2017-2018学年苏科版九年级上数学第一章一元二次方程单元测试(含答案)

合集下载

苏科版九年级数学上册第一章《一元二次方程》 能力训练题(含答案)

苏科版九年级数学上册第一章《一元二次方程》 能力训练题(含答案)

第一章《一元二次方程》能力训练题一.选择题1.下列方程中,是一元二次方程的是()A.x2+x=0 B.x+2=0 C.x+y=1 D.=22.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1 B.2 C.3 D.﹣24.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=9 5.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10 B.20 C.23 D.366.设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A.2014 B.﹣2014 C.2011 D.﹣20117.若关于x的一元二次方程(a﹣2)x2﹣4x﹣1=0有实数根,则a的取值范围为()A.a≥﹣2 B.a≠2 C.a>﹣2且a≠2 D.a≥﹣2且a≠2 8.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.649.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0 B.x2﹣100x﹣400=0C.x2+50x﹣100=0 D.x2﹣50x﹣100=010.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或211.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.1212.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米二.填空题13.若m是方程x2﹣2x﹣5=0的一个根,则代数式2m﹣m2=.14.在“低碳生活,绿色出行”的倡导下,自行车正逐渐成为人们喜爱的交通工具.某运动商城自2018年起自行车的销售量逐月增加.据统计,该商城一月份销售自行车100辆,三月份销售121辆,该商城的自行车销量的月平均增长率为.15.如表是某同学求代数式x2﹣x的值的情况,根据表格中数据,可知方程x2﹣x=6的根是.x﹣2 ﹣1 0 1 2 3 …x2﹣x 6 2 0 0 2 6 …16.2018﹣2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有支.17.关于x的方程x2﹣6x+3=0的两根分别是x1和x2,且=.18.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那i+i2+i3+i4+…+i2018+i2019的值为.19.用配方法将方程x2﹣4x+1=0化成(x+m)2=n的形式(m、n为常数),则=.20.某养殖场为落实国家环保政策,建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米150元,池底的造价为每平方米300元,总造价为9600元,则该水池池底的边长为m.三.解答题21.解下列方程:(1)x2﹣4x﹣1=0;(2)2(x﹣3)2=9﹣x222.若x1,x2是方程x2﹣2x﹣3=0的两个实数根,求(1)+的值.(2)(x1﹣1)(x2﹣1)的值.23.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.24.阅读理解:材料一:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0(在由原方程得到新方程的过程中,利用换元法达到降次的目的,体现了数学的转化思想).于是可解得y1=1,y2=4.①当y=1时,x2=1,∴x=±1;②当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.材料二:恒等变形是代数式求值的一个重要的方法.利用恒等变形,可以把无理数运算转化问有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当x=+1时,求x3﹣x2﹣x+2的值.为解答这道题,直接代入x的值进行计算,显然比较麻烦,我们可以通过恒等变形,对本题进行解答:先将条件化为整式,再把无理数运算转为有理数运算.由x=+1,得x﹣1=,两边同时平方得x2﹣2x﹣2=0,即x2﹣2x=2,x2=2x+2.原式=x(2x+2)﹣x2﹣x+2=x2+x﹣x2﹣x+2=2请参照以上的解决问题的思路和方法,解决下列问题:(1)解方程:(x2+x)2﹣4(x2+x)﹣12=0(2)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值.25.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.27.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.参考答案一.选择题1.解:A、该方程符合一元二次方程的定义,故本选项符合题意.B、该方程的未知数的最高次数是1,属于一元一次方程,故本题选项不符合题意.C、该方程中含有两个未知数,属于二元一次方程,故本题选项不符合题意.D、该方程不是整式方程,故本题选项不符合题意.故选:A.2.解:∵x2﹣3x+6=0,△=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.3.解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.4.解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.5.解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.6.解:∵a、b为x2+x﹣2011=0的两个实根,∴a2+a=2011,a+b=﹣1,∴a3+a2=a(a2+a)=2011a,∴a3+a2+3a+2014b=2011a+3a+2014a=2014(a+b)=﹣2014.故选:B.7.解:由题意可知:△=16+4(a﹣2)≥0,∴a≥﹣2,∵a﹣2≠0,∴a≠2,∴a≥﹣2且a≠2,故选:D.8.解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.64.故选:C.9.解:设纸边的宽为xdm,那么挂图的长和宽应该为(60+2x)和(40+2x),根据题意可得出方程为:(60+2x)(40+2x)=2800,整理得:x2+50x﹣100=0,故选:C.10.解:当a=b时,+=1+1=2;当a≠b时,∵a、b满足a2﹣6a+2=0,b2﹣6b+2=0,∴a、b为一元二次方程x2﹣6x+2=0的两根,∴a+b=6,ab=2,∴+====16.故选:D.11.解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11.12.解:设修建的路宽应为x米根据等量关系列方程得:20×30﹣(20x+30x﹣x2)=551,解得:x=49或1,49不合题意,舍去,故选:A.二.填空题(共8小题)13.解:∵m是方程x2﹣2x﹣5=0的一个根,∴m2﹣2m﹣5=0,∴m2﹣2m=5,∴2m﹣m2=﹣5.故答案为﹣5.14.解:设运动商城的自行车销量的月平均增长率为x,根据题意得:100(1+x)2=121,解得:x1=0.1=10%,x2=﹣2.1(舍去).故答案为:10%.15.解:由表格知,当x=﹣2或x=3时,x2﹣x=6成立,即该方程x2﹣x=6的根是x=﹣2或x=3.故答案为x1=﹣2,x2=3.16.解:设参赛队伍有x支,则x(x﹣1)=380.解得x=20.故答案是:20.17.解:由题意可知:x1+x2=6,x1x2=3,∴原式==2,18.解:由于i4n+1=i4n•i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.∴i4n+i4n+1+i4n+2+i4n+3=0,∴原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+……(i2017+i2018+i2019)=504×0﹣1=﹣1,故答案为:﹣119.解:∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3,∴m=﹣2,n=3,∴原式=1,故答案为:120.解:设池底的边长为xm.300x2+1200x=9600,解得x1=4,x2=﹣8(舍),答:池底的边长为4m.故答案为:4.三.解答题(共7小题)21.解:(1)x2﹣4x﹣1=0x2﹣4x+4=5(x﹣2)2=5,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)2(x﹣3)2=9﹣x2.2(x﹣3)2﹣(3﹣x)(3+x)=0,(3﹣x)[2(3﹣x)﹣(3+x)]=0,(3﹣x)(3﹣3x)=0,故3﹣x=0或3﹣3x=0,解得:x1=3,x2=1.22.解:由题意可知:x1+x2=2,x1x2=﹣3,(1)原式==.(2)原式=x1x2﹣(x1+x2)+1=﹣3﹣2+1=﹣423.解:(1)两边平方,得16﹣6x=x2,整理得:x2+6x﹣16=0,解得x1=﹣8,x2=2;经检验x=﹣8是增根,所以原方程的根为x=2;(2)移项得:2=6﹣x两边平方,得4x﹣12=x2﹣12x+36,解得x1=4,x2=12(不符合题意,舍).24.解:(1)令t=x2+x,原方程可化为t2﹣4t﹣12=0,∴(t﹣6)(t+2)=0,∴t=6或t=﹣2,当x2+x=6时,(x+3)(x﹣2)=0,∴x=2或x=﹣3,当x2+x=﹣2时,方程无解,∴原方程有两个根,x=2或x=﹣3;(2)∵a2﹣3a+1=0,∴a2=3a﹣1,∴2a3﹣5a2﹣3+=2a(3a﹣1)﹣5(3a﹣1)﹣3+=6a2﹣17a+2+=6(3a﹣1)﹣17a+2+=a﹣4+,∵a2﹣3a+1=0,∴a+=3,∴2a3﹣5a2﹣3+=3﹣4=﹣1.25.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.26.解:(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣45x+200=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.27.解:(1)设购进x台A型号暖风机,则购进(900﹣x)台B型号暖风机,依题意,得:600x+900(900﹣x)≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.。

苏科版九年级上册数学第1章 一元二次方程含答案

苏科版九年级上册数学第1章 一元二次方程含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、若α、β为方程的两个实数根,则的值为()。

A. B.12 C.14 D.152、如果n(n≠0)是x的方程x2+mx+2n=0的根,则m+n的值为( )A.1B.2C.-1D.-23、要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A. x(x+1)=28B. x(x﹣1)=28C.x(x+1)=28D.x (x﹣1)=284、若a,b(a<b)是关于x的一元二次方程(x﹣m)(x﹣n)+1=0的两个根,且m<n,则m,n,b,a的大小关系是()A.a<b<m<nB.b<a<n<mC.a<m<n<bD.m<a<b<n5、若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2,且x1x2>x1+x2﹣4,则实数m的取值范围是()A.m>﹣B.m≤C.m<﹣D.﹣<m≤6、方程x2﹣8x+2=0,经过配方后,结果正确的是()A.(x+4)2=8B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=57、两个相邻自然数的积是132.则这两个数中,较大的数是()A.11B.12C.13D.148、要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30B.x(x+1)=30C. =30D. =309、一元二次方程x2﹣4x﹣6=0,经过配方可变形为()A.(x﹣2)2=10B.(x﹣2)2=6C.(x﹣4)2=6D.(x﹣2)2=210、下列关于x的方程中,是一元二次方程的是()A. B. C. D.11、若>1,则关于的方程的根的情况是()A.有一正根和一负根B.有两个正根C.有两个负根D.没有实数根12、已知、是方程的两个根,则的值为()A. B. C. D.13、已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>1C.m<1且m≠0D.m>﹣1且m≠014、某超市7月份的营业额是200万元,第三季度的营业额共1000万元,如果每月的增长率都是x,根据题意列出的方程应该是()A.200(1+x) 2=1000B.200(1+2x)=1000C.200+200(1+x)+200(1+x) 2=1000 D.200(1+3x)=100015、若实数x、y满足(x+y+3)(x+y-1)=0,则x+y的值为()A.1B.-3C.3或-1D.-3或1二、填空题(共10题,共计30分)16、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,设共有x家公司参加商品交易会,则可列出方程为:________.17、关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.18、关于的方程是一元二次方程,则的值为________.19、如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.20、若是关于的一元二次方程,则的值是________.21、若把代数式化为的形式,其中m、k为常数,则k+m=________22、当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为________.23、方程化为一般式为________.24、若一元二次方程2x2-2x+m=0有两个相等的实数根,则m的值为________。

苏科版九年级数学上册第一章一元二次方程 单元综合复习检测【含答案】

苏科版九年级数学上册第一章一元二次方程  单元综合复习检测【含答案】
∴∠ABE=∠DBC=90°,
在Rt△ABE中,a2+b2=c2,
∵DE=BE=a,
∴∠EBD=∠EDB,
∵∠EBD+∠EBC=90°,∠EDB+∠C=90°,
∴∠EBC=∠C,
∴CE=BE=a,
∴AC=AE+CE=c+a,
∵AD+AC=c﹣a+c+a=2c,AD×AC=(c﹣a)(c+a)=c2﹣a2=b2,
将 代入方程 的左边得: ,
则 不是方程 的解, 是方程 的解;
(2)将 代入方程 的左边得: ,代入右边得: ,即左边等于右边,
则 是方程 的解;
将 代入方程 的左边得: ,代入右边得: ,即左边不等于右边,
则 不是方程 的解.
27.(1)10元;(2)20%
解:(1)设该种农产品的原价格是 元/千克,则下降后的价格是 元/千克,
整理得:16+8k﹣32≥0,
解得:k≥2,
∴k的取值范围是:k≥2.
(2)由题意得: ,
由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,
故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,
整理得:k2﹣4k+3=0,
解得:k1=3,k2=1,
又由(1)中可知k≥2,
∴k的值为3.
25.(1)a≤ ;(2)x=1或x=2.
∴以AD和AC的长为根的一元二次方程可为x2﹣2cx+b2=0.
故选:A.
11.600(1﹣x)2=384.
解:设每次降价的百分率为x,由题意得:
600(1﹣x)2=384,
故600(1﹣x)2=384.

苏科版九年级上册数学第1章 一元二次方程含答案【完整版】

苏科版九年级上册数学第1章 一元二次方程含答案【完整版】

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、三角形两边的长是3和4,第三边的长是方程的根,则该三角形的周长为()A.10B.12C.14D.12或142、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片。

如果全班有x名学生,根据题意,列出方程为()A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.3、某药品经过两次降价,每瓶零售价由1000元降为640元,已知两次降价的百分率都为x,则x满足的方程是()A.1000(1+x)2=640B.1000(1﹣x)2=640C.1000(1﹣x%)2=640 D.1000x 2=6404、下列说法正确的是()A.x 2=4的根为x=2B. 是x 2=2的根C.方程的根为D.x 2=﹣a没有实数根5、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠3且b≠-1D.a≠3且b≠-1且c≠06、一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣97、已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长是()A.5B.7C.5或7D.108、一元二次方程配方后可变形为().A. B. C. D.9、一元二次方程x2+x﹣1=0的两根分别为x1, x2,则=()A. B.1 C. D.10、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.m<1且m≠0D.m≤1且m≠011、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1或-1B.-1C.1D.012、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠013、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人.A.12B.10C.9D.814、如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1B.0或1C.2D.-115、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是________.17、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=________.18、一种药品经过两次降价,药价从每盒100元调至每盒81元,则平均每次降价的百分率是________ .19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、已知x=3是方程x2-6x+k=0的一个根,则k=________.21、方程(x-3)2=x-3的根是________.22、设等腰三角形的三条边长分别为a、b、c.已知a=4,b、c是关于x的方程x2−6x+m=0两个根,则m的值是________.23、已知方程x2﹣3x+k=0有两个相等的实数根,则k=________.24、关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.25、已知是关于的方程的一个根,则________三、解答题(共5题,共计25分)26、解方程:27、阅读下面的例题:解方程解:当x≥0时,原方程化为x2– x –2=0,解得:x1=2,x2= - 1(不合题意,舍去)当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2∴原方程的根是x1=2, x2= - 2请参照例题解方程28、解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.29、阅读例题,解答下题.范例:解方程:x2+∣x+1∣﹣1=0解:⑴当x+1≥0,即x≥﹣1时,x2+x+1﹣1=0x2+x=0解得x1=0,x2=﹣1⑵当x+1<0,即x<﹣1时,x2﹣(x+1)﹣1=0x2﹣x﹣2=0解得x1=﹣1,x2=2∵x<﹣1,∴x1=﹣1,x2=2都舍去.综上所述,原方程的解是x1=0,x2=﹣1依照上例解法,解方程:x2﹣2∣x-2∣-4=0 30、求不等式组的整数解参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、B6、C8、A9、B10、D11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用因式分解法解方程,下列方法中正确的是()A.(2x-2)(3x-4)=0 , ∴2x-2=0或3x-4=0B.(x+3)(x-1)=1 ,∴x+3=0或x-1=1 C.(x-2)(x-3)=2×3 , ∴x-2=2或x-3=3 D.x(x+2)=0 ,∴x+2=02、用配方法解一元二次方程x2-3=4x,下列配方正确的是()A.(x+2) 2=2B.(x-2) 2=7C.(x+2) 2=7D.(x-2) 2=13、是关于的一元一次方程的解,则()A.-2B.-3C.4D.-64、用配方法解方程时,配方后所得的方程为()A. B. C. D.5、定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程的解为()A. 或B. 或C. 或D. 或6、关于的一元二次方程有一个实数根,则下面关于该方程的判别式的说法正确的是( )A. B. C. D.无法确定7、关于的一元二次方程的两个实数根分别为,,且,则的取值范围是()A. B. 且 C. D. 且8、已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19、下列方程中没有实数根的是()A.x 2+x-1=0B.x 2+8x+1=0C.x 2+x+2=0D.x 2-2 x+2=010、某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x) 2=64B.25(1+x 2)=64C.64(1-x) 2=25 D.64(1-x 2)=2511、若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是()A. B. 且 C. D. 且12、关于x的方程有两个不相等的实数根,且较小的根为2,则下列结论:①;②;③关于的方程有两个不相等的实数根;④抛物线的顶点在第四象限。

苏科版九年级数学上册第一章一元二次方程单元检测试卷(附答案

苏科版九年级数学上册第一章一元二次方程单元检测试卷(附答案

苏科版九年级数学上册第一章一元二次方程单元检测试卷一、单选题(共10题;共30分)1.已知x=1是方程x2+ax+2=0的一个根,则方程的另一个根为()。

A. 2B. -2C. 3D. -32.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A. ﹣1B. 0C. 1D. 33.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A. 0B. ﹣1C. 2D. ﹣34.用配方法解方程x2+4x﹣1=0,下列配方结果正确的是()A. (x+2)2=5B. (x+2)2=1C. (x﹣2)2=1D. (x﹣2)2=55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A. ﹣1,3,﹣1B. 1,﹣3,﹣1C. ﹣1,﹣3,﹣1D. 1,﹣3,16.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x,根据题意,得()A. 5000(1+x2)=7200B. 5000(1+x)+5000(1+x)2=7200C. 5000(1+x)2=7200D. 5000+5000(1+x)+5000(1+x)2=72007.用配方法解一元二次方程x2+2x﹣1=0,配方后得到的方程是()A. (x﹣1)2=2B. (x﹣1)2=3C. (x+1)2=2D. (x+1)2=38.若一元二次方程x2+2x+m=0没有实数根,则m的取值范围是()A. m≤12B. m>1C. m≤1D. m<19.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A. -2B. -1C. 1D. 210.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A. a=﹣3,b=1B. a=3,b=1C. a=−32,b=﹣1 D. a=−32,b=1二、填空题(共10题;共30分)11.方程2x2−8=0的解是________;12.关于x的一元二次方程(m−1)x2+x+m2−1=0有一根为0,则m=________.13.若关于x的一元二次方程x2−x+k=0的一个根是0,则另一个根是________.14.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________15.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为________.16.若非零实数a、b、c满足4a﹣2b+c=0,则关于x的一元二次方程ax2+bx+c=0一定有一个根为________.17.一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则x1+x2x1x2=________18.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是________.19.关于x的方程(a+1)x a2−2a−1+x−5=0是一元二次方程,则a=________20.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为________元.三、解答题(共7题;共60分)21.解方程:(1)3x(x﹣1)=2x﹣2 (2)x2+3x+2=0.22.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.23.已知关于x的方程x2+ax+a−2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根。

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥ 且m≠22、某商场四月份的利润为28万元,预计六月份的利润将达到40万元,设利润每月平均增长率为,那么根据题意所列方程正确的是()A. B. C. D.3、关于x的一元二次方程的一个根是,则一元二次方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个实数根4、关于x的一元二次方程x2-6x+2k=0有两个不相等的实数根,则实数k的取值范围是()A. B. C. D.5、已知关于x的方程x²-(m-3)x+m²=0有两个不相等的实数根,那么m的最大整数值是()A.2B.1C.0D.-16、某超市一月份的营业额为200万元,三月份的营业额为288万元,若每月比上月营业额增长的百分率相同,则每月营业额增长的百分率为( )A.10%B.15%C.20%D.25%7、用配方法解一元二次方程2x2-4x-2=1的过程中,变形正确的是()A.2(x-1)2=1B.2(x-1)2=5C.(x-1)2=D.(x-2)2=8、若关于x的方程x2+2x+ a =0不存在实数根,则 a 的取值范围是()A. B. C. D.9、已知三角形的两边长分别是3和4,第三边是方程x2﹣12x+35=0的一个根,则此三角形的周长是()A.12B.14C.15D.12或1410、已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥ 且m≠211、用配方法解方程x2﹣4x+1=0,下列配方正确是()A.(x﹣2)2=5B.(x+2)2=5C.(x﹣2)2=3D.(x+2)2=312、若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m<1C.m>﹣1D.m>113、已知关于x的一元二次方程3x2﹣2xy-y2=0的,则()A.1B.1或C.1或﹣D.﹣14、一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.不能确定15、等腰三角形的两边长是方程x2-7x+12=0的两个根,那么这个三角形的周长是().A.10B.11C.12D.10或11二、填空题(共10题,共计30分)16、已知x1, x2是方程x2﹣2017x+2=0的两个实数根,则x12﹣2018x1﹣x2=________.17、菱形ABCD的边长为5,对角线交于O点,且AO、BO的长分别是关于x的方程的两个根,则m的值为________18、已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是________.19、若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=________.20、若关于x的一元二次方程x2+x+k=0有两个不相等的实数根,则k的取值范围是________.21、关于的方程的一个根是1,则方程的另一个根是________.22、若关于x的方程x2+(m+1)x+m=0有一个解为3,则m的值是________23、用配方法解关于x的一元二次方程x2﹣4x﹣3=0,配方后的方程可以是________.24、若关于x的一元二次方程x2+ax+3b=0有一个根是3,则a+b的值为________.25、当x=________时,代数式3x2﹣6x的值等于9.三、解答题(共5题,共计25分)26、解方程:.27、已知关于x的一元二次方程(m﹣1)x2+2mx+m﹣3=0,求:当方程有两个不相等的实数根时m的取值范围.28、已知关于的方程的一个根是.求的值和方程的另一个根.29、一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,求m的值.30、关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、B5、B6、C7、C8、B9、A10、C11、C12、B13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、若是关于的一元二次方程,则不等式的解集是().A. B. C. 且 D.2、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OC=2OB则下列结论:①abc<0;②a+b+c>0;③ac﹣2b+4=0;④OA•OB=,其中正确的结论有()A.1个B.2个C.3个D.4个3、一元二次方程x2-6x+5=0配方可变形为( )A.(x-3) 2=14B.(x-3) 2=4C.(x+3) 2=14D.(x+3) 2=44、下列方程中,一元二次方程共有()①②③④⑤A.2个B.3个C.4个D.5个5、为了建设绿色校园,学校去年年底的绿化面积为2000平方米,预计到明年年底增加到4200平方米,求这两年绿化面积的年平均增长率.下面所列方程正确的是()A.2000(1﹣a%)2=4200B.2000(1+a%)2=4200C.2000(1﹣2a%)=4200 D.2000(1﹣a 2%)2=42006、若的两根分别是与5,则多项式可以分解为()A. B. C. D.7、若关于的一元二次方程有两个不相等的实数根,则的取值范围()A. 且B.C.D.8、已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D. 或9、方程2x2-6x+3=0较小的根为p,方程2x2-2x-1=0较大的根为q,则p+q等于( )A.3B.2C.1D.10、若关于x的一元二次方kx2-2x-1=0程有两个实数根,则实数k的取值范围是()A.k>-1B.k<1C.k≥-1且k≠0D.k>-1且k≠011、方程x2-4=0的解是()A.x=2B.x=-2C.x=±2D.x=±412、方程x2﹣22x+2=0的根的情况为()A.有一个实数根B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根13、学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.x 2=21B. x(x﹣1)=21C. x 2=21D.x(x﹣1)=2114、已知二次函数,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程的两根之积为()A.0B.C.D.15、华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得()A.(40﹣x)(20+2x)=1200B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200D.(90﹣x)(20+2x)=1200二、填空题(共10题,共计30分)16、已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC的周长是________.17、下列式子是方程的是________ .①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=818、已知一元二次方程:x2﹣x﹣3=0的两根分别是x1, x2,则x1+x2=________.19、已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为________.20、一个三角形的两边长为3和5,第三边长为方程x2﹣5x+6=0的根,则这个三角形的周长为________.21、《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年(1524年),全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为________22、若方程是关于x的一元二次方程,则m=________.23、若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=________ .24、已知m和n是方程2x2-5x-3=0的两根,则=________.25、设,是方程的两个实数根,则的值为________.三、解答题(共5题,共计25分)26、解方程3x2+5x+1=0.27、两个正方形的面积之和106 为,它们的周长差为16cm ,求这两个正方形的边长.28、已知x=1是关于x的一元二次方程的根,求解代数式的值.29、关于x的方程(m2-8m+19)x2-2mx-13=0是否一定是一元二次方程?请证明你的结论.30、已知:抛物线y=5x2+(m﹣3)x与y=﹣2x﹣m交于点A(x1, y1)和点B(x2, y2),且有(x1﹣x2)2=,求m的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、B6、C7、A8、A10、C11、C12、B13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、。

精编苏科版九年级上册数学第1章 一元二次方程含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、关于x的一元二次方程(k-1)x2-2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠12、若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k=1D.k≥03、若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.24、一元二次方程3x2﹣2x+1=0的二次项系数、一次项系数、常数项分别是()A.3、2、1B.3、﹣2、1C.3、﹣2、﹣1D.﹣3、2、15、已知下列方程:① ;② ;③ ;④ ;其中是一元二次方程的有()A.1个B.2个C.3个D.4个6、关于x的一元二次方程ax2+5x+3=0有两个不相等的实数根,则实数a的取值范围是()A.a<且a≠0B.a>C.a≤ 且a≠0D.a≥7、方程x2=-4的解是()A.x=-2B.x=C.x=±2D.没有实数根8、关于x的一元二次方程的一个根0,则a值为()A.2B.-2C.±2D.09、已知y=kx+k﹣1的图象如图所示,则关于x的一元二次方程x2﹣x﹣k2﹣k =0的根的情况是()A.无实数根B.有两个相等或不相等的实数根C.有两个不相等的实数根D.有两个相等的实数根10、已知关于x的方程(m+3)x2+x+m2+2m-3=0的一根为0,另一根不为0,则m 的值为()A.1B.-3C.1或-3D.以上均不对11、某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340 D.80+80(1+x)+80(1+x)2=34012、下列方程中,是一元二次方程的是()A. B. C. D.13、关于x的一元二次方程2x2-x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根 D.无法确定14、方程2x2+3x-4=0的两根之积为()A. B. C. D.-215、关于x的方程x2﹣kx﹣2=0的根的情况是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根 D.无法确定二、填空题(共10题,共计30分)16、当x=________时,代数式x2-8x+12的值是-4.17、某小区今年2月份绿化面积为6400m2,到了今年4月份增长到8100m2,假设绿化面积月平均增长率都相同,则增长率为________.18、去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/kg的大蒜,经过2月和3月连续两个月增长后,价格上升很快.物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月、3月的平均增长率为________.19、一元二次方程根的判别式的值为________.20、若x1, x2是一元二次方程的两个根,则________21、一元二次方程(x-5)(x+1)=x-5的解是________.22、若k是关于x的一元二次方程的一个根,则的值等于________.23、若非零实数a、b、c满足4a﹣2b+c=0,则关于x的一元二次方程ax2+bx+c=0一定有一个根为________.24、若一元二次方程x2-6x+c=0有两个相等的实数根,则c=________25、已知关于x的一元二次方程(a﹣2)x2﹣(a2﹣4)x+8=0不含一次项,则a=________.三、解答题(共5题,共计25分)26、解方程:.27、某种商品标价500元/件,经过两次降价后售价为405元/件,并且两次降价的百分率相同.求这种商品每次降价的百分率.28、已知关于x的一元二次方程2x2-3k+4=0的一个根是1,求k的值和方程的另一根.29、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴而行,到相距16米的银树下参加探讨环境保护的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后,提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.30、一个两位数,其个位上的数字与十位上的数字的和等于6,而个位与十位上的数字的积等于这两位数的三分之一,求这个两位数.参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、A6、A7、D8、B9、C10、A11、D12、D13、C14、D15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版九年级数学上册试题 第1章 一元二次方程 章节测试卷(含解析)

第1章《 一元二次方程》章节测试卷一.选择题(每小题2分,共12分)1.下列方程中是一元二次方程的是( )A. 2x+1=0B. y 2+x=1C. x 2+1=0D. 2.用配方法解方程时,配方后所得的方程为( )A. B. C. D. 3.已知关于x 的一元二次方程有两个相等的实数根,则a 的值是( )A. 4B. ﹣4C. 1D. ﹣14.已知一次函数y=ax+c 图象如图,那么一元二次方程ax 2+bx+c=0根的情况是( )A. 方程有两个不相等的实数根B. 方程有两个相等的实数根C. 方程没有实数根D. 无法判断5.已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为( )A. 2B. 4C. 8D. 2或46.如图,把一块长为40cm ,宽为30cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm 2,设剪去小正方形的边长为xcm ,则可列方程为( )A .(30-2x )(40-x )=600B .(30-x )(40-x )=6002210x x++=2x 2x 10--=2x 10+=()2x 10-=()2x 12+=()2x 12-=()2x 2x a 0+-=2680x x -+=C .(30-x )(40-2x )=600D .(30-2x )(40-2x )=600二.填空题(每小题2分,共20分)7. 一元二次方程x (x ﹣3)=3﹣x 的根是__ __.8.关于x 的方程(m 2﹣1)x 3+(m ﹣1)x 2+2x+6=0,当m=________时为一元二次方程.9.已知关于x 的一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2,那么x 1+x 2=________.10.若关于的一元二次方程的一个根是-2,则另一个根是______.11.将一元二次方程x 2+4x+1=0化成(x+a )2=b 的形式,其中a ,b 是常数,则a+b=________12. 某商品成本价为300元,两次降价后现价为160元,若每次降价的百分率相同,设降价的百分率为x ,则方程为 .13.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.14.若m 是关于X 的方程的根,且m 0,则m+n=________.15. 已知关于x 的方程(a -1)x 2-2x+1=0是一元二次方程,则a 的取值范围是______.16.如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =2cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边BC 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是_____.三.解答题(共68分)17.(12分)用适当的方法解下列方程:(1)(x ﹣3)2=9; (2)2m 2+3m ﹣1=0; (3)5x ﹣2=(2﹣5x )(3x+4)x 2(3)0x k x k +++=2x nx m 0++=≠18.(10分)已知关于x的一元二次方程x2-3x+m-3=0.(1)若此方程有两个不相等的实数根,求 m的取值范围;(2)若此方程的两根互为倒数,求 m的值.19.(8分)已知:m是方程x2﹣x﹣1=0的一个根,求代数式5m2﹣5m+2008的值.20.(8分)在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.21. (10分)某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?22.(10分)如图,在中,,,,动点从点开始沿着边向点以的速度移动(不与点重合),动点从点开始沿着边向点以的速度移动(不与点重合).若、两点同时移动;当移动几秒时,的面积为.设四边形的面积为,当移动几秒时,四边形的面积为?ABC V B 90∠= AB 12cm =BC 24cm =P A AB B 2cm /s B Q B BC C 4cm /s C P Q ()t s 1()BPQ V 232cm 2()APQC ()2S cm APQC 2108cm23.(10分)阅读理解:材料1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,则x 1+x 2=-,x 1x 2=.材料2.已知实数m ,n 满足m 2-m-1=0,n 2-n-1=0,且m ≠n ,求的值.解:由题知m ,n 是方程x 2-x-1=0的两个不相等的实数根,根据材料1得m+n=1,mn=-1,∴.解决问题:(1)一元二次方程x 2-4x-3=0的两根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)已知实数m ,n 满足2m 2-2m-1=0,2n 2-2n-1=0,且m ≠n ,求m 2n+mn 2的值.(3)已知实数p ,q 满足p 2=3p+2,2q 2=3q+1,且p ≠2q ,求p 2+4q 2 的值.b ac an m m n+()22221231m n mn n m m n m n mn mn +-+++====--答案一.选择题1.C【解析】根据一元二次方程的意义:含有一个未知数,未知数的最高次数为2的整式方程,因此C 正确.故选C2.D【解析】根据配方的正确结果作出判断:.故选D .3.D【解析】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D .4.A【解析】由图象知:a<0,c>0,∵△=b 2−4ac>0,∴一元二次方程ax 2+bx+c=0有两个不相等的实数根,故选A.5.A【解析】解:x 2-6x+8=0(x -4)(x -2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A .()2222x 2x 10x 2x 1x 2x 111x 12--=⇒-=⇒-+=+⇒-=()224a 0=-⋅-=6.D【解析】解:设剪去小正方形的边长是xcm ,则纸盒底面的长为(40-2x )cm ,宽为(30-2x )cm ,根据题意得:(40-2x )(30-2x )=32.故选:D .二.填空题7. x 1=3,x 2=﹣1.【解析】x (x ﹣3)=3﹣x ,x (x ﹣3)-(3﹣x )=0,(x ﹣3)(x+1)=0,∴x 1=3,x 2=﹣1,故答案为x 1=3,x 2=﹣1.8.m=-1【解析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程,本题根据定义可得:-1=0且m -1≠0,解得:m=-1.9.4.【解析】根据一元二次方程中两根之和等于,所以.故答案是4.10.1【解析】将x=-2代入可得:4-2(k+3)+k=0,解得:k=-2,则原方程为:+x -2=0,则(x+2)(x -1)=0,解得:x=-2或x=1,即另一个根为1.11.5【解析】故答案为5.2m -b a124x x +=2x 2410,x x ++=241,x x +=-2443,x x ++=2(2) 3.x +=2, 3.a b ∴== 5.a b +=12.300(1-x)2=160.【解析】解:设每次降价的百分率为x,依题意得300(1-x)2=160.故填空答案:300(1-x)2=160.13.12【解析】解:设平均一人传染了x人,x+1+(x+1)x=169解得:x=12或x=-14(舍去).∴平均一人传染12人.故答案为:12.14.-1【解析】把m代入x2+nx+m=0,得m2+nm+m=0,∴m(m+n+1)=0,又∵m≠0,∴m+n+1=0,∴m+n=-1.故答案-1.15. a≠1.【解析】要使方程是一元二次方程,则:a-1≠0,∴a≠1.【解析】∵AP=CQ=t,∴CP=6-t,∴∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是.为三.解答题17.(1)(x ﹣3)2=9,∴x ﹣3=±3,∴x 1=0,x 2=6;(2)a=2,b=3,c=﹣1,∴b 2﹣4ac=32﹣4×2×(﹣1)=9+8=17>0,∴,∴m 1,m 2(3)(2﹣5x )+(2﹣5x )(3x+4)=0∴(2﹣5x )(1+3x+4)=0解得:x 1= x 2=﹣ 18.(1)∵方程 x 2-3x+m-3=0 有两个不相等的实数根,∴△=(-3)2-4(m-3)>0,解得:m <,∴m 的取值范围为m<;(2)设此方程的两个根分别为:α,β,∴α+β=3,αβ=m-3,∵此方程的两根互为倒数,∴αβ=m-3=1,∴m=4.19.把代入方程.可得:即所以2553214214x m =210x x --=210.m m --=21m m -=,225520085()2008520082013m m m m -+=-+=+=.20.解:设金色纸边的宽为x 分米,根据题意,得(2x +6)(2x +8)=80.解得:x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为1分米21. 解:(1)设每件应降价x 元,由题意可列方程为(40-x )(30+2x )=1200 , 解得x 1=0 ,x 2=25 ,当x=0时,能卖出30 件;当x=25 时,能卖出80件,根据题意,x=25 时能卖出80 件,符合题意,不降价也能盈利1200元,符合题意,因为要减少库存,所以应降价25 元,答:每件衬衫应降价25 元;22.(1)P 、Q 同时出发后经过的时间为ts ,的面积为,则有:(12-2t )×4t=32,解得:t=2或t=4.答:当移动秒或秒时,的面积为.,解得:.答:当移动秒时,四边形的面积为.23.(1)x 1+x 2=﹣,x 1x 2=﹣;故答案为﹣ ,﹣;(2)∵m 、n 满足2m 2﹣2m ﹣1=0,2n 2﹣2n ﹣1=0,∴m 、n 可看作方程2x 2﹣2x ﹣1=0的两实数解,∴m+n=1,mn=﹣,BPQ V 232cm 1224BPQ V 232cm ()()22122444241441082ABC BPQ S S S AB BC t t t t =-=⋅--=-+=V V 3t =3APQC 2108cm 3212321212∴m 2n+mn 2=mn (m+n )=﹣×1=﹣;(3)设t=2q ,代入2q 2=3q+1化简为t 2=3t+2,则p 与t (即2q )为方程x 2﹣3x ﹣2=0的两实数解,∴p+2q=3,p •2q=﹣2,∴p 2+4q 2=(p+2q )2﹣2p •2q=32﹣2×(﹣2)=13.1212。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章一元二次方程单元测试一、单选题(共10题;共30分)1.已知反比例函数y=abx,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13B、11C、11或13D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0B、1C、2D、35.(2015•长春)方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根 ;B、只有一个实数根;C、没有实数根D、有两个不相等的实数根6.已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤ 94B.k≥﹣94 且k≠0C.k≥﹣94D.k>﹣94 且k≠08.一元二次方程x(x﹣2)=0的解是()A.x=0B.x1=2C.x1=0,x2=2D.x=29.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠310.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题(共8题;共24分)11.一元二次方程x2=3x的解是:________ .12.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________13.如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为。

14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.16.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是________.17.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.18.已知x=1是方程ax2+x﹣6=0的一个根,则a=________.三、解答题(共6题;共46分)19.试比较下列两个方程的异同,+2x-3=0,+2x+3=0.20.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.21.已知:m是方程x2﹣x﹣1=0的一个根,求代数式5m2﹣5m+2018的值.22.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B 型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?23.方程17+15x=245,x-503=x+705 ,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?24.若方程(m﹣1)x m +1+2mx﹣3=0是关于x的一元二次方程,求m的值.答案解析一、单选题1、【答案】C【考点】根的判别式,根与系数的关系,反比例函数的图象【解析】【解答】因为反比例函数y=abx,当x>0时,y随x的增大而增大,所以ab<0,所以△=4-4ab>0,所以方程有两个实数根,再根据x1x2=ba<0,故方程有一个正根和一个负根.故选C.【分析】本题是对反比例函数的图象性质,一元二次方程的根的判别式以及根与系数的关系的综合考查,可以根据反比例函数的图象性质判断出ab的符号,从而得出解的个数,然后利用根与系数的关系求出两个根的符号关系.本题重点考查了反比例函数的性质及一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.2、【答案】A【考点】根与系数的关系【解析】【分析】由题意可得x1x2,x1x2,再化1x1+1x2x2+x1x1x2 ,即可求得结果. 【解答】由题意得x1x2=7,x1x2=5则1x1+1x2=x2+x1x1x2=75故选A.3、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系【解析】【分析】由方程x2-6x+8=0 用十字交叉相乘法因式分解,得(x-2)(x-4)=0:解得x1=2或x2=4,当第三边的长是2时,2+3<6,不能构成三角形,应舍去;当第三边的长是4时,三角形的周长为4+3+6=13。

故选A。

4、【答案】C【考点】一元二次方程的定义,一元二次方程的解【解析】【解答】∵方程x2+ax+1=0和x2-x-a=0有一个公共根,∴(a+1)x+a+1=0,解得x=-1,当x=-1时,a=2,所以选C【分析】因为方程有一个公共根,两方程联立,解得x与a的关系,故可以解得公共解x,然后求出a.5、【答案】C【考点】根的判别式【解析】【解答】∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.6、【答案】A【考点】根的判别式【解析】【解答】解:由图象知:a<0,c>0,∵△=b2﹣4ac>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,故选A.【分析】根据函数的图象得出a、c的取值,进而求得b2﹣4ac的取值,即可判定一元二次方程ax2+bx+c=0的根的情况7、【答案】C【考点】根的判别式【解析】【解答】解:当k=0时,方程为3x﹣1=0,有实数根,当k≠0时,△=b2﹣4ac=32﹣4×k×(﹣1)=9+4k≥0,解得k≥﹣94 .综上可知,当k≥﹣94 时,方程有实数根;故选C.【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=0;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.8、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】解:方程x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故选C.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.9、【答案】B【考点】根的判别式,抛物线与x轴的交点,一次函数的性质【解析】【解答】解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选B.【分析】分为两种情况:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,求出△=b2﹣4ac=﹣4k+16≥0的解集即可;②当k﹣3=0时,得到一次函数y=2x+1,与x轴有交点;即可得到答案.10、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每千克橙降应降价x元.根据题意,得(60﹣x﹣40)(100+ ×20)=2240.化简,得x2﹣10x+24=0解得:x1=4,x2=6,∵为减少库存,∴每千克脐橙应降价6元.故选:B.【分析】设每千克脐橙降价x元,利用销售量×每件利润=2240元列出方程求解即可.二、填空题11、【答案】x1=0,x2=3【考点】解一元二次方程-因式分解法【解析】【解答】由原方程,得x2-3x=0,则x(x-3)=0,解得x1=0,x2=3.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.12、【答案】2【考点】一元二次方程的解【解析】【解答】解:∵3(x﹣1)(x﹣m)=0,∴x﹣1=0,x﹣m=0,∴x1=1,x2=m,∵关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,∴m=2,故答案为:2.【分析】根据已知方程即可得出m=2,得出答案为即可.13、【答案】102+(x﹣5+1)2=x2【考点】一元二次方程的定义,一元二次方程的应用【解析】【解答】解:设绳索长OA=OB=x尺,由题意得,102+(x﹣5+1)2=x2.故答案为:102+(x﹣5+1)2=x2.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】-2【考点】根与系数的关系【解析】【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:{m+n=−3m=−1 ,解得:n=﹣2.故答案为:﹣2.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.16、【答案】3【考点】根与系数的关系【解析】【解答】解:设方程另一个根为x1,根据题意得﹣2•x1=﹣6,所以x1=3.故答案为3.【分析】根据根与系数的关系得到﹣2•x1=﹣6,然后解一次方程即可.17、【答案】﹣4【考点】根的判别式【解析】【解答】解:根据题意得△=42﹣4(﹣k)≥0,解得k≥﹣4,所以k的最小值为﹣4.故答案为﹣4.【分析】根据判别式的意义得到△=42﹣4(﹣k)≥0,然后解不等式确定k的范围,再找出k的最小值即可.18、【答案】5【考点】一元二次方程的解【解析】【解答】解:把x=1代入方程得a+1﹣6=0,解得a=5.故答案为5.【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a的一次方程,然后解一次方程即可.三、解答题19、【答案】相同点:①都是一元二次方程;②都化成了一元二次方程的一般形式;③二次项系数均为1;④一次项系数均为2;⑤常数项的绝对值相等;⑥都是整系数方程等.不同点:①常数项符号相反;②前者方程左边可因式分解,后者实数范围内不能分解【考点】一元二次方程的定义【解析】【解答】相同点:①都是一元二次方程;②都化成了一元二次方程的一般形式;③二次项系数均为1;④一次项系数均为2;⑤常数项的绝对值相等;⑥都是整系数方程等.不同点:①常数项符号相反;②前者方程左边可因式分解,后者实数范围内不能分解【分析】从一元二次方程的概念、系数等进行比较.20、【答案】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.【考点】一元二次方程的应用【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.21、【答案】解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1,所以5m2﹣5m+2018=5(m2﹣m)+2018=5+2018=2023.【考点】一元二次方程的解【解析】【分析】由m是方程x2﹣x﹣1=0的一个根,将x=m代入方程得到关于m的等式,变形后即可求出所求式子的值.22、【答案】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.【考点】一元二次方程的应用,分式方程的应用【解析】【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.23、【答案】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【考点】一元一次方程的定义,一元二次方程的定义【解析】【分析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.24、【答案】解:由题意,得m2+1=2且m﹣1≠0,解得m=﹣1.【考点】一元二次方程的定义【解析】【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.。

相关文档
最新文档