•(1-x )2=1;故选:A .【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x 后,变成原来价格的(1-x )倍.9. 如图,把含,角的两块直角三角板放置在同一平面内,若,,当时,与之间的距离是( )3cm 3cm 3cm 3cm 3cm ()()211011x +-=%()()211011x -+=%()()110121x -+=%()()110121x +-=%45︒30︒AB CDAB CD ==4=AD AD BCA. B. C. D. 【答案】B【解析】【分析】延长CO 交AB 于E ,过点C 作CF ⊥AD 于F ,先证四边形ABCD 为平行四边形,根据等腰直角三角形三线合一得出AE =BE =OEOC ,然后利用平行四边形面积求解即可.【详解】解:延长CO 交AB 于E ,过点C 作CF ⊥AD 于F ,∵,,∴四边形ABCD 为平行四边形,∵OC ⊥CD ,∴CE ⊥AB ,∵△AOB 为含45°三角板,∴AO =BO ,∴AE =BE=OE ∵∠ODC =30°,∴OD =2OC ,在Rt △COD 中,即,解得OC =2∴CE =OE +OC ∴S 平行四边形ABCD =AB ·CE =AD ·CF ,2+AB CD AB CD ==222OC DC OD +=(2224OC OC +=∴.故选B .【点睛】本题考查平行四边形的判定与性质,30°直角三角形性质,等腰直角三角形性质,勾股定理,掌握平行四边形的判定与性质,30°直角三角形性质,等腰直角三角形性质,勾股定理是解题关键.10. 已知一元二次方程(a ≠0,x 1≠x 2)与一元一次方程有一个公共解x=x 1,若一元二次方程有两个相等的实数根,则( )A. B. C. D. 【答案】B【解析】【分析】由x=x 1是方程(a≠0,x 1≠x 2)与的一个公共解可得x=x 1是方程的一个解,根据一元二次方程根与系数的关系可得x 1+x 1=,整理后即可得答案.【详解】∵(a≠0,x 1≠x 2)与有一个公共解x=x 1,∴x=x 1是方程的一个解,,∵一元二次方程有两个相等的实数根,∴x 1+x 1=,∴a(x 2-x 1)=d ,故选:B .【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若方程的两个根为x 1、x 2,那么x 1+x 2=,x 1·x 2=;熟练掌握韦达定理是解题关键.二.填空题(本题有6小题,每小题3分,共18分)11. 有意义,则的取值范围是______.CF =12()()0a x x x x --=0dx e +=()12()()0a x x x x dx e --++=()12a x x d-=()21a x x d -=()212a x x d-=()221a x x d -=12()()0a x x x x --=0dx e +=()12()()0a x x x x dx e --++=12()ax ax d a-+--12()()0a x x x x --=0dx e +=()12()()0a x x x x dx e --++=()2121212()0()()a x x x x dx e ax ax ax d x ax x e --++=-+-++=()12()()0a x x x x dx e --++=12()ax ax d a-+--b a -c ax【答案】##【解析】【分析】本题考查分式和二次根式的知识,解题的关键是熟练掌握分式和二次根式的定义,【详解】解:有意义,,解得.故答案为:.12. 某公司招聘英语翻译,听、说、写成绩按计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩,均为百分制),则他的总成绩为__________分.【答案】【解析】【分析】本题考查的是加权平均数的求法.运用加权平均数的公式直接计算.【详解】解:依题意,总成绩为,故答案为:.13. 已知关于的一元二次方程有两个实根,则的取值范围是______.【答案】且【解析】【分析】此题考查了一元二次方程判别式知识.此题比较简单,注意掌握一元二次方程有两个实数根,即可得.同时考查了一元二次方程的定义.由关于的一元二次方程有两个实数根及一元二次方程的定义,即可得判别式且,继而可求得的取值范围.【详解】∵关于的一元二次方程有两个实数根,,解得:,∵方程是一元二次方程,∴的取值范围是且.的1x <1x> 10x ∴->1x <1x <3:3:48933480+90+95=893+3+43+3+43+3+4⨯⨯⨯89x 2230ax x -+=a 13a ≤0a ≠0∆≥x 2230ax x -+=0∆≥0a ≠a x 2230ax x -+=224(2)43b ac a ∴∆=-=--⨯⨯4120a =-≥13a ≤2230ax x -+=0,a ∴≠a 13a ≤0a ≠故答案为:且.14. 在中,的平分线交于点E ,的平分线交于点F ,若线段,则的长为_________.【答案】8或##12或8【解析】【分析】本题考查了平行四边形的性质,角平分线,等角对等边.熟练掌握平行四边形的性质,角平分线,等角对等边是解题的关键.由角平分线的定义,平行线的性质可得,,由题意知,分当点F 在D 、E 之间时,当点F 在C 、E 之间时两种情况求解即可.【详解】解:∵平分,∴,又∵在中,,∴,∴,∴;同理可得,,当点F 在D 、E 之间时,如图1,∵,∴;当点F C 、E 之间时,如图2,∵,在13a ≤0a ≠ABCD Y 5AD BAD =∠,CD ABC ∠CD 2EF =AB 125AD DE ==5CF CB ==AE BAD ∠BAE DAE ∠=∠ABCD AB CD EAB DEA ∠=∠DAE AED ∠=∠5AD DE ==5CF CB ==2EF =5528AB CD DE CF EF ==+-=+-=2EF =∴.故答案为:8或.15. 若a ,b 是方程的两个实数根,则代数式的值为 _________.【答案】2028【解析】【分析】本题考查了一元二次方程的解及根与系数的关系:若是一元二次方程的两根时,,.利用a ,b 是方程的两个实数根,可得,即可求出答案.【详解】解:∵a ,b 是方程的两个实数根,∴,∴,∴.故答案为:2028.16. 如图,将先沿折叠,再沿折叠后,A 点落在线段上的处,C 点落在E 处,连接,.若恰有,则_________.【答案】##度【解析】【分析】本题主要考查了平行四边形的性质,平行线的性质,折叠的性质,跟进中河底得出,,,求出52512AB CD DE EF CF ==++=++=12220240x x +-=23a b -+12,x x ()200ax bx c a ++=≠12b x x a+=-12c x x a =220240x x +-=220240,1a a a b +-=+=-220240x x +-=220240,1a a a b +-=+=-22024a a =-23a b -+20243a b =--+()20243a b =-++202413=++2028=ABCD Y BE BF BF A 'EA 'EF EF EA '⊥A ∠=126︒126ABE A BE CBF '∠=∠=∠A EB AEB '∠=∠C BEF ∠=∠,,根据,,得出,求出,即可得出答案.【详解】解:∵四边形是平行四边形,∴,,由折叠得,,,∴,,∵,∴,∴,∵,,∴,∵,∴,∴,∴,故答案为:.三.解答题(本题有8小题;共72分)17. 计算:(1)(2).【答案】(1) (2)【解析】【分析】(1)先化简各二次根式,再合并即可;(2)先计算二次根式的乘法运算,再合并即可.【小问1详解】22A EB AEB EBC A BE ABE ''∠=∠=∠=∠=∠A C BEF ∠=∠=∠90BEF A EB '∠-∠=︒1801803A ABC ABE ∠=︒-∠=︒-∠1803290ABE ABE ︒-∠-∠=︒18ABE ∠=︒ABCD AD BC ∥A C ∠=∠ABE A BE CBF '∠=∠=∠A EB AEB '∠=∠C BEF ∠=∠22A EB AEB EBC A BE ABE ''∠=∠=∠=∠=∠A C BEF ∠=∠=∠EF EA '⊥90A EF ¢Ð=°90BEF A EB '∠-∠=︒A BEF ∠=∠2A EB ABE '∠=∠290A ABE ∠-∠=︒1801803A ABC ABE ∠=︒-∠=︒-∠1803290ABE ABE ︒-∠-∠=︒18ABE ∠=︒1803126A ABE ∠=︒-∠=︒126︒21)+---3解:【小问2详解】.【点睛】本题考查的是二次根式的加法运算,二次根式的乘法运算,掌握运算法则与运算顺序是解本题的关键.18. 解下列一元二次方程:(1)(2)【答案】(1)(2)【解析】【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解一元二次方程.【小问1详解】解:,,,解得:+33=⨯=21)-+--22(51)=---5251=--+-3=2420x x -+=2(3)2(3)0x x x ---=12x x 12=3=-3x x ,2420x x -+=24424x x -+=-+()222x -=2x -=12x x【小问2详解】解:,,,解得:.【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法是解题的关键.19. 某营销店计划从甲、乙两家工厂选择一家进货.要求零件合格的标准尺寸为,现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:).甲:500,499,500,500,503,498,497,502,500,501;乙:499,502,498,501,499,501,499,499,500,502.(1)为了进一步分析数据,请补全下表中的数据:种类平均数中位数众数方差甲500500乙500499(2)从零件更符合标准的角度看,你会选择哪一家工厂?说明你的理由.【答案】(1)500,,(2)见解析【解析】【分析】(1)分别根据众数,方差和中位数的求法计算即可;(2)根据各个统计量的意义分析即可.【小问1详解】解:甲工厂的样品质量中,出现的次数最多,故众数为500,方差为:,乙工厂的样品质量从小到大排列为:498,499,499,499,499,500,501,501,502,502,∴中位数;填表如下:为2(3)2(3)0x x x ---=(3)(32)0x x x ---=(3)(3)0x x ---=12=3=-3x x ,500mm mm 1.82.8499.5500mm ()()()2221500500499500...501500 2.810⎡⎤-+-++-=⎣⎦499500499.52+=种类平均数中位数众数方差甲500500500乙500499【小问2详解】若选择甲:中位数和众数是500,更符合标准质量;若选择乙,平均数相同,方差更小,乙更稳定.【点睛】本题考查了中位数、众数、方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.20. 如图,在中,,是直线上的两点,.(1)求证:四边形是平行四边形;(2)若,,,且,求的长.【答案】(1)见解析(2【解析】【分析】本题考查了平行四边形的判定和性质,勾股定理,全等三角形的判定与性质,解题的关键是得到.(1)根据平行四边形的性质得到,,从而,则,易证,得到,根据一组对边平行且相等的四边形,即可证明四边形是平行四边形;(2)根据勾股定理求出的长度,连接交于,求得,根据平行四边形的性质得到,设,根据勾股定理列方程即可得解.【小问1详解】证明:四边形平行四边形,,.是 2.8499.51.8ABCD Y E F BD DE BF =AECF AD BD ⊥5AB =3BC =2EF AF -=DE ADE CBF V V ≌AD BC ∥AD BC =ADB CBD ∠=∠ADE CBF ∠=∠ADE CBF V V ≌AE CF AFCE BD AC EF O 122DO OB BD ===12EO OF EF ==DE BF x == ABCD AD BC ∴∥AD BC =..在和中,,.,.,四边形是平行四边形;【小问2详解】解:,,,,连接交于,,四边形是平行四边形,,,设,,,,,,(负值舍去),.ADB CBD ∴∠=∠ADE CBF ∴∠=∠ADE V CBF V AD BC ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩(SAS)ADE CBF ∴△≌△AE CF ∴=AED CBF ∠=∠AE CF ∴∥∴AFCE BD AD ⊥ 5AB =3BC AD ==4BD ∴===AC EF O 122DO OB BD ∴=== AECF 12EO OF EF ∴==DE BF ∴=DE BF x ==24EF x ∴=+2EF AF -= 22AF x ∴=+222AF AD DF =+ 222(22)3(4)x x ∴+=++x ∴=DE ∴21. 已知是关于的一元二次方程的两实数根.(1)求的取值范围;(2)已知等腰的一边长为,若恰好是另外两边的边长,求的值和的周长.【答案】(1)(2),【解析】【分析】(1)根据判别式的意义可得;(2)分类讨论:若时,把代入方程得,求得m 的长,再利用根与系数的关系判断是否符合题意,将不符合的舍去,则可求出答案.【小问1详解】根据题意得,解得;【小问2详解】当腰长为7时,则是一元二次方程的一个解,把代入方程得,整理得,解得,当时,,解得,则三角形周长为;当时,,解得,则三角形周长为;当7为等腰三角形的底边时,则,所以,方程化为,解得,三边长为其周长为,综上所述,m 的值是,这个三角形的周长为或或.【点睛】本题考查了根与系数的关系:若是一元二次方程的两根时,12x x ,x ()2221100x m x m -+++=m ABC 712x x ,ABC m ABC 92m ≥99,52,27,19,18;92m ≥17x =7x =24914(1)100m m -+++=224(1)4(10)0m m =++≥﹣ 92m ≥7x =()2221100x m x m -+++=7x =24914(1)100m m -+++=214450m m -+=1295m m ==,9m =122(1)20x x m +=+=213x =137727++=5m =122(1)12x x m +=+=25x =57719++=12x x =92m =24441210x x -+=12112x x ==1111,722,,111171822++=27191812,x x 20(0)ax bx c a ++=≠.也考查了根的判别式和等腰三角形的性质.22. 如图,在的网格中,每个小正方形的边长都是1,B ,O 均在格点上.(1)在图1中,作一个各顶点均在格点上的,使得O 为对角线交点;(2)在图2中,作一个各顶点均在格点上的,使其面积等于8,且该平行四边形的一条边等于其一条对角线;并求出此时该平行四边形的周长.【答案】(1)见解析(2)图见解析,【解析】【分析】本题考查作图—应用与设计作图,平行四边形的判定和性质、勾股定理等知识.(1)根据要求作出图形即可.(2)画底为4,高为2,且即可.【小问1详解】如图1,连接并延长,使,交格点于点C ,连接,,则四边形即为所求.【小问2详解】如图2,即为所求.1212b c a x x x x a+=-=,77⨯ABCD Y 1111A B C D8+1111A B B D =BO OB OD =AB CD ABCD 1111A B C D由勾股定理得,∴该平行四边形的周长为.23. 根据以下销售情况,解决销售任务.销售情况分析总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,它们的销售情况如下:店面甲店乙店日销售情况每天可售出20件,每件盈利40元.每天可售出32件,每件盈利30元.市场调查经调查发现,每件衬衫每降价1元,甲、乙两家店一天都可多售出2件.情况设置设甲店每件衬衫降价元,乙店每件衬衫降价元.任务解决任务1甲店每天的销售量 (用含的代数式表示).乙店每天的销售量 (用含的代数式表示).任务2当,时,分别求出甲、乙店每天的盈利.任务3总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和为2244元.【答案】任务1:件,件;任务2:甲店每天的盈利为1050元,乙店每天的盈利为1040元;任务3:11元【解析】【分析】任务1,由题意即可得出结论;11A D ==()(11112248A D A B +=⨯+=+a b a b 5a =4b =()202a +()322b +任务2,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.详解】解:任务1,根据题意得:甲店每天的销售量为件,乙店每天的销售量为件,故答案为:件,件;任务2,当时,甲店每天的盈利为(元);当时,乙店每天的盈利为(元);任务3,设每件衬衫下降元时,两家分店一天的盈利和为2244元,由题意得:,整理得:,解得:,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.【点睛】本题考查了一元二次方程的应用、列代数式、有理数的混合运算,找准等量关系,正确列出一元二次方程是解题的关键.24. 如图1,在平行四边形中,为钝角,,分别为边,上的高,交边,于点,,连结,.(1)求证:;(2)求证:;(3)如图2,若,以点为原点建立平面直角坐标系,点坐标为,点为直线上一动点,当时,求出此时点的坐标.【答案】(1)见解析(2)见解析 (3)或,【m ()202a +()322b +()202a +()322b +5a =()()40520251050-⨯+⨯=4b =()()30432241040-⨯+⨯=m ()()()()40202303222244m m m m -++-+=2221210m m +=-1211m m ==ABCD ABC ∠BE BF AD CD AD CD E F EF BF EF =EBF C ∠=∠CF DF =45DBC ∠=︒B C P CE BCP BDE S S =△△P 11【解析】【分析】(1)由,根据同角的余角相等可求解;(2)由“”可证,可得结论;(3)分两种情况:在轴的上方和下方,先计算的面积,根据时,可得的面积,如图3,过点作轴于,从而得的长,利用待定系数法可得的解析式,则可求得点的坐标.【小问1详解】证明:四边形是平行四边形,,,分别为边,上的高,,,,,,;【小问2详解】证明:如图,延长,交于点,,,,,,,,,90EBF CBF C CBF ∠+∠=︒=∠+∠AAS EDF HCF ≌△P x BED BCP BDE S S =△△BCP P PG x ⊥G PG CE P ABCD AD BC ∴∥BE BF AD CD AD BE ∴⊥90BFC ∠=︒BE BC ∴⊥90EBC BFC ∴∠=︒=∠90EBF CBF C CBF ∴∠+∠=︒=∠+∠EBF C ∴∠=∠EF BC H BF EF = FEB FBE ∴∠=∠90EBC ∠=︒ 90FEB H FBE FBC ∴∠+∠=∠+∠=︒FBH FHB ∴∠=∠BF FH ∴=EF FH ∴=AD BC ADC DCH ∴∠=∠在和中,,,;【小问3详解】解:分两种情况:①如图,点在轴的上方,过点作轴于,点坐标为,,,,,,,是等腰直角三角形,,,,,,,设直线的解析式为:,EDF HCF ADC DCH DFE CFH EF FH ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)EDF HCF ∴△≌△DF CF ∴=P x P PG x ⊥G C BC ∴=BF CD ⊥Q DF CF =BD BC ∴==AD BC 45ADB DBC ∴∠=∠=︒BED ∴ 1BE DE ∴==111122BED S ∴=⨯⨯=△BCP BDE S S = △△∴1122=PG ∴=(0,1)E C 0)CE y kx b =+,解得:,直线的解析式为:,当时,,,点的坐标为;如图,在轴的下方,过点作轴于,由①可知:,直线的解析式为:,当时,,,点的坐标为,;综上,点的坐标为或,.【点睛】本题是四边形的综合题,考查了平行四边形的判定和性质,坐标与图形的性质,一次函数的解析式,全等三角形的判定和性质,直角三角形的性质,勾股定理,灵活运用这些性质解决问题是解题的关键.∴10bb =⎧⎪+=1k b ⎧=⎪⎨⎪=⎩∴CE 1y x =+y =1x +=1x ∴=-∴P 1P x P PG x ⊥G PG =CE 1y x =+y =1+=1x ∴=∴P 1P 1-1+。
浙江省杭州市2016届中学考试数学模拟试卷(解析汇报版)

2016年数学模拟试卷班级_________姓名_________一.仔细选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.关于m 的不等式﹣m >1的解为( )A .m >0B .m <0C .m <﹣1D .m >﹣12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定 3.如图所示零件的左视图是( )A .B .C .D .4.已知点A (1,m )与点(3,n )都在反比例函数y=﹣的图象上,则m 与n 的大小关系是( )A .m <nB .m >nC .m=nD .不能确定5.的平方根( )A .4B .2C .±4D .±2 6.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=﹣x 2,则y 1=﹣y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 27.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F ,若AC=4,则OF 的长为( )A.1 B. C.2 D.48.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A.4:1 B.3:1 C.2:1 D.:19.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A.m> B.<m≤9 C.≤m≤9 D.m≤10.在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是()A.①③ B.①④C.①②④ D.①②③二.认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为,.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ,sin∠ABE= .14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是____________.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为.16.已知函数y=k (x+1)(x ﹣),下列说法:①方程k (x+1)(x ﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x <﹣1时,y 随着x 的增大而增大,其中正确的序号是 .16.如图,一次函数y=﹣x+b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:0(3)4sin 4581-π+-.解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩17.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a ※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b <0,所以1※(﹣4)=。
中考数学模拟卷(含答案)
中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。
【中考冲刺】2023年浙江省杭州市中考模拟数学试卷(附答案)
2023年浙江省杭州市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形2.下面运算正确的是( ) A .234a a a += B .541a a -=C .325x y xy +=D .()222581016xy x xy x --=-+3.如图所示的几何体是由6个大小相同的小正方体组成,它的主视图为( )A .B .C .D .4x 的取值范围是( ). A .2x >B .2x ≥C .2x <D .2x ≤5.点P 的坐标为()6,2,A 是x 轴正半轴上一点,O 为原点,则tan AOP ∠的值为( )A .3B C D .136.如图,在△ABC 中,∠C =90°,∠B =15°,AC =l ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则AD 的长为( )A .l.5 BC .2D 7.多顶式x 2+kx +25是一个完全平方式,则k 的值为( ) A 10B 10C ±10D ±58.一次函数y 1=x +4的图象与一次函数y 2=-x +b 的图象的交点不可能...在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.小明、小亮参加学校运动会800米赛跑;小明前半程的速度为2x 米/秒,后半程的速度为x 米/秒,小亮则用一米32x/秒的速度跑完全程,结果是( ) A .小明先到终点B .小亮先到终点C .同时到达D .不能确定10.如图,已知正方形ABCD 的边长为a ,延长BA ,BC ,使AF =CE =b ,以BE 为边长在正方形ABCD 外围作正方形BFGE ,以点E 为圆心,EG 为半径画弧交BE 的延长线于点H ,连接DH ,交GE 于点M ,延长AD 交GE 于点K ,交圆弧于点J ,连接GJ ,记∠GKJ 的面积为S 1,阴影部分的面积为S 2. 当F ,D ,H 三点共线时,12S S 的值为( )AB .12CD二、填空题11.因式分解:24x -=__________.12.已知一个圆锥的底面半径为3cm ,母线长为10cm,则这个圆锥的侧面积为____________.13.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需_______分钟. 14.已知点()1,A m y ,()22,B m y +且0m >,在反比例函数22k y x+=的图像上,则1y _______2y (填><、).15.如图,在四边形ABCD 中,∠A =80°,∠B =120°,∠B 与∠ADC 互为补角,点E 在直线BC 上,将∠DCE 沿DE 翻折,得到△DC E ',若AB ∥C E ',则∠CDE 的度数为_______°.16.如图,是一个“摩天轮”蛋糕架,圆周上均匀分布了8个蛋糕篮悬挂点,圆O 半径为20cm ,O 到MN 的距离为32cm ,A ,B 两个悬挂点之间间隔了一个悬挂点. (1)A 、B 两个悬挂点之间的高度差最大可达到__________cm .(2)当A 在B 的上方且两个悬挂点的高度差为4cm 时,A 到MN 的距离为________________cm .三、解答题17.计算:1013920222sin603-⎛⎫-⨯+++︒ ⎪⎝⎭.18.解不等式组50,31212x x x +≤⎧⎪⎨-≥+⎪⎩.19.如图,已知四边形ABCD 是平行四边形,BE ∠AC , DF ∠A C ,求证:AE =CF .20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 名,在扇形统计图中,表示“D 等级”的扇形的圆心角为 度,图中m 的值为 ; (2)补全条形统计图;(3)组委会决定从本次比赛中获得A 等级的学生中,选出2名去参加市中学生演讲比赛,已知A 等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.北京冬奥会的召开燃起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线21144:1233C y x x =-++近似表示滑雪场地上的一座小山坡,小雅从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线223:2C y ax x c =++运动.(1)当小雅滑到离A 处的水平距离为6米时,其滑行达到最高位置为172米.求出a ,c 的值;(2)小雅若想滑行到坡顶正上方时,与坡顶距离不低于103米,请求出a 的取值范围. 22.如图,AB 是∠O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交∠O 于点D ,交AB 于点E ,(1)求证:PC 是∠O 的切线; (2)若AC +BC =2时,求CD 的长. 23.我们定义:当m ,n 是正实数...,且满足1mm n =-时,就称P ,m m n ⎛⎫ ⎪⎝⎭为“完美点”. (1)m =3时,则n = ,P 点的坐标为 .(2)已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC ,求点C 的坐标.(3)正方形A 1B 1C 1D 1一边在y 轴上,其他三边都在y 轴的右侧,且点E (1,t )是此正方形对角线的交点,若正方形A 1B 1C 1D 1边上存在“完美点”,求t 的取值范围. 24.如图,在矩形ABCD 中,已知AD =6,CD =8,点H 是直线AB 上一点,连接CH ,过顶点A 作AG ⊥CH 于G ,AG 交直线CB 于点E .(1)如图,当点E 在CB 边上时, ∠求证:∠CGE ~∠ABE ; ∠连接BG ,求tan∠AGB ;(2)作点B 关于直线CH 的对称点F ,连接FG .当直线FG 截∠ADC 所得的三角形是等腰三角形时,求BH 的长.参考答案:1.D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意; B 、不是轴对称图形,是中心对称图形.故不符合题意; C 、是轴对称图形,不是中心对称图形.故不符合题意; D 、是轴对称图形,也是中心对称图形.故符合题意. 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.D 【解析】 【分析】根据同类项的定义及合并同类项的方法逐项分析即可. 【详解】解:A.34a a a +=,故原式不正确; B.54a a a -=,故原式不正确;C.3x 与2y 不是同类项,不能合并,故原式不正确;D.()222581016xy x xy x --=-+,正确;故选D . 【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 3.B【解析】【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:根据主视图可知有上下两行,上面一行有1个正方形且在最后边,下面一行有3个正方形,故选B.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键. 4.B【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】解:由题意得,x-2≥0,解得x≥2.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.D【解析】【分析】过点P作PB∠x轴于点B,根据点P的坐标可得PB=2,OB=6,利用勾股定理求出OP,然后根据三角函数的概念进行计算.【详解】解:过点P作PB∠x轴于点B,如图所示:∠点P的坐标为(6,2),∠PB=2,OB=6,∠1tan3BPAOPOB∠==,故D正确.故选:D.【点睛】题主要考查了求一个角的正切值,根据正切的定义,将∠AOP放在相应的直角三角形中是解题的关键.6.C【解析】【分析】利用基本作图可判断MN垂直平分AB,则利用线段垂直平分线的性质得到DA=DB,所以∠DAB=∠B=15°,再利用三角形外角性质得∠ADC=30°,然后根据含30度的直角三角形三边的关系可得到AD的长.【详解】解:由作法得MN垂直平分AB,则DA=DB,∠∠DAB=∠B=15°,∠∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AD=2AC=2.故选C.【点睛】本题考查作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.7.C【分析】根据完全平方公式的特点求解即可. 【详解】解:多顶式x 2+kx +25是一个完全平方式, 则2510kx x x =±⨯=±, ∠10k =±, 故选:C 【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点. 8.D 【解析】 【分析】由图象可知一次函数y 1=x+4的图象在第一,二,三象限上;根据一次函数的图象和性质,可知与一次函数y 2=-x+b 的图象的交点不可能在第几象限上. 【详解】因为一次函数y 1=x+4的图象在第一,二,三象限上, 所以与一次函数y 2=-x+b 的图象的交点不可能在第四象限. 故选D. 【点睛】本题主要考查了一次函数的图象和性质的应用,解题的关键是熟练掌握一次函数的图象和性质. 9.B 【解析】根据题意分别求解出两人跑完全程所用的时间,然后利用作差法比较大小即可. 【详解】由题意,小明的总用时为:14004002004006002t x x x x x=+=+=秒, 小亮的总用时为:23160080023x t x=÷=秒, 则126001600180016002003333t t x x x x x-=-=-=, ∠由题意可知,0x >,∠120t t ->,12t t >,即:小亮用时更少,先到达终点, 故选:B . 【点睛】本题考查列分式表示实际问题,并比较大小,理解题意,准确列出分式,掌握比较分式大小的方法是解题关键. 10.D 【解析】 【分析】利用F ,D ,H 三点共线,即有tan∠FDA =tan∠DHC ,即可求得a =2b ,连接EJ ,在Rt ∠KJE 中求出KJ ,则S 1可求,再证∠DKM ∠∠HEM ,即有ME HEMK DK=,进而求出ME ,则S 2可求,则问题得解. 【详解】根据题意可知AB =CD =AD =a ,AF =GK =DK =CE =b , 即EH =a +b ,CH =CE +EH =b +a +b ,∠F ,D ,H 三点共线,在正方形ABCD 中,AD BC ∥, ∠∠FDA =∠DHC , ∠tan∠FDA =tan∠DHC , ∠AF DC AD CH=,即b aa b a b =++,∠2220a ab b --=,即()(2)0a b a b +-=, 显然0a b +≠, ∠20a b -=,如图,连接EJ ,则有EJ =EH =EG =a +b ,∠在Rt ∠KJE 中,KJ,∠S 1=12b ⨯2, ∠AD BC ∥,∠∠DKM ∠∠HEM , ∠ME HE MK DK =,即ME HE EK ME DK =-, ∠ME a b a ME b+=-, ∠ME =2a b a a b +⨯+=2222b b b b b +⨯+=32b , ∠S 2=13(2)322b b b b b ⨯+⨯+⨯=2194b , ∠12S S2÷(2194b故选:D .【点睛】本题考查了解直角三角形、勾股定理、平行的性质、相似三角形的判定与性质等知识,利用F ,D ,H 三点共线可求得a =2b ,是解答本题的关键.11.(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.30πcm 2.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【详解】这个圆锥的侧面积=π×3×10=30πcm 2.故答案为30πcm 2.【点睛】考点: 圆锥的计算.13.40.【解析】【详解】设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟,依题意得:3555{4985x y x y +=+=①②, 由∠+∠,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为40.考点:二元一次方程组的应用.14.>【解析】【分析】先根据反比例函数中22k +>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∠22k +>0∠反比例函数22k y x+=的图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∠()1,A m y ,()22,B m y +且0m >,∠12y y >故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.20【解析】【分析】根据补角性质即可求得ADC ∠,利用四边形内角和可求得C ∠,再根据翻折及平行线的性质即可求得答案.【详解】∠B =120°,∠B 与∠ADC 互为补角,18012060ADC ∴∠=︒-︒=︒,又80A ∠=︒,360100C A B ADC ∴∠=︒-∠-∠-∠=︒,又//'AB C E ,'120CEC B ∴∠=∠=︒,将△DCE 沿DE 翻折,得到△DC E ',1''602CED C ED CEC ∴∠=∠=∠=︒, 18020CDE C CED ∴∠=︒-∠-∠=︒,故答案为:20.【点睛】本题考查了翻折变换的性质、平行线的性质、多边形内角和定理及补角性质,熟练掌握翻折变换的性质及平行线的性质是解题的关键.16. 44或48或20或16【解析】【分析】(1)90AOB ∠=︒,勾股定理求得AB =A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠),如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E ,证明BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,勾股定理建立方程,解方程求解,根据O 到MN 的距离为32cm ,结合图形分情况即可求解.【详解】(1)圆周上均匀分布了8个蛋糕篮悬挂点,A ,B 两个悬挂点之间间隔了一个悬挂点. ∴90AOB ∠=︒,如图,连接AB ,圆O 半径为20cm ,∴AB =,当A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值故答案为:(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠).如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E , 则9090BOE B AOF OAF ∠=︒-∠=︒-∠=∠,在BOE ∆与AOF ∆中,BOE OAF E FOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,在Rt AOF ∆中,由勾股定理可得:()222420x x ++=,解得1212,16x x ==-(舍去). 情形∠、∠中,AF =12cm ,情形∠、∠中,AF =16cm .O 到MN 的距离为32cm ,四个情形中,A 到MN 的距离分别为32+12=44,32+16=48,32-12=20,32-16=16. 故答案为:44或48或20或16∠ ∠∠【点睛】本题考查了圆的性质,勾股定理,全等三角形的性质与判定,旋转的性质,掌握以上知识是解题的关键.17.1【解析】【分析】先化简再计算即可.【详解】原式=339121-⨯++= 【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、实数绝对值、0指数幂、特殊角度三角函数值进行化简.18.5x ≤-【解析】【分析】根据解一元一次不等式组的方法求解即可.【详解】解:解不等式50x +≤得5x ≤-. 解不等式31212x x -≥+得3x ≤-. ∠不等式组的解集为5x ≤-.【点睛】本题考查解一元一次不等式组,熟练掌握该知识点是解题关键.19.见解析【解析】【分析】 可证明ABE ≌CDF ,即可得到结论.【详解】证明:∠四边形ABCD 是平行四边形∠AB =CD ,AB ∥CD∠∠BAC =∠DCA∠BE ⊥AC 于E ,DF ⊥AC 于F∠∠AEB =∠DFC =90°在ABE 和CDF 中 ,BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABE ≌CDF (AAS )∠AE =CF【点睛】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.(1)20,72,40;(2)作图见试题解析;(3)23.【解析】【分析】(1)根据等级为A 的人数除以所占的百分比求出总人数,根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(2)求出等级B 的人数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【详解】(1)根据题意得:3÷15%=20(人),表示“D 等级”的扇形的圆心角为420×360°=72°; C 级所占的百分比为820×100%=40%,故m=40, 故答案为20,72,40.(2)故等级B 的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P (恰好是一名男生和一名女生)=46=23. 考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.21.(1)18a =-,4c = (2)3032a -≤< 【解析】【分析】(1)根据题意,抛物线2C 的顶点坐标为(6,172),设C 2的解析式为:()21762y a x =-+,代入0,4x y ==,即可求解; (2)求出山坡的顶点坐标为(8,203),根据题意列出不等式,解不等式即可求得a 的取值范围.(1)解:根据题意,抛物线2C 的顶点坐标为(6,172), 设C 2:()21762y a x =-+,代入0,4x y ==,得173642a +=, 解得18a =-, ∴()2117682y x =--+213482x x =-++, 18a ∴=-,4c =; (2)解:抛物线C 1:()2214412081233123y x x x =-++=--+, 因此抛物线C 1的顶点坐标为(8,203), 即当x =8时,运动员到达坡顶, 此时238842a ⨯+⨯+≥103+203, 解得332a ≥-, 根据实际情况,0a <,3032a ∴-≤<. 【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.22.(1)见解析【解析】【分析】(1)连接OC ,根据AB 为直径,得出∠ACB =90°,则∠ACO +∠OCB =90°,从而得出∠BCP +∠OCB =90°,即∠OCP =90°,即可得出结论;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,根据CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,得出DM DN AD BD ==,,推出AD BD =,再利用HL 证明AMD BND ≌,得出四边形CMDN 为矩形,再推出矩形CMDN 为正方形,则CN =,即可得出答案 (1)连接OC ,∠AB 为直径,∠∠ACB =90°,∠∠ACO +∠OCB =90°,∠OA =OC ,∠∠BAC =∠ACO ,∠∠BCP =∠BAC ,∠∠BCP =∠ACO∠∠BCP +∠OCB =90°,即∠OCP =90°,∠PC 是∠O 的切线;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,∠CD 平分ACB ∠,DM AC ⊥,DN CB ⊥, ∠DM DN AD BD ==,,∠AD BD =,∠90AMD BND ∠∠==︒,∠AMD BND HL ≌(), ∠90DMC MCN CND ∠∠∠===︒,∠四边形CMDN 为矩形,∠DM DN =,∠矩形CMDN 为正方形,∠CN =, ∠2AC BC CM AM CB CN +=++=,∠AC BC +=,∠2AC BC +=,∠CD =【点睛】本题是圆的综合题,主要考查了圆周角定理,圆的切线的判定与性质,正方形的判定与性质,全等三角形的判定与性质等知识,熟练掌握切线的判定是解题的关键.23.(1)32,(3,2) (2)点C 的坐标(2,1)或(4,3)(3)-1<t ≤2【解析】【分析】(1)根据“完美点”的定义即可求解;(2)先根据A 点坐标求出直线解析式,根据B 点在直线5y x -=+上,设B 点坐标为(,5)-+a a ,再根据B 点是“完美点”,即可求出B 点坐标,设“完美点”C 点坐标为00(,)x y ,即有001y x =-,再利用勾股定理有:22200(3)(2)BC x y =-+-,即可求解出C 点坐标;(3)设正方形1111D C B A 的四个顶点的坐标为1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,再根据正方形1111D C B A 对角线交点E 的坐标为(1,)t ,利用中点坐标公式可得到112q t p t w =+⎧⎪=-⎨⎪=⎩,则可用t 表示出1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n ,即有1m m n =-,再根据m 、n 时正实数,可知m n也为正实数,即1m >,再分当“完美点”P 点在边长11A D 上时、当“完美点”P 点在边长11A B 上时、当“完美点”P 点在边长11B C 上时、当“完美点”P 点在边长11C D 上时四种情况讨论,即可求出t 的取值范围.(1)∠m =3, ∠1312m m n =-=-=,即P 点坐标为(3,2), ∠32n=, ∠32n =, 故答案为:32,(3,2); (2)∠A (0,5)在直线5y x -=+上,∠5b =,即直线的解析式为:5y x -=+,∠B 点在直线5y x -=+上,∠设B 点坐标为(,5)-+a a ,∠B 点是“完美点”,∠51a a -+=-,解得a =3,∠B 点坐标为(3,2),设C 点坐标为00(,)x y∠C 点是“完美点”,∠001y x =-,∠BC ,∠利用勾股定理有:22200(3)(2)BC x y =-+-,∠代入001y x =-有:2200(3)(12)2x x -+--=,解得02x =或者04x =,∠01y =或者03y =,∠C 点坐标为:(2,1)或(4,3);(3)按题意作图如下,∠四边形1111D C B A 是正方形,则设1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,∠正方形1111D C B A 对角线交点E 的坐标为(1,)t ,∠根据中点坐标公式有:0122w p q t +⎧=⎪⎪⎨+⎪=⎪⎩, ∠22w p q t =⎧⎨+=⎩, ∠q p w -=,∠2q p -=,∠联立22q p p q t -=⎧⎨+=⎩,即得:11q t p t =+⎧⎨=-⎩, ∠1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n, ∠1m m n =-, ∠m 、n 时正实数, ∠m n也为正实数,∠10m m n=->,即1m >, 当“完美点”P 点在边长11A D 上时,即有m =0,此时不满足1m >,故“完美点”P 点不可能在边长11A D 上;当“完美点”P 点在边长11A B 上时即有02m ≤≤,11m m t n =-=-, 即有m =t ,∠1m >,∠此时2m ≤1<,∠12t <≤;当“完美点”P 点在边长11B C 上时,即有2m =,11m t t n -≤≤+, ∠1m m n =-, ∠1211m m n=-=-=, ∠111t t -≤≤+,即有:02t ≤≤;当“完美点”P 点在边长11C D 上时即有02m ≤≤,11m m t n=-=+, 即有m =t +2,∠1m >,∠此时2m ≤1<,∠22t +≤1<;∠0t ≤-1<,综上所述:t 的取值范围:2t ≤-1<.【点睛】本题考查了一次函数图像上点的坐标特征、勾股定理、正方形的性质、中点坐标公式等知识,利用E 点坐标表示出正方形1111D C B A 四个顶点的坐标是解答本题的关键.24.(1)∠见解析;∠43(2)74,2,8,42 【解析】【分析】(1)∠根据对顶角相等可得CEG AEB ∠=∠,根据,90AG CH ABC ⊥∠=︒,可得BAE GCE ∠=∠,即可得证;∠由90ABC AGC ∠=∠=︒得,,,A B G C 四点共圆,则AGB ACB ∠=∠,即可求解.(2)根据题意画出图形建立平面直角坐标系,分4种情况讨论求解即可.(1)∠证明:,90AG CH ABC ⊥∠=︒,CEG AEB ∠=∠,∠BAE AEB GCE CEG ∠+∠=∠+,即BAE GCE ∠=∠∠∠CGE ~∠ABE ;∠∠90ABC AGC ∠=∠=︒,∠,,,A B G C 四点共圆,∠AGB ACB ∠=∠在矩形ABCD 中,已知AD =6,CD =8,6,8BC AD AB CD ∴====,∴tan tan AGB ACB ∠=∠8463AB BC ===; (2)解:如图1所示,以B 为原点,以BC 所在的直线为y 轴,以AB 所在的直线为x 轴建立平面直角坐标系,设点H 的坐标为(m ,0),由(1)∠可知∠ABE =∠CBH =90°,∠BAE =∠BCH ,∠∠BAE ∠∠BCH , ∠AB BC BE BH =,即86BE m=, ∠43BE m =,∠点E 的坐标为(0,43m ), 设直线AE 的解析式为y kx b =+, ∠8043k b b m -+=⎧⎪⎨=⎪⎩, ∠66m k b ⎧=⎪⎨⎪=⎩,∠直线AE 的解析式为463m y x m =+, 同理可以求出直线CH 的解析式为66y x m =-+, 联立46366m y x m y x m ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得22223683664836m m x m m m y m ⎧-=⎪⎪+⎨+⎪=⎪+⎩, ∠点G 的坐标为22223686483636m m m m m m ⎛⎫-+ ⎪++⎝⎭,; 过点F 作FT ∠x 轴于T ,设BL FL n ==(轴对称的性质),∠AG ∠CH ,BF ∠CH ,∠AG BF ∥,∠∠BAE =∠LBH ,∠ABE ∠∠BTF , ∠8643BT AB FT BE mm ===, ∠∠ABE =∠BLH =90°(轴对称的性质∠BLH =90°),∠∠ABE ∠∠BLH , ∠BE HL AB BL =,即438m HL n=, ∠6mn HL =, 又∠1122BHF S BH FT OF HL =⋅=⋅△,∠112226mn m FT n ⋅=⋅⋅, ∠213FT n =, ∠222BH BL HL =+, ∠222236m n m n =+, ∠2223636m n m =+, ∠221236m FT m =+, ∠267236m BT FT m m ==+, ∠点F 的坐标为(27236m m +,221236m m +), 设直线FG 的解析式为11y k x b =+, ∠22112221122368648363672123636m m m m k b m m m m k b m m ⎧-++=⎪⎪++⎨⎪+=⎪++⎩, 解得113244182429m k m m b m -⎧=⎪⎪+⎨⎪=⎪+⎩, ∠直线FG 的解析式为3242441829m m y x m m -=+++, 设直线FG 与y 轴交于K ,与AC 交于点M ,与BC 交于点N ,∠点K 的坐标为24029m m ⎛⎫ ⎪+⎝⎭,, ∠24629m CK m =-+, 当6y =时,32424641829m m x m m -=+++, ∠24418629324m m x m m +⎛⎫=-⋅ ⎪+-⎝⎭, ∠24418629243m m CN m m +⎛⎫=-⋅ ⎪+-⎝⎭, 当MN =MC ,即∠MNC =∠MCN 时,如图1所示,∠∠NCK =∠ADC =90°,∠∠ADC ∠∠KCN ,∠43 CN CDCK AD==,∠244186429243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠12549612m m+=-,解得74m=,∠74 BH=;当CN=CM时,如图2所示,过点M作MQ∠CD于Q,则MQ AD∥,∠CQM CDA△∽△,∠10AC==,∠CM QM CQAC AD CD==,即1068CM QM CQ==,∠4355CQ CM QM CM ==,,∠15NQ CM=,∠13 NQQM=,同理可证NMQ NKC△∽△,∠13 NC NQNK CK==,∠244186129243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠1254243m m+=-,解得2m=-,即此时的情形如图3所示,∠2BH=;如图4所示,当H运动到与点A重合时,此时,G、H、M三点都与点A重合,由轴对称的性质可知∠F AC=∠BAC,又∠AB CD∥,∠∠ACD=∠BAC,∠∠NAC=∠BCA,∠NA=NC,即∠NAC为等腰三角形,∠当H为点A重合时满足题意,∠此时BH=8;如图5所示,当点H 在A 点左侧时,设直线FG 与x 轴交于J ,与y 轴交于Z , 同理可以求出直线FG 的解析式为3242441829m m y x m m -=+++, ∠∠DMN 是等腰三角形,且∠D =90°,∠∠DMN 是等腰直角三角形,∠∠DNM =45°,∠==45ZJB DNM ︒∠∠,∠∠BZJ =∠BJZ =45°,∠BJ =BZ ,设直线JZ 的解析式为22y k x b =+,∠点Z 的坐标为(0,2b ),点J 的坐标为(22b k -,0), ∠222b BJ BZ b k ===, ∠21k =, ∠3241418m m -=+, ∠324418m m -=+,∠42m =-,∠42BH =,综上所述,当直线FG 截∠ADC 所得的三角形是等腰三角形时,74BH =或2或8或42.【点睛】本题考查了求正切值,相似三角形的性质与判定,圆周角定理,等腰三角形的性质与判定,一次函数与综合等等,利用分类讨论和属性结合的思想求解是解题的关键.答案第26页,共26页。
2024年浙江省杭州市滨江区九年级中考数学一模试卷(无答案)
2024年浙江省杭州市滨江区中考数学一模试卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写名字和准考证号,并在试卷首页的指定位置写上名字和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5 . 考试结束后,试卷和答题纸一并上交.一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,﹣2,1,﹣3这四个数中,最小的数是()A.﹣3 B.1 C.﹣2 D.02.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a63.如图是由7个相同的小立方块搭成的几何体,它的主视图是()A. B. C.D.4.如图,▱ABCD对角线AC,BD交于点O,请添加一个条件:____使得▱ABCD是菱形()(第4题)A.AB=AC B.AC⊥BD C.AB=CD D.AC=BD5.如图,在△ABD中,∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠E=24°,则∠BAC=()A.24°B.48°C.66°D.72°(第5题)(第6题)(第7题)6.如图,反比例函数(k为常数,且k≠0)的图象与正比例函数y2=mx(m为常数,且m≠0)的图象相交于A,B两点,点A的横坐标为﹣1.若y2<y1<0,则x的取值范围是()A.﹣1<x<0 B.x<﹣1C.x>1 D.﹣1<x<0或x>17.如图,点C、点E分别在线段AD,AB上,线段BC与DE交于点F,且满足AB=AD.下列添加的条件中不能推得△ABC≌△ADE的是()A.AC=AE B.BF=DF C.BE=CD D.BC=DE8.某班有40名学生,一次体能测试后,老师对测试成绩进行了统计,由于小滨没有参加本次测试,算得39人测试成绩数据的平均数,中位数m1=28.后来小滨进行了补测,成绩为29分,得到40人测试成绩数据的平均数,中位数m2,则()A.,m1=m2B.,m1<m2C.,m1≤m2D.,m1=m29.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x﹣1 0 1 3y﹣1 3 5 3下列结论:①该函数图象的开口向下;②该函数图象的顶点坐标为(1,5);③当x>1时,y随x的增大而减少;④x=3是方程ax2+(b﹣1)x+c=0的一个根.正确的是()A.①②B.②③C.③④D.①④10.如图,在等腰三角形ABC中.AB=AC,∠A=α(0°<α<90°).点D,E在AB边上,点F,G分别在BC和AC边上.若四边形DEFG为正方形,则=().(第10题)A.B.C.D.二.填空题:本大题有6个小题,每小题3分,共18分。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年杭州市中考数学模拟检测卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,应该在答题卷指定位置内写明校名、姓名和准考证号.3.所有答案都必须做在答题卷指定位置上,请务必注意试题序号和答题序号相对应.4.考试结束后,上交试题卷和答题卷.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1、PM2.5是指大气中直径小于或等于0.000000025米的可吸入颗粒物,也称可吸入肺颗粒物,对人体的健康有危害,0.000000025米科学记数法应记为( ▲ )(原创) A. -70.2510⨯ B .-82.510⨯ C .-92.510⨯ D . -82510⨯ 2、下列运算正确的是 ( ▲ )(杭州教学指南改编) A. 532a a a =+ B. 832)(a a = C. 523a aa =÷- D. ()222b a b a -=-3、下面的图形中,既是轴对称图形又是中心对称图形的是( ▲ )A B C D4、已知Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ▲ )(九下教材改编) (A) 34 (B)45 (C)54 (D) 435、右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ▲ )AQ 6.下列命题中:①两点之间直线最短;②关于两条对角线成轴对称的四边形是菱形;③若两直线被第三条直线所截,同旁内角之和小于平角,则此两直线必交于一点;④直角三角形斜边上的高线将直角三角形所分成的两个三角形相似;⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线。
其中真命题的个数是( ▲ )(教材改编) A . 2个 B .3个 C . 4个 D .5个7、如下图所示,AA ′,BB ′分别是∠EAB ,∠DBC 的平分线.若AA ′= BB ′=AB ,则∠BAE 的度数为( ▲ )A .135ºB .150ºC . 160ºD . 168º8、随着经济的发展,人们的生活水平不断地提高.下图是西湖景点2009—2011年游客总人数和旅游收入年增长率统计图.已知该景点2010年旅游收入4500万元.下列说法:①三年中该景点2011年旅游收入最高;②与2009年相比,该景点2011年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元;③若按2011年游客人数的年增长率计算,2012年该景点游客总人数将达到280255280(1)255-⨯+万人次,其中正确的个数是( ▲ )A. 0B. 1C. 2D. 39、已知⊙O 与直线l 相切于A 点,点P 、Q 同时从A 点出发,P 直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q A 时,点P 也停止运动.连接OQ 、OP S 1、S 2的大小关系是( ▲ )A. S 1=S 2B.S 1≤S 2C. S 1≥S 2D.先S 1<S 2, 再S 1=S 2,最后S 1>S 210、若二次函数()20y ax bx c a =++≠的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①240b ac ->;②x =x 0是方程20ax bx c y ++=的解;③x 1<x 0<x 2 ④()()01020a x x x x --<;⑤0102x x x x <>或,其中正确的有( ▲ ) (2014年杭州上城区二模考试改编)A.①②B.①②④C. ①②⑤D. ①②④⑤二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、若2m n -=,5m n +=,则22m n +的值为 ▲ .(杭州中考改编) 12、若一组数据 1,2,3,x 的平均数是2,则这组数据的方差是 ▲ (杭州中考改编)(第8题)EDCBAA 'B '13、如下左图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于点E,CD=24,AE=2,则⊙O 的半径为 ▲ .(九上教材改编) 14.已知函数()15312-+++-=m m x x m y 的图象经过平面直角坐标系中的四个象限,则m 的取值范围 ▲ (2014年株洲中考改编)15.如下右图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,AC ,OD 交于点P ,其中OA=4,OB=3.(1)则OD 所在直线的解析式为 ▲ ;(2)则△AOP 的面积为 ▲ .(八上教材改编)16、在矩形ABCO 中,O 为坐标原点,A 在y 轴上,C 在x 轴上,B 的坐标为(8,6),P 是线段BC 上动点,点D 是直线y =2x -6上第一象限的点,若△APD 是等腰Rt△,则点D 的坐标为 ▲ (2010年永康中考试卷改编)三、解答题(共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目有点困难,那么把自己能写出的解答写出一部分也可以. 17、(本小题满分6分)如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙). (1)长方形(非正方形); (2)平行四边形;(3)四边形(非平行四边形).18、(本小题满分8分)已知关于x 的一元二次方程x 2+(2m+2)x+m 2﹣4=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.(北京西城区期末改编)19、(本小题满分8分)一个不透明的口袋里装有分别标有汉字“喜”、“迎”、“峰”、“会”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,求球上的汉字刚好是“峰”的概率;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率。
(九上教材改编)20、(本小题满分10分)小明通过观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A ,B ,C 是点阵中的三个点,请在点阵中找到点D ,要求尺规作图线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出∠AOD 的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE ⊥CD 于点F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决。
请你帮小明算出OC 的值和tan ∠AOD 是多少?(2014年杭州青年教师竞赛改编)21. (本小题满分10分)在平面直角坐标系xOy 中,反比例函数y=的图象经过点A (1,4)、B (m ,n ).(1)若二次函数y=(x ﹣1)2的图象经过点B ,求代数式m 3n ﹣2m 2n+3mn ﹣4n 的值;(2)若反比例函数y=的图象与二次函数y=a (x ﹣1)2的图象只有一个交点,且该交点在直线y=x 的下方,结合函数图象求a 的取值范围.(2015年北京海淀区期末试卷改编)22. (本小题满分12分)把一副三角板按如图甲放置,其中90ACB DEC == ∠∠,45A = ∠,30D = ∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O 、与D 1E 1相交于点F .(1)求线段AD 1的长;(2)若把三角形D 1CE 1绕着点C 顺时针再旋转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?说明理由.(2015年扬州中考模拟改编)23.(本小题满分12分)我们规定:函数y=(a 、b 、k 是常数,k ≠ab )叫广义反比例函数.当a=b=0时,广义反比例函数y=就是反比例函数y=(k 是常数,k ≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x 和y 后,得到新矩形的面积为8.求y 与x 之间的函数表达式,并判断它是否为广义反比例函数;(2)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 、C 坐标分别为(6,0)、(0,3),点D 是OA 中点,连接OB 、CD 交于E ,若广义反比例函数y=的图象经过点B 、E ,求该广义反比例函数的表达式;(3)在(2)的条件下,过线段BE 中点M 的一条直线l 与这个广义反比例函数图象交于P ,Q 两点(P 在Q 右侧),如果以B 、E 、P 、Q 为顶点组成的四边形面积为16,请直接写出点P 的坐标.(2015年北京门头勾区期末试卷改编)(甲)ACE DBB (乙)AE 11CD 11OF学校 班级 考 姓名20. (本小题满分10分)(1)(2)21. (本小题满分10分)(1)22.(本题满分12分)(1)(2)B(乙AE11CD11OF23. (本题满分12分) (1)(2)(3)数学参考答案及评分标准一、选择题(每小题3分,共30分)11. 14.5 12.2113.3 14. 5-<m 15. y=x ;16. (4,2),(328,338),2022,33⎛⎫ ⎪⎝⎭三、解答题17、(本小题满分6分)解:(1)如图(1)所示;(2)如图(2)所示;(3)如图(3)所示.每个图2分。
18、(本小题满分8分)解:(1)∵一元二次方程x 2+(2m+2)x+m 2﹣4=0有两个不相等的实数根, ∴△=b 2﹣4ac=(2m+2)2﹣4×1×(m 2﹣4)=8m+20>0,∴3分(2)∵m 为负整数, ∴m=﹣1或﹣2, 1分当m=﹣1时,方程x 2﹣3=0的根为:,(不是整数,舍去), 当m=﹣2时,方程x 2﹣2x=0的根为x 1=0,x 2=2都是整数,符合题意. 综上所述 m=﹣2. 4分 19.(本小题满分8分)解:(1)∵有汉字“喜”、“迎”、“峰”、“会”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“峰”的概率为P=; 3分(2)列表如下:喜迎峰会喜﹣﹣﹣(迎,喜)(峰,喜)(会,喜)迎(喜,迎)﹣﹣﹣(峰,迎)(会,迎)峰(喜,峰)(迎,峰)﹣﹣﹣(会,峰)会(喜,会)(迎,会)(峰,会)﹣﹣﹣所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“喜迎”或“峰会”的情况有4种,则P==; 5分20、(本小题满分10分)解:(1)如图所示:线段CD即为所求 3分(2)如图2所示连接AC、DB、AD.∵AD=DE=2,∴AE= 2.∵CD⊥AE,∴DF=AF= .∵AC∥BD,∴△ACO∽△DBO. (3分)∴CO:DO=2:3.∴CO=.∴DO=.∴OF=.tan∠AOD=. (4分)21. (本小题满分10分)解:(1)∵反比例函数y=的图象经过点A(1,4)、B(m,n),∴k=mn=1×4=4, (1分)∵二次函数y=(x﹣1)2的图象经过点B,∴n=(m﹣1)2=m2﹣2m+1,∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n=mn (m 2﹣2m+1)+2mm ﹣4n=4n+2×4﹣4n=8, (3分)(2)设直线y=x 与反比例函数y=交点分别为C 、D ,解,得:或,∴点C (﹣2,﹣2),点D (2,2). (1分) ①若a >0,如图1, 当抛物线y=a (x ﹣1)2经过点D 时,有a (2﹣1)2=2,解得:a=2. ∵|a|越大,抛物线y=a (x ﹣1)2的开口越小,∴结合图象可得,满足条件的a 的范围是0<a <2; (2分)②若a <0,如图2, 当抛物线y=a (x ﹣1)2经过点C 时, 有a (﹣2﹣1)2=﹣2,解得:a=﹣.∵|a|越大,抛物线y=a (x ﹣1)2的开口越小,∴结合图象可得,满足条件的a 的范围是a <﹣. (2分)综上所述,满足条件的a 的范围是0<a <2或a <﹣. (1分)22、(本小题满分12分) 解:(1)如图所示, 315∠= ,190E ∠= ,∴1275∠=∠=. ………………………………1分又45B ∠=,∴114575120OFE B ∠=∠+∠=+= . ………1分∴∠D 1FO =60°.1130CD E ∠= ,∴490∠= .························································ 1分 又AC BC = ,6AB =,∴3OA OB ==. 90ACB ∠= ,∴116322CO AB ==⨯=. ·········································· 2分 又17CD = ,∴11734OD CD OC =-=-=.在1Rt AD O △中,15AD ===. ··························· 2分(3)点B 在22D CE △内部. ····························································· 1分 理由如下:设BC (或延长线)交22D E 于点P ,则2153045PCE ∠=+= .在2Rt PCE △中,22CP ==, ········································· 2分2CB =< ,即CB CP <,∴点B 在22D CE △内部. ……………2分23. (本小题满分12分)解:(1)由题意得:(2+x )(3+y )=8.即3+y=,∴y=﹣3=.根据定义,y=是广义反比例函数. (3分)(2)如图1,由题意得:B (6,3)、D (3,0),设直线OB 的解析式为y=mx ,则有6m=3,解得:m=,∴直线OB 的解析式为y=x . (1分) 设直线CD 的解析式为y=kx+b ,,解得:,∴直线CD 的解析式为y=﹣x+3. (1分)解方程组,得, ∴点E (2,1). (1分)将点B (6,3)和E (2,1)代入y=得,解得:,∴广义反比例函数的表达式为y=. (2分)(3)满足条件的点P 的坐标为(45,52+),(5,852+) (4分)。