第五章动态电路的时域分析§59激励为任意波形的响应与卷
电路的时域分析

02 电路模型的建立
线性时不变电路
线性时不变电路
在电路分析中,线性时不变电路是一种理想化的电路模型,其特点是电路中的 元件参数不随时间和信号的改变而变化,且电路中的电压和电流满足线性关系。
线性时不变电路的特点
由于其线性特性,线性时不变电路满足叠加定理,即多个信号同时作用于电路 时,其响应可以通过单个信号作用的响应叠加得到。此外,线性时不变电路还 具有齐次性和可逆性。
对非线性元件的处理问题
非线性元件在时域分析中是一个挑战,因为 非线性元件的电压和电流关系不是线性的, 不能简单地用微分方程描述。
对于非线性元件,可以采用分段线性化或者 查找表的方法进行处理。分段线性化方法是 将非线性元件的特性近似为一系列线段,然 后分别进行线性分析。查找表方法是将非线 性元件的特性离散化,并预先计算出离散点 的响应,然后在时域分析时通过查表的方式
THANKS FOR WATCHING
感谢您的观看
电磁防护措施优化
基于时域分析的结果,可以对电磁防护措施进行优化,提高电路或 系统的电磁兼容性。
06 时域分析的局限性
对初始条件的敏感性
初始条件对时域分析结果的影响很大,因为电路的状态会受 到初始条件的直接影响。初始条件的不确定性可能导致分析 结果的误差,甚至可能导致错误的结论。
为了减小初始条件对时域分析的影响,可以采用多次模拟的 方法,取多次模拟结果的平均值作为最终结果,以提高分析 的准确性和可靠性。
微分方程的建立
微分方程的建立
在电路分析中,根据电路的结构和元件参数,可以建立描述电路中电压和电流变化 的微分方程。微分方程的建立通常基于基尔霍夫定律(KCL)和欧姆定律(Ohm's Law)。
微分方程的形式
动态电路的时域分析共115页文档

1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
动态电路的时域分析

动态电路的时域分析习题10-1 设图(a )、(b )电路达到稳态,在0=t 时开关S 动作,试求图中所标电压、电流的初值。
C u L i L(a) (b)题10-1图S 开,等效图如图所示:+_15V 0t(0)1(0)i 2(0)iS 闭:0t10V解:对(a)图当0t -=时,求(0)C u -10(0)(0)1510510C C u u V +-==⋅=+0t +=时,求123(0),(0),(0)i i i +++1+2+15-5(0)=(0)==0.5A 5+5i i 3(0)0i A +=(b )S 开 S 闭_(0)L i _(0)(0)2L i A_(0)u (0)L u (0)L对(b)图当0t -=时,求(0)L i -(0)(0)2L L i i A +-==当0t +=时,求(0),(0)L L u u -+42(0)4L u +⨯+=(0)4L u +=-(0)2240u +=⨯-=10-2 电路如图所示,已知Ω==421R R ,Ω=23R ,H L 1=,V U S 121=,V U S 62=。
电路原来处于稳定状态,0=t 时,开关S 闭合,试求)0(+L i 和)0(+L u 。
题10-2 图 题10-2 图解:S 开t(0)L i 6 VS 闭 0t(0)L u 12 V 6 V1A当0t -=时,求(0)L i -223(0)(0)1S L L U i i A R R +-===+当0t +=时,求(0)L u +R S U -+2S L111813421253246(0)10(0)3L L i i i i i i i u u ++⎧⎫=⎪⎪=+⎧⎫⎪⎪⎨⎬⎨⎬+=⎩⎭⎪⎪=⎪⎪⎩⎭+=+=10-3 设图示电路达到稳态,在0t =时开关S 动作,试求(0)c u +、(0)L i +、(0)i +、dtdu C /)0(+和(0)L di dt +。
t+__(0)L (a)_(0)c i (0)L u (b)解:当0t -=时,求(0),(0)c L u i --,等效电路如图(a )15(0)(0).(60//20)530(60//20)C C u u V +-===+_1560(0)(0).0.2530(60//20)6020L L i i A +===++当0t +=时,求(0),(0)L c u i ++,等效电路如图(b )(0)5200.250L u V +=-⨯=15101(0)0.253010c i A +-=-=(0)(0)1/6C C du i V s dt C ++== (0)(0)0A/s L L di u dt L++==10-4 设图示电路达到稳态,在0t =时开关S 动作,试求(0)c u +、(0)L i +、(0)R u +、(0)c du dt +和(0)L di dt +。
任意波形激励下的动态响应与卷积积分

任意波形激励下的动态响应与卷积积分湖北民族学院信息工程学院湖北恩施445000摘要:在一二阶电路分析中,卷积积分具有十分重要的意义,特别是在一些内部网络未知的电路结构中,由于给出描述电路系统的微分方程十分的困难,目前只能通过实验获得相应的数据和单位冲激响应的曲线,据此响应,利用卷积积分的方法即可求解出电路中对任意波形激励信号的响应。
在我们的学习过程中,最常见的就是由电阻、电容、电感组成的RC、RL一阶电路网络和RLC二阶电路网络,而这些网络结构在零状态下产生的响应的求解已非常清晰,但是对于复杂的冲激波形的响应,用现有的方法求解显得十分棘手,而本文将通过探究卷积积分的性质及计算方法,分别浅析一阶、二阶电路在此类输入状态下的响应。
关键词:卷积积分一阶电路二阶电路一、引言:由于至今我们分析的电路主要是线性电路,且线性电路满足齐次性、可加性和延时性,任意波形的时间函数)(t f可以被看成是一系列强度不同的、时间上依次延迟dt的冲击函数叠加。
在前面的学习中我们基本了解了用微分方程描述动态电路的基本方法,并对不同动态元件的初始条件进行了讨论,在分析一阶二阶电路的过程中,分别讨论了RC电路和LC电路的各种状态的响应,但是以前所分析的各种情形都是相对独立的,而卷积积分作为时域电路分析的一种基本工具在分析电路响应状态的过程中有着极其广泛的应用,卷积积分对于信号处理、控制理论和动态电路分析均具有重要意义,因此,本文将综合一、二阶电路的各种响应状态将卷积积分的方法做一个初步的探究。
二、卷积积分:2.1 先看卷积积分(Convolution)的定义:设有两个时间函数f1(t)和f2(t)(在t<0时均为零),则f1(t)和f2(t)的卷积通常用f1(t)*f2(t)表示,并定义ξξξd f t f t f t f t)()()(*)(20121-=⎰,称为)(1t f 与)(2t f 的卷积。
当)(t δ作用于电路时,其对应的冲激激励的响应设为)(t h ;当)(t A i δ作用于电路时,那么其对应的冲激响应应为)(t h A i ;如果)(t δ延迟i t 秒作用,那么其对应的延迟冲激响应为)(i t t h -;则)(i i t t A -δ作用于为)(i i t t h A -。
电路分析基础[第五章动态电路的分析]课程复习
![电路分析基础[第五章动态电路的分析]课程复习](https://img.taocdn.com/s3/m/5c838930580216fc700afd08.png)
第五章动态电路的分析5.2.1 动态电路初始条件的确立一、初始条件动态电路中,一般将换路时刻记为t=0,换路前的一瞬间记为t=0_,换路后的一瞬间记为t=0+,则电路变量在t=0+的值,称为初始值,也称初始条件。
二、换路定则如果在换路前后,电容电流或电感电压为有限值,则换路时刻电容电压和电感电流不跃变,即uC (0_)=uC(0+),iL(0_)=iL(0+)。
三、初始条件的计算(1)由换路前最终时刻即t=0_时的电路,求出电路的独立状态变量uC(0_)和iL (0_)。
从而根据换路定则得到uC(0+)和iL(0+);(2)画出t=0+时的等效电路。
在这一等效电路中,将电容用电压为uC(0+)的直流电压源代替,将电感用电流为iL(0+)的直流电流源代替;(3)由上述等效电路,用直流电路分析方法,求其他非状态变量的各初始值。
5.2.2 动态电路的时域分析法5.2.2.1一阶电路的响应一阶电路是指只含有一个独立储能元件的动态电路。
一、一阶电路的零输入响应零输入响应是指动态电路无输入激励情况下,仅由动态元件初始储能所产生的响应,它取决于电路的初始状态和电路的特性。
因此在求解这一响应时,首先必须掌握电容电压或电感电流的初始值,至于电路的特性,对一阶电路来说,则是通过时间常数τ来体现的。
零输入响应都是随时间按指数规律衰减的,这是因为在没有外施激励的条件下,原有的储能总是要衰减到零的。
在RC电路中,电容电压总是从uC (0+)单调地衰减到零的,其时间常数τ=RC,即uC(t)=uC(0+)e-t/τ;在RL电路中电感电流总是从iL,(0+)单调地衰减到零的,其时间常数τ=L/R,即iL (t)=iL(0+)e-t/τ,掌握了uC(t)和iL(t)后,就可以用置换定理将电容用电压值为uC (t)的电压源置换,将电感用电流值为iL(t)的电流源置换,再求电路中其他支路的电压或电流即可。
二、一阶电路的零状态响应零状态响应是动态电路在动态元件初始储能的零为情况下,仅由输入激励所引起的响应。
秋电路理论第五讲第5章动态电路的时域分析

uC (t0 ) 0
“十一五”国家级规划教材—电路基础
电容电压的连续性:
u
u
(t0
)
1 C
t
i( )d
t0
当t0=0时,在t时刻有
u(t) u(0) 1
t
i( )d
C0
在t+△t时刻有
u(t t) u(0) 1
t t
i( )d
C0
u u(t t) u(t) 1
t t
i( )d
或用符号表示为 ψ Li
“十一五”国家级规划教材—电路基础
ψ Li
称为磁通向量,i称为电流向量,L为一方阵,称为 电感矩阵。位于矩阵主对角线上的元素Ljj为各个电感元
件的自感, Lij其他元素则为元件之间的互感。
1. 线性耦合电感元件端口电压电流关系
端口电压、电流取一致参考方向时,有
d1
电流i1和i2同时流进或流出这两个端钮时,它们产生 的磁通是互相增助。同名端一般用符号“·”或“*”
作为标记。 i1 M i2
i1 M
i2
u1 L1
L2 u2 u1 L1
L2 u2
M>0
M<0
“十一五”国家级规划教材—电路基础
全耦合(perfectly coupled):当两个相耦合电感元件 的磁通全部相互交链。
i1
u1 1
i2
2 u2
电感元件1的磁通1及电感元件2的磁通2分别由两
个电感元件中的电流i1和i2共同产生。 它们之间的关系可表示为
1 f1(i1, i2 )
2 f2 (i1, i2 )
一、线性耦合电感元件
“十一五”国家级规划教材—电路基础
动态电路的时域分析

“十一五”国家级规划教材—电路基础
动态电路
第五章 动态电路的时域分析 第六章 动态电路的复频域分析 第七章 动态电路的状态变量分析
“十一五”国家级规划教材—电路基础
u C 1 t i () d C 1 t 0 i () d C 1 t t0 i () d u ( t 0 ) C 1 t t0 i () d
CC1 C2
“十一五”国家级规划教材—电路基础
线性非时变电感特性方程
u(t)d(t)Ldi(t)
dt
dt
i(t)i(0)1 tu()d L0
具有初始电流的电感的等效
i(t)
iL (0) 0
u(t)
iS I0 (t)
L
电感串联的等效(电感)
LL1 L2
电感并联的等效(倒电感)
若干个没有初始储能的电容串联
i C1 C2
Cn
u u1
u2
un
i u
Ceq
uu1u2
unC 11 ti()dC 12 ti()d
1 t i()d
Cn
(11
1t )
i()d1
t
i()d
C 1 C2
Cn
C eq
i1
u1 1
i2
2 u2
用矩阵形式表示为
1 2 2 11 1 1222M L1
Mi1 L2i2
自感L1和L2恒为正值,但是互感M既可为正又可为负。
正负号取决于互感磁链和自感磁链的相对关系。
“十一五”国家级规划教材—电路基础
1 2
只要流经电容的电流 值是有限的,电容电 压值不会发生跳变
电网络分析选论第五章(动态电路的时域方程)

➢目前线性非时变问题的状 态方程,理论上都已解决, 你们已学过的“矩阵论及其 应用”第四章矩阵微分方程 就有专门的论述。
主要内容
• 状态变量分析的基本概念 • 状态方程的建立 • 线性状态方程的解析解法 • 状态方程的小信号分析 • 建立状态方程的五种方法
• 建立状态方程的五种方法 直观法 系统法(特有树) 稀疏表格法 改进节点法 端口分析法
k 1
k 1
k 1
k 1
nDE
其中 min( nDk ) 为第k个广义C-E回路中所含电 容和D型元件中最低阶元件的阶数(电容的阶 数为1);
其中 min( nEk ) 为第k个广义L-J回路中所含电感 和E型元件中最低阶元件的阶数(电感的阶数 为1)。
确定C-E回路和L-J割集的拓扑方法 用拓扑法决定独立的(广义)C-E 回路和(广义)L-J割集
是一组独立完备变量。
初始状态: 电路在初始时刻t=t0的状态
状态向量: n个状态变量
x1 (t) x2(t) 、…、xn (t) 构成的向量x(t)
状态空间:以状态向量的各
个分量x1、x2、…、xn为轴
所构成的n维欧氏空间。
状态方程
• 状态方程
(1)线性时不变网络
x Ax Bu
A为系数矩阵,B为控制矩阵
第五章 动态电路的时域方程
线性时不变系统为重点介 绍状态方程的列写和求解
电网络分析的状态变量法就 是状态方程法,是一种系统 或电路分析的有效方法。
➢这种方法列方程容易,不必化为 一个变量的函数,状态变量的变 化率可以用状态变量来表示,物 理意义清楚,很适合用数值法求 解,而且以状态方程为基础的状 态空间分析对非线性和时变系统 也很有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.9 激励为任意波形的响应与卷积积分
5.9.1 卷积积分
首先,设两个相同函数)(1t f 和)(2t f ,且0<t 时两函数的值均为零,则)(1t f 与)(2t f 的卷积通常用)()(21t f t f *来表示,并由下列积分形式来定义:
ξξξd f t f t f t f t
)()()()(20121⎰-=* (5-65) 1.交换律
如果令ξτ-=t ,则ξτd d -=,则有
ττξd t f t f t f t t t f ⎰⎰--=-021201)()()()(
τττd f t f t )()(102⎰-=
=)(*)(12t t f f
即 )()()()(1221t f t f t f t f *=* (5-66)
2.分配律
)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+* (5-67)
3.结合律
)]()([)()()]()([321321t f t f t f t f t f t f **=** (5-68)
4.卷积的微分
dt t df t f dt t df t f dt t f t f d )()()()()]()([122121*=*=* (5-69) 卷积的积分
ξξξξξξξξd f f d f t f d f f t
t t
⎰⎰⎰∞-∞-∞-*=*=*)()()()()()(122121 (5-70)
)()()(*)(2121t f t f d f dt
t df t *=⎰∞-ξξ (5-71) 5.9.2 任意输入的零状态响应
如果电路的激励)(t e 的波形如图5-52所示,定义的时间区间是(0t ,t ),ξ表示从0t 到t 之间的任意时刻。
对于任意输入电路的激励作用,可以看成是一系列冲激强度不同的时间上依次延迟dt 的冲激激励波的叠加。
首先用一系列具有相同宽度的矩形脉冲来近似表示)(ξe 。
把时间区间(0t ,t )分成相等的几段,每段宽度为△,即∆==-==-=-+ΛΛk k t t t t t t 11201。
因此)(ξe 可以用图示中的阶梯曲线来近似表示,即可看成一系列的矩形脉冲的合成。
这一系列的矩形脉冲可以通过单位脉冲函数和延迟的单
位脉冲函数,即)(ξ∆p 和)(k t p -∆ξ来表示。
因此,可以用上述的矩形脉冲表示)(ξe ,即
+∆-+∆-+∆-=∆∆∆∆)()()()()()()(221100t p t e t p t e t p t e e ξξξξ ∆-++∆--∆-∆)()(...)()(...11n n k k t p t e t p t e ξξ
∆-=∆-=∑)()(10k n k k
t p t e ξ (5-78)
图6-52 )(ξe 的阶梯形近似描述
放电在单位矩形脉冲)(ξ∆p 激励下的零状态响应为)ξ(∆h ,对每一延迟的矩形脉冲
)(k t p -∆ξ,在时刻t 观察到的相应的响应将为)
(k t t h -∆,根据线性电路的齐次定理对∆-∆)()(k k t p t e ξ的响应将是∆-)()(k k t t h t e 。
所以按叠加定理,式(5-78)的激励所产生的响应为
∆-=∑-=∆∆∆10)()()(n k k k t t h t e
t r
为了保证)(ξe 的阶梯矩形近似更接近真实)(ξe ,令0t 到t 区间内的脉冲数不断的增加。
当∞→t 时,0→∆,每个单位矩形脉冲变成冲激函数,∆h 变成了冲激响应h ,e ∆变成了原来的激励)(t e ,响应)(t r ∆则变成电路对应原激励的零状态响应)(t r ,同时上式的求和也变成了积分, k t 变成了连续变量ξ,∆则变成了ξd 。
于是有
ξξd t h t e t r t
t k )()()(0-=⎰
其中0t 为任意激励施加的时刻,t 为待求响应所对应的时刻。
特别地,当00=t 时,有 ξξd t h t e t r t
k )()()(0-=⎰ (5-79) 或 ξξξd h t e t r t
⎰-=0)()()( (5-80) 式(5-79)和式(5-80)所示的积分就是卷积的积分。
因此只要知道电路的冲激响应,对于任意的激励函数)(t e 的作用,都可根据卷积的积分求电路的零状态响应。