习题课一阶电路和二阶电路的时域分析
电路课件 电路07 一阶电路和二阶电路的时域分析

2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3
第7章_一阶电路和二阶电路的时域分析

②测量方法: a.对任意时刻而言,
t 0 t 0
uC (t0 ) = U 0 e
b.次切距长:
AB BC = tan
= U0e
e 1 = 0.368 uC (t0 )
t 0
U0
uC
uC ( t 0 )
A
uC ( t 0 ) U 0e = = = t 0 1 duC U 0e dt t =t0
uC (t ) 4e 0.5t = = e 0.5t A ③求i(t):i (t ) = 4 4
(t 0)
19
习题: 7-2、7-4、7-5。
20
三、RL电路的零输入响应:
求i(t),uR(t), uL(t),(t≧0) 1、物理过程:
U0 i (0 ) = i (0 ) = R0
R
t=0 + iL uL L -
解: 根据换路定则:
i L 不能突变
i L (0 ) = i L (0 ) = 0 A
+ *** t =0K 时的等效电路: R
换路后的电压方程 :
+ U -
t=0
+ + iL uL (0+) uL L L - - iL(0+)
U = iL (0+ ) R + u L (0+ )
uC (0+ ) = uC (0- ) = U 0
uC (0+ ) → 0
U0 i (0 + ) = → 0 为放电过程。 R
13
2、数学分析: ①列微分方程:由KVL, +u U0 _ C
C
S
t=0
第7章 一阶电路和二阶电路时域分析例题

返 回 上 页 下 页
-
解 ①先求 iL (0 ) 1 4 + 10V 电感 iL 短路 -
+ uL -
10 iL (0 ) 2A 1 4
例6 求 iC(0+) , uL(0+)
Uo
t RC
p 1 RC
t RC
代入初始条件得: k
uc (t ) U oe
明确
在动态电路分析中,初始条件是得 到确定解答的必需条件。
返 回 上 页 下 页
②电容的初始条件
1 t uC (0 ) 0 i ( )d C 0 0 1 t = 0+ 时刻 u (0 ) u (0 ) i ( ) d C C C 0
解 这是一个求一阶RC 零输入响应问题,有:
uC U 0 e
t RC
t0
返 回 上 页 下 页
U 0 24 V RC 5 4 20 s
S
5F + uC -
i1 2 3 i3
i2 6
t 20
5F +
uC 4 -
i1
uc 24e V
t0
t 20
i1 uC 4 6 e A
wR 0 Ri dt 0 250 10 (80e ) dt 800 J
2 3 t 2
t
5800 5000 J
返 回 上 页 下 页
例11 t=0时,打开开关S,求uv 。电压表量程:50V
S(t=0) + R=10 uV 10V V RV 10k –
第7章 一阶电路和二阶电路的时域分析(2010-2011第一学期 邱关源)

uC ( ) U 0e1 0.368U 0
即经过一个时间常数τ 后,衰减了63.2%,为原值 的36. 8%。 理论上,t = ∞时,uC才能衰减到零,但实际上, 当t = 5τ 时,所剩电压只有初始值的0.674%,可以认 为放电已完毕。因此,工程上常取t = (3-5)τ 作为放电 完毕所需时间。τ 越大,衰减越慢,反之则越快。
uR uC U 0 e
t
可以看出,电压uC、uR及电流i都是按照同样的 指数规律衰减的。它们衰减的快慢取决于指数中τ 的大小。
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
τ 的大小反映了一阶电路过渡过程的进展速度, 它是反映过渡过程特性的一个重要的量。可以计算得 t = 0时, t =τ 时,
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
第七章一阶电路和二阶电路的时域分析
§7-2 一阶电路的零输入响应
经过全部放电过程,电阻上所吸收的能量为
WR
0
Ri 2 (t )dt
0
U 0 t 2 R ( e ) dt R
0
2 U0 R
0
e
2t RC
第七章 一阶电路和二阶电路的时域分析
河北大学数学与计算机学院
第七章一阶电路和二阶电路的时域分析
§7-1 动态电路的方程及其初始条件
电容和电感的VCR是通过导数(积分)表达 的。当电路中含电容和电感时,电路方程是以电流 和电压为变量的微分方程或微分―积分方程。 对于仅含一个电容或电感的电路,当电路的无 源元件都是线性和时不变时,电路方程将是一阶线 性常微分方程,称为一阶动态电路。 电路结构或参数变化引起的电路变化统称为 “换路”。换路可能使电路改变原来的工作状态, 转变到另一个工作状态。
第7章习题课 一阶电路和二阶电路的时域分析.ppt

b. 电容(电感)用电压源(电流源)替代。
方向保持不变
替代定理
c.激励源用us(0+)与is(0+)的直流电源来替代。 4.由0+电路求所需各变量的0+值。
例 求图示电路在开关
闭合瞬间各支路电
i
流和电感电压。
解: 1. 由换路前的“旧电路”
计算uC(0)和iL(0) 。
C视为开路;
0.368U
0 1 2 3
t
越大,曲线变化越慢,uC达到稳态所需要的
时间越长。
2020年10月4日星期日
11
★ 时间常数
uC
U
(1e
t RC
)
U
(1
e
t
)
(t 0)
稳态分量
uC
+U 63.2%U
uC uC
o
t
2020年10月4日星期日
12
★ 时间常数
U uC
0.632U
1 2 3
O 12 3
再由
uLL
diL dt
求出uL。
得 uL 52e100t V
2020年10月4日星期日
17
例 电路原处于稳态,t0 时开关S闭合,求换路
e
t
iL 1.25.2e100t A
2020年10月4日星期日
4W 2 S
iL
i1
-1
+
4W
8V +
0.1H uL
+ 2i1
2W
4W 2 S
iL
i1
iu
+
4W
0.1H uL
+ 2i1
一阶电路和二阶电路的时域分析

一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。
对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
通过对上述方程进行求解可以得到电路中电流与时间的关系。
对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。
同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。
一阶电路的响应可以分为自由响应和强迫响应两部分。
自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。
强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。
对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。
这一过程可以由电流或电荷的指数递减或递增的形式表示。
在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。
巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。
二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。
对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
电路时域分析

一二阶电路时域分析一、基本概念含有动态元件的电路称为动态电路。
动态电路的特征是电路出现换路时,将出现过渡过程。
一阶电路通常含有一个动态元件,可以列写电压或电流的一阶微分方程来描述。
二阶电路通常含有二个动态元件,可以列写电压或电流的二阶微分方程来描述。
零状态响应:是指换路后电路无外加电源,其响应由储能元件的初始值引起,称暂态电路的零输入响应。
零状态响应:是指储能元件的初始值为零,换路后电路的响应是由外加电源引起的响应,称暂态电路的零状态响应。
全响应:换路后的响应由储能元件初始值和外加电源共同产生的响应,称为暂态电路的全响应。
二、一阶电路的阶跃响应和冲激响应1、 奇异函数奇异函数也叫开关函数,当电路有开关动作时,就会产生开关信号,奇异函数是开关信号最接近的理想模型。
(1)单位阶跃函数00()10t t t ε<⎧=⎨>⎩ (2)单位冲激函数⎪⎩⎪⎨⎧≠==⎰∞∞-)0(0)(1)(t t dt t 当δδ冲激函数有两个非常重要的性质:① 单位冲激函数()t δ对时间t 的积分等于单位阶跃函数()t ε,即 )()(t d tεξξδ=⎰∞-反之,阶跃进函数()t ε对时间的一阶导数等于冲激函数()t δ,即 )()(t dt t d δε=② 单位冲激函数的“筛分”性质设()f t 是一个定义域为(,)t ∈-∞∞,且在0t t =时连续的函数,则)()()(00t f dt t t t f =-⎰∞∞-δ2、一阶电路的阶跃响应和冲激响应电路在单位阶跃函数电源作用下产生的零状态响应称为单位阶跃响应。
常用)(t S 表示。
电路在单位冲激函数电源作用下产生的零状态响应称为单位冲激响应。
常用)(t h 表示。
冲激响应也可这样求得:因冲激函数是阶跃函数的导数,则冲激响应为阶跃响应的导数。
即dt t dS t h )()(=三、二阶动态电路的分析方法经典法:以电容电压或电感电流为电路变量,根据KVL 、KCL 、VCR 对电路列写二阶微分方程,然后求解。
李裕能_第九章一阶电路和二阶电路习题及解答

第九章一阶电路和二阶电路本章意图本章主要介绍动态电路的时域分析法。
主要内容有动态电路及其方程,动态电路的换路定则及初始条件的计算,一阶电路的时间常数,一阶电路的零输入响应,一阶电路的零状态响应,一阶电路的全响应,一阶电路的阶跃响应,一阶电路的冲激响应,二阶电路的零输入响应,二阶电路的零状态响应及阶跃响应,二阶电路的冲激响应和卷积积分。
第一节内容提要一、动态电路电路有两种工作状态——稳态和动态。
描述直流稳态电路的方程是代数方程;用相量法分析交流电路时,描述交流稳态电路的方程也是代数方程。
描述动态电路的方程则是微分方程。
描述一阶电路的方程是一阶微分方程,描述二阶电路的方程是二阶微分方程。
二、动态电路的初始条件1 . 换路当电路中的开关被断开或闭合,使电路的接线方式或元件参数发生变化,我们称此过程为换路。
2 . 换路定则在一般情况下,在换路前后瞬间,电容电流i C为有限值,故有u C(0+) = u C(0 - )在一般情况下,在换路前后瞬间,电感电压u L为有限值,故有i L(0+) = i L(0 - )3 . 如何计算电路的初始条件对于一个动态电路,其独立的初始条件是u C( 0+ )和i L( 0+ ),其余的是非独立初始条件。
如果要计算电路的初始条件,可以由换路前的电路计算出u C( 0 - )和i L( 0 - ),然后令其相等即可求得u C( 0+ )和i L( 0+ )。
最后由换路后的等效电路就可以求出所需要的非独立初始条件。
三、一阶电路的响应1 . 一阶电路的时间常数在换路之后电路中,令独立电源为零,将电路化简成为一个等效电阻与储能元件的并连电路。
对于RC、RL电路的时间常数分别为:τ= RC、τ=L / R。
2 . 一阶电路的零输入响应在换路之后电路中无独立电源,由换路之前储能元件储存的能量在电路中产生响应,称为零输入响应。
3 . 一阶电路的零状态响应在换路之前储能元件没有储存能量,由换路之后电路中独立电源的能量在电路中产生响应,称为零状态响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.368U
0 1 2 3
t
越大,曲线变化越慢,uC达到稳态所需要的
时间越长。
2020年5月22日星期五
11
★ 时间常数
uC
U
(1e
t RC
)
U
(1
e
t
)
(t 0)
稳态分量
uC
+U 63.2%U
uC uC
o
t
2020年5月22日星期五
12
★ 时间常数
U uC
0.632U
1 2 3
O 12 3
再由
uLL
diL dt
求出uL。
得 uL 52e100t V
2020年5月22日星期五
17
例 电路原处于稳态,t0 时开关S闭合,求换路
L视为短路。
i
可以算出:
iL(0) 12A iL(0+)
uC(0) 24V uC(0+)
R1 2W
iC
+
R2 2W
uC
+S
U0
48V
iL
C +
L uL
R3 3W
R1 2W
iC
+
R2 2W
uC
+
U0
48V
iL + C
L uL
R3 3W
t = 0-电路
2020年5月2Biblioteka 日星期五5iL(0) 12A iL(0+)
a. 换路后的电路
b. 电容(电感)用电压源(电流源)替代。
方向保持不变
替代定理
c.激励源用us(0+)与is(0+)的直流电源来替代。 4.由0+电路求所需各变量的0+值。
例 求图示电路在开关
闭合瞬间各支路电
i
流和电感电压。
解: 1. 由换路前的“旧电路”
计算uC(0)和iL(0) 。
C视为开路;
i R1
换路后,C 通过(R1//R2)放电, S t≥0 4W +
Req R1//R2 2W。
C uC
1F
R2 4W
所以 ReqC 2 s
uC
uC(0+)
e
t
4
e0.5t
V
i
(t≥0)
uC e-0.5t A R1
2020年5月22日星期五
14
例 试求:i(t)和iL(t) 。 求iL的三要素: 换路前:iL(0-) IS 2A ∴ iL(0+) iL(0) 2A
R2 2W
iL
C +
L uL
uC
R3 3W
R1 2W
iC
+
i
R2 2W
+
U0
S iL 12A
+
uL
48V
24V
R3 3W
t 0+等效电路
6
全响应 = 零状态响应 + 零输入响应
S(t=0) R
+ US C –
uC (0-)=U0
S(t=0) R
+ US C –
uC (0-)= 0
S(t=0) R +
uC(0) 24V uC(0+)
2.画出t 0+等效电路: 电感用电流源替代,电 容用电压源替代。
iC(0+)
4824 3
8A
uL(0+) 482×12 24V
i(0+) iL(0+) + iC(0+) 12 + 8 20A
2020年5月22日星期五
R1 2W
iC
+
i
+S
U0
48V
i ? R S (t0)
+ 2W
Us 10V 2A
Is
a? iL
4H L
b
iL(∞) 10 / 22 3 A
Req 2W 4 L / Req 4 / 2 2 s
f(t) f(∞) + [ f(0+) f(∞)] e
t
iL(t)
=
3+(-2-3)e
t
2
即:iL(t) 35e0.5t A
t
结论:
越大,曲线变化越慢,uC达到稳态时间越长。
当 t = 5 时, 暂态基本结束, uC 达到稳态值。
2020年5月22日星期五
13
例 试求t≥0时的i(t)。
1
R1
解:
R
uC (0-)
10×4 2+4+4
4V
2W
+
根据换路定则:
10V
2
S (t0)
4W
+
i
C uC
1F
R2 4W
uC (0) uC (0+) 4 V
第七章 一阶电路和二阶电路的时域分析
——基本考点
1. 换路定则和电路初始值的计算; 2. 一阶动态电路时间常数的计算; 3. 一阶电路的零输入响应、零状态响应、全响应的
概念和物理意义; 4. 一阶动态电路暂态响应的三要素计算法; 5. 简单二阶电路响应性质的判断; 6. 复杂函数的阶跃函数表达式。
2020年5月22日星期五
1
用单位阶跃函数表示复杂的信号
f(t)
例1 1
f (t) (t) (t t0)
0
t0
t
例2
f(t) 2
1
0 1 34t
f (t) 2 (t 1) (t 3) (t 4)
★ 初始值的计算
t = 0+ 时各电压和电流的值
2020年5月22日星期五
3
小结 求初始值的步骤:
1.由换路前电路(稳定状态)求uC(0-)和iL(0-); 2.由换路定则求得 uC(0+) 和 iL(0+) 。 3.画0+等效电路(初始值等效电路)。
i(t) IS + iL(t) 5 5 e0.5t A
2020年5月22日星期五
15
例 求uL。
解:iL(0) 4A iL(0+)
2A
Req
u
i
(4+4)i1+ 2i1 10W
i1
L Req
0.1 10
0.01s
iL(∞) 1.2A
2A
代入三要素公式
f(t) f(∞)+ [f(0+)-f(∞)]
f (t) f ()
O
t
(a) f (0+ ) 0
f (t)
f (0+ )
f (0+ )
O (b)f (0+ ) 0 t
f (t)
f (0+ )
O
(c) f () 0
t
2020年5月22日星期五
f ()
O (d) f () 0
t
10
★ 时间常数
uc
U
uC
U
0e
t RC
U0et
1 2 3
e
t
iL 1.25.2e100t A
2020年5月22日星期五
4W 2 S
iL
i1
-1
+
4W
8V +
0.1H uL
+ 2i1
2W
4W 2 S
iL
i1
iu
+
4W
0.1H uL
+ 2i1
Req
16
4W 2 S
iL
2A i1
-1
+
4W
8V +
0.1H uL
+ 2i1
2W
续
iL 1.25.2e100t A
+ US C
– uC (0-)=U0
t
t
uC US (1 e ) +U0e t 0
零输入响应: 与激励成正比
零状态响应: 与激励大小无关
★ 用“三要素法”分析一阶动态 电路的暂态过程
直流激励作用下:
t
f (t) f () + [ f (0+ ) f ()]e
t = 0+电路
t = 电路
2020年5月22日星期五
8
三要素法求解暂态过程的要点
(1) 求初始值、稳态值、时间常数; (2) 将求得的三要素结果代入暂态过程通用表达式; (3) 画出暂态过程中电压、电流随时间变化的曲线。
f(t)
终点 f ()
起点 f (0+)
O
2020年5月22日星期五
t
9
f (t) f ()
电路响应的变化曲线