电路第五版课件第7章一阶电路和二阶电路的时域分析
合集下载
第7章-一阶电路和二阶电路的时域分析PPT课件

RCduC dt
uC
uS(t)
RiC1idt uS(t)
Rdi i duS(t) dt C dt
RL电路
(t >0) R i
应用KVL和电感的VCR得:
+
+
Us
uL
RiuLuS(t)
-
–
di uL L dt
Ri
Ldi dt
uS(t)
若以电感电压为变量:
R
LuLdtuLuS(t)
R LuL
duL dt
0
t = 0+时刻 iL(0)iL(0)L 100u( )d
当u为有限值时
LiL
iL(0+)= iL(0-)
L (0+)= L (0-)
磁链 守恒
结论
换路瞬间,若电感电压保持为有限值, 则 电感电流(磁链)换路前后保持不变。
④换路定律
qc (0+) = qc (0-) 换路瞬间,若电容电流保持为
过渡期为零
电容电路
(t = 0) R i
(t →) R i
+
+
+
+
Us
k
-
uC C Us
–
-
uC C –
k未动k接作通前U电,S 源电后路u很处c 长于时稳间定,状电态US容:充i 电=新完的0 稳毕, 定,u状C电态=路0
? 达到新的稳R 定状态:
i = 0 ,i u有C=一U过s 渡期
前一个稳定状态
微分方程的特解
微分方程的通解
直流时 a1ddxt a0xUS
t dx 0 dt
a0xUS
3.电路的初始条件
① t = 0+与t = 0-的概念 认为换路在t=0时刻进行
第7章一阶电路和二阶电路的时域分析.ppt

+
+ uR -
US
C
-
2020年10月17日星期六
接通电源,C 被充电,C 两
端的电压逐渐增长到稳态
+
uC -
值Us ,即要经历一段时间。 电路中的过渡过程虽然短
暂,在实践中却很重要。
5
一、动态电路的基本概念
➢ 含有动态元件(L、C)的电路称为动态电路。描 述动态电路的方程是微分方程。
➢ 全部由线性非时变元件构成的动态电路,其描 述方程是线性常系数微分方程。
*§7―9 卷积积分
*§7―10 状态方程
*§7―11 动态电路时域分析中的几个问题
2020年10月17日星期六
1
第七章 一阶电路和二阶电路的时域分析
内容提要与基本要求
1.换路定则和电路初始值的求法;
2.掌握一阶电路的零输入响应、零状态响应、全响应 的概念和物理意义;
3.会计算和分析一阶动态电路(重点是三要素法);
能量的储存和释放需要 一定的时间来完成。
2020年10月17日星期六
8
2. 换路定则
t
线性电容C的电荷 q(t) = q(t0) + iC (x) dx
t0
以t = t0 = 0作为换路的计时起点:换路前最终时 刻记为t = 0-,换路后最初时刻记为t = 0+。
0+
在换路前后: q(0+) = q(0-) + iC(x) dx
2020年10月17日星期六
10
三、初始值的计算
求图示电路在开关 闭合瞬间各支路电
i
流和电感电压。
解: 1. 由换路前的“旧电路” 计算uC(0-)和iL(0-) 。
电路课件 电路07 一阶电路和二阶电路的时域分析

第7章一阶电路和二阶电路的时域分析 7-1动态电路方程及初始条件
2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3
2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3
电路第五版 罗先觉 邱关源 课件(第七章)课件

2
零输入响应:仅由电路初始储能引起的响应。
(输入激励为零) 零状态响应:仅由输入激励引起的响应。 (初始储能为零)
1. RC电路的放电过程:
如右图,已知uc(0-)=U0,S 于t=0时刻闭合,分析t≧0 时uc(t) 、 i(t)的变化规律。 +
i(t)
S uc(t) R
+ uR(t) -
(a)
i ()=12/4=3A
例3:如图(a)零状态电路,S于t=0时刻闭合,作0+图 并求ic(0+)和uL(0+)。 S Us ic
+ uc -
R2 L
S
↓iL
ic(0+) C
Us R1
R2 L
C R1
+ uL -
+ uL(0+) -
(a) 解: ① t<0时,零状态 →uc(0-)=0 iL(0-)=0 ② 由换路定理有:uc(0+)= uc(0-) =0 iL(0+)= iL(0-) =0 作0+图: 零状态电容→零值电压源 →短路线 零状态电感→零值电流源 →开路 ③ 由0+图有:ic(0+)=Us/R1 uL(0+)=uR(0+)=Us
uc(0+)= uc(0-) =8V
② 由换路定理有: iL(0+)= iL(0-) =2A 作0+等效图(图b)
S i 12V + R3 Us
2 R1 + uc (a) + R2 5 ic + iL 12V uL 4 i(0+) Us
R1 +
5
ic(0+) 8V
电路第七章一阶电路和二阶电路的时域分析.

第七章 一阶电路和二阶电路的时域分析 7.1 动态电路的方程及其初始条件
当动态电路状态发生改变时(换路)需要经历 一个变化过程才能达到新的稳定状态。这个变化过 程称为电路的过渡过程。 过渡过程产生的原因: 电路内部含有储能元件L,C。电路在换路时能量发生变 化,而能量的储存和释放都需要一定的时间来完成。
0
ic(t)
c
2 3
0.0184u t (s) 0 4
t RC
uc(0)= u0 2 3 4
t RC
RR u
t
(s)
du C t d u0 e C iC t C dt dt
u0 e R
2.时间常数
uc不能跃变, 结论: ic可以跃变。
解得 :
R 0 L
A I0
I0
iL(t)
iL t I 0e
R t L
t 0
0
R R t t diL t d L L u L t L L I e RI e 0 0 dt dt
2 3 4
t
(s)
t0
t 0 =RC
t0
f(0)
f(t) t
iL t iL 0e
=LG
0
4
(s)
C.零输入响应都是按指数规律衰减的,衰减的快慢由 决定,越小, uc(t),iL(t)衰减的越快。
D.时间常数的求法:
在换路后(即 t 0 )的电路中求。 R是从动态元件两端看进去的戴维宁等效电阻。
(3) 只有当电容器两端电压变化时,才有电流。
六.电感的伏安关系
1 . 电感中的电压 现象: a .开关合上: us + _ b .开关打开: us +
当动态电路状态发生改变时(换路)需要经历 一个变化过程才能达到新的稳定状态。这个变化过 程称为电路的过渡过程。 过渡过程产生的原因: 电路内部含有储能元件L,C。电路在换路时能量发生变 化,而能量的储存和释放都需要一定的时间来完成。
0
ic(t)
c
2 3
0.0184u t (s) 0 4
t RC
uc(0)= u0 2 3 4
t RC
RR u
t
(s)
du C t d u0 e C iC t C dt dt
u0 e R
2.时间常数
uc不能跃变, 结论: ic可以跃变。
解得 :
R 0 L
A I0
I0
iL(t)
iL t I 0e
R t L
t 0
0
R R t t diL t d L L u L t L L I e RI e 0 0 dt dt
2 3 4
t
(s)
t0
t 0 =RC
t0
f(0)
f(t) t
iL t iL 0e
=LG
0
4
(s)
C.零输入响应都是按指数规律衰减的,衰减的快慢由 决定,越小, uc(t),iL(t)衰减的越快。
D.时间常数的求法:
在换路后(即 t 0 )的电路中求。 R是从动态元件两端看进去的戴维宁等效电阻。
(3) 只有当电容器两端电压变化时,才有电流。
六.电感的伏安关系
1 . 电感中的电压 现象: a .开关合上: us + _ b .开关打开: us +
高等教育出版社《电路(第五版)》第七章课件

注意工程实际中的过电压过电流现象
上 页 下 页
换路
电路结构、状态发生变化
支路接入或断开 电路参数变化
过渡过程产生的原因
电路内部含有储能元件 L 、C,电路在换路时能量发 生变化,而能量的储存和释放都需要一定的时间来完成。
W p t
t 0
p
上 页
下 页
2. 一阶电路及其方程
有源 电阻 电路
t 0 t 0
f (0 ) f (0 )
f(t)
f (0 ) f (0 )
t 0-0 0+
f ( 0 ) lim f ( t )
f ( 0 ) lim f ( t )
t 0 t 0
初始条件为 t = 0+时u ,i 及其各阶导数的值
上 页 下 页
(2) 电容的初始条件
上 页 下 页
求初始值的步骤:
1. 由换路前电路(一般为稳定状态)求uC(0-)或iL(0-); 2. 由换路定律得 uC(0+) 或iL(0+)。 3. 画0+等效电路。 a. 换路后的电路 b. 电容(电感)用电压源(电流源)替代。 (取0+时刻电容电压uC(0+) 、电感电流值iL(0+) , 方向与设定的uC(0+) 、 iL(0+)方向相同)。 4. 由0+电路求所需各变量的0+值。
i +
uC - C
1 uC ( t ) uC (0 ) C
1 uC (0 ) uC (0 ) C
0
t 0
i ( )d
t = 0+时刻
0
0 i ( )d
当 i() 为有限值时 结 论
uC (0 ) uC (0 )
换路瞬间,若电容电流保持为有限值, 则电 容电压(电荷)换路前后保持不变。
《电路》第五版 课件 第7章
− 1 t RC
c
全解
uc = uc′ + uc′′ = U s + Ae
由初始条件u 确定积分常数A 由初始条件 c(0+)=U0确定积分常数
uc (0+ ) = A + U s = U 0
∴ A = U0 − U s
− 1 t RC
uc (t ) = U s + (U 0 − U s )e
强制分量 稳态分量) (稳态分量)
1 t = iL (0− ) + ∫ u (ξ )dξ L 0−
Ψ=LiL
ψ = ψ (0− ) + ∫ u (ξ )dξ
0−
t
当u(ξ) 为有限值时 iL(0+)=iL(0-) Ψ(0+)=Ψ(0-)
∫0
0+
−
u (ξ )dξ → 0
磁链守恒
换路定理
uc(0+)=uc(0-) q(0+)=q(0-) iL(0+)=iL(0-) Ψ(0+)=Ψ(0-)
t
uc(0-)
换路定理
t =0+等 等 效电路
uc(0+)
ic(0+)
(1)由t=0-电路求uc(0-) 电路求 (1)由 电路 uc(0-)=8V ic(0-)=0≠ic(0+) (2)由 电阻(2)由换路定理
电路
uc(0+)=uc(0-)=8V
电阻 (0 ) ic + 电路
电路求 (3)由 (3)由t=0+电路求ic(0+)
思考题: 思考题:含有两个储能元件的电路
求iC(0+)和uL(0+) 和
c
全解
uc = uc′ + uc′′ = U s + Ae
由初始条件u 确定积分常数A 由初始条件 c(0+)=U0确定积分常数
uc (0+ ) = A + U s = U 0
∴ A = U0 − U s
− 1 t RC
uc (t ) = U s + (U 0 − U s )e
强制分量 稳态分量) (稳态分量)
1 t = iL (0− ) + ∫ u (ξ )dξ L 0−
Ψ=LiL
ψ = ψ (0− ) + ∫ u (ξ )dξ
0−
t
当u(ξ) 为有限值时 iL(0+)=iL(0-) Ψ(0+)=Ψ(0-)
∫0
0+
−
u (ξ )dξ → 0
磁链守恒
换路定理
uc(0+)=uc(0-) q(0+)=q(0-) iL(0+)=iL(0-) Ψ(0+)=Ψ(0-)
t
uc(0-)
换路定理
t =0+等 等 效电路
uc(0+)
ic(0+)
(1)由t=0-电路求uc(0-) 电路求 (1)由 电路 uc(0-)=8V ic(0-)=0≠ic(0+) (2)由 电阻(2)由换路定理
电路
uc(0+)=uc(0-)=8V
电阻 (0 ) ic + 电路
电路求 (3)由 (3)由t=0+电路求ic(0+)
思考题: 思考题:含有两个储能元件的电路
求iC(0+)和uL(0+) 和
第7章一阶电路和二阶电路的时域分析
求换路后的uL和i1及开关两端电压u12
①
S
②
2 3
6
解 iL (0 ) iL (0 )
24 6 2A 4 2 3 // 6 3 6
24V 4
i1
4
iL
换路后电路为零输入响应: L 6 1s Req 6
uL 6H
2Ω
Req 3 (2 4) // 6 6
iL (0+) = iL (0-)=3A
(3) 由0+等效电路求 iC(0+) , uL(0+)
uL(0+)
3 i2 (0 ) 3 1 A 3 6
uL (0 ) 6i2 (0 ) 6V
返回本节
0+等效电路
上 页
下 页
5.电路初始值的确定 例2 求 uC(0+) 、iL(0+) 、
返回本节
上 页
下 页
5.电路初始值的确定 例1 求 i2(0+) 和 uL(0+) 。
iL S(t=0) 3 1 + i 2 2 + u 6 9V 1H L – – 3 i2(0+) 6 3A + –
(1) 由0-电路求 iL(0-)
+ 9V – 3 iL
iL (0 ) 3 A (2) 由换路定律
电路如下图
R0
S(t=0)
1 2
i
U0 L
R
uL R
i
L
uL
(a)
(b)
换路前电路处于稳态,电感电流I0=U0/R0 = i(0-) , 电感中储存一定的磁场能量,在 t=0 时开关由1→2, 换路后的电路如图(b)所示。 (b)
①
S
②
2 3
6
解 iL (0 ) iL (0 )
24 6 2A 4 2 3 // 6 3 6
24V 4
i1
4
iL
换路后电路为零输入响应: L 6 1s Req 6
uL 6H
2Ω
Req 3 (2 4) // 6 6
iL (0+) = iL (0-)=3A
(3) 由0+等效电路求 iC(0+) , uL(0+)
uL(0+)
3 i2 (0 ) 3 1 A 3 6
uL (0 ) 6i2 (0 ) 6V
返回本节
0+等效电路
上 页
下 页
5.电路初始值的确定 例2 求 uC(0+) 、iL(0+) 、
返回本节
上 页
下 页
5.电路初始值的确定 例1 求 i2(0+) 和 uL(0+) 。
iL S(t=0) 3 1 + i 2 2 + u 6 9V 1H L – – 3 i2(0+) 6 3A + –
(1) 由0-电路求 iL(0-)
+ 9V – 3 iL
iL (0 ) 3 A (2) 由换路定律
电路如下图
R0
S(t=0)
1 2
i
U0 L
R
uL R
i
L
uL
(a)
(b)
换路前电路处于稳态,电感电流I0=U0/R0 = i(0-) , 电感中储存一定的磁场能量,在 t=0 时开关由1→2, 换路后的电路如图(b)所示。 (b)
电路分析基础第五版第7章
t1
uC (t1 ) duC (t)
dt tt1
U0e
1
U
0e
t1
在放电过程中,电容不断放出能量为电阻所 消耗;最后,原来储存在电容的电场能量全部为 电阻吸收而转换成热能。
时间常数愈小,放电过程愈快;反之,则愈慢。
二、RL电路的零输入响应
t0 iL(0)I0 初始条件
d 2 d u C 2 (tt)R L dd C ( u t)tL 1u C C (t)L 1u C s(t)
当求出uC(t)后,可应用元件的伏安关系求出电路中 其它元件的响应
i(t) C duC(t) dt
uR(t)R(it)RC dd C u(tt) uL(t)Ldd(it)tLC d2d uC 2t(t)
Req60 80 /210 0
R eC q 1 0 0 .0 0 2 1 6 0 2 s
i(0 ) 12 /10 0 1 0 .2 A u 0 (0 ) ( 1 .2 /2 ) 6 0 3V 6
故 i(t)1 .2 e 0 .5 160 tA t0
i(t) i(0 )e 1e 530 mA t 0
50 3
100
u (t)L dd i t2.5e130 tV 0 t0
§7-3 一阶电路的零状态响应
零状态响应:动态电路仅由外施激励引起的响应。
一、RC电路的零状态响应
在t=0时开关打开,电流
+ iC
iR
源与RC电路接通,引起 uC变化,产生响应。
§7-2 一阶电路的零输入响应 零输入响应:动态电路在没 有外施激励时,由动态元件的 初始储能引起的响应。
一、RC电路的零输入响应
7第七章一阶电路和二阶电路的时域分析
• 定义: τ=RC (其中R为等效电阻) uC U0et ★ t=τ时,uC=0.368U0
• τ仅取决于电路的结构和元件的参数,单位“秒s”。
•τ对响应的影响:
τ 越大,放电过程越长。通常认为经过3τ—5τ后过
渡过程结束。
•τ的图解 (次切距法)
t0
BC AB uC(t0)
tan
duC dt
uR uC
i CduC US et(t≥0) 其中τ=RC
dt R
2020/8/10
对 uCU SU Set U S(1et) 的说明
• 特解 uC US称t 为稳态分量或强制分量;
• 通解 uC USe 称为瞬态分量或自由分量。
2.参数曲线
US
uC '
3.能量转换
U―S R
uC i
WR=WC=½CUS2
A Im
i" Imet
iIm sin t(u)Im e t
u = -/2时波形为
iImsi nt(/2)Im et
可见,RL串联电路
i
与正弦电压接通后,
Im
i
在初始值一定得条
i 件下,电路的过渡
0
T/2
-Im
t 过程与开关动作的 时刻有关。
i
最大电流出现在 t = T/2时刻。 imax2Im
解:
iL(0)
US R
200A
K
R
+
iL
V uV
Us iV
L
iL(0)iL(0)200A
u V ( 0 ) R V i V ( 0 ) 2 0 0 5 k 1 0 6 V
2020/8/10
§7-2 一阶电路的零输入响应 一、零输入响应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/7/19
3
§7-1 动态电路的方程及其初始条件
引言 自然界事物的运动,在一定的条件下有一定的稳 定状态。当条件发生变化时,就要过渡到新的稳定状 态。从一种稳定状态转到另一种新稳定状态时,往往 不能跃变,而是需要一定时间,或者说需要一个过程, 在工程上称过渡过程。
S (t=0) i R
+
+ uR -
➢ 只含一个动态元件(L或C)的电路,其描述方程 是一阶线性常系数微分方程,称一阶电路。
➢ 一阶电路有3种分析方法: 1. 经典法
列写电路的微分方程,求解电流和电压。是一种 在时间域中进行的分析方法。
2020/7/19
5
2. 典型电路分析法
记住一些典型电路(RC串 联、RL串联、 RC并联、 RL并联等) 的分析结果, 在分析非典型电路时可 以设法套用。
阻尼及临界阻尼的概念及分析; (8)二阶电路的阶跃响应。
2020/7/19
2
难点
(1)应用基尔霍夫定律和电感、电容的元件特性建 立动态电路方程;
(2)电路初始条件的概念和确定方法; (3)二阶电路的过阻尼、欠阻尼及临界阻尼放电过
程分析方法和基本物理概念。
与其它章节的联系
本章讨论的仍是线性电路,因此前面讨论的线性 电路的分析方法和定理全部可以用于本章的分析 中。第9章讨论的线性电路的正弦稳态响应就是 动态电路在正弦激励下的稳态分量的求解。
+
uL
48V
-
24V -
R3 3W
t=0+时刻的等效电路
11
§7-2 一阶电路的零输入响应
➢ 零输入响应:在电源激励为
S
零的情况下,由动态元件的 初始值(≠0)引起的响应。
1. RC 电路
(t=0)
+
+
uC
uR R
-
U0
i-
2020/7/19
9
三、初始值的计算
求图示电路在开关 闭合瞬间各支路电
i
流和电感电压。
解: 1. 由换路前的“旧电路” 计算uC(0-)和iL(0-) 。
iC(0-)=0,C视为开路。 uL(0-)=0,L视为短路。
由等效电路算出
i
iL(0-) = 12A = iL(0+) uC(0-) = 24V = uC(0+)
能量的储存和释放需要 一定的时间来完成。
2020/7/19
7
2. 换路定则
t
线性电容C的电荷 q(t) = q(t0) + iC (x) dx
t0
以t = t0 = 0作为换路的计时起点:换路前最终时 刻记为t = 0-,换路后最初时刻记为t = 0+。
0+
在换路前后: q(0+) = q(0-) + iC(x) dx
Y (0+) =Y (0-)
L中的磁链不能跃变!
由Y (t) = LiL(t) 可知,当换路前后L不变时
iL(0+) = iL(0-)
L中的电流也不能跃变!
换路定则表明
(1)换路瞬间,若电容电流保持为有限值,则电 容电压(电荷)在换路前后保持不变,这是 电荷守恒定律的体现。
(2)换路瞬间,若电感电压保持为有限值,则电 感电流(磁链)在换路前后保持不变。这是 磁链守恒定律的体现。
3. 三要素法 只要知道一阶电路的 三个要素,代入一个 公式就可以直接得到 结果,这是分析一阶 电路的最有效方法。
RS
i
+
(t=0)
+
US -
C 典型电路
uC -
Si
任意NS
(t=0) +
C uC -
重点掌握3 , 1、2 两种方法可掌握其 中之一。
2020/7/19
6
二、换路及换路定则
1.换路
电路结构或元件参数的改变称为
0-
0-到0+瞬间,iC(t)为有限值时,积分为0。
q(0+) = q(0-) C上的电荷不能跃变!
由q(t) = C uC(t)可知,当换路前后C不变时 uC(0+) = uC(0-) C两端的电压也不能跃变!
2020/7/19
8
q(0+) = q(0-) uC(0+) = uC(0-) 同理可得:
R1 2W
iC
+
R2 2W
uC
+S
-U0
48V
iL
C +
-
L uL
-
R3 3W
换路前的“旧电路”
R1 2W
iC
+
R2 2W
uC
+S
-U0
48V
iL
C +
-
L uL
-
R3 3W
2020/7/19
10
iL(0-) = 12A = iL(0+)
uC(0-) = 24V = uC(0+)
2.画出t=0+等效电路: 电感用电流源替代,电 容用电压源替代。
US
C
-
接通电源,C 被充电,C 两
端的电压逐渐增长到稳态值
+
uC -
Us ,即要经历一段时间。 电路中的过渡过程虽然短暂,
在实践中却很重要。
2020/7/19
4
一、动态电路的基本概念
➢ 含有动态元件(L、C)的电路称为动态电路。描 述动态电路的方程是微分方程。
➢ 全部由线性非时变元件构成的动态电路,其描 述方程是线性常系数微分方程。
2020/7/19
1
重点
(1)动态电路方程的建立和动态电路初始值的确定; (2)一阶电路时间常数的概念与计算 ; (3)一阶电路的零输入响应和零状态响应; (4)求解一阶电路的三要素法; (5)暂态分量(自由分量)和(稳态分量)强制分量概念; (6)二阶电路的零输入、零状态和全响应的概念; (7)二阶电路的方程和特征根、过渡过程的过阻尼、欠
iC(0+) =
48-24 3
= 8A
uL(0+) = 48-2×12 = 24V
i(0+) = iL(0+) + iC(0+) = 12 + 8 = 20A
2020/7/19
R1 2W
iC
+
i
+S
-U0
48V
R2 2W
iL
C +
L uL
-
uC -
R3 3W
R1 2W
iC
+
i
R2 2W
+
-U0
S iL 12A
换路。换路是在t=0 (或 t = t0) 时 刻进行的。
i
S
+
4W
12V
t=0
-
8W
纯电阻电路在换路时没有过渡期。
含有动态元件的电路换
1 (t=0) 2W iL
+
S
路时存在过渡过程,过
24V 2 3W 6W
渡过程产生的原因是由
于储能元件L、C ,在换
路时能量发生变化,而
-
+
4W
4W
uL -
L 6H
第七章 一阶电路和二阶电路的时域分析
内Байду номын сангаас提要与基本要求
1.换路定则和电路初始值的求法; 2.掌握一阶电路的零输入响应、零状态响应、全响
应的概念和物理意义; 3.会计算和分析一阶动态电路(重点是三要素法); 4.了解二阶电路零状态响应、零输入响应、全响应
的概念和物理意义; 5.会分析简单的二阶电路; 6.会计算一阶电路的阶跃响应、冲激响应; 7.会用系统法列写简单的状态方程。