2019年辽宁省本溪市高新技术开发区中考数学一模试卷(精品解析)

合集下载

辽宁省本溪市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省本溪市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省本溪市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时2.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒3.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC4.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.805.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°6.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个B.3个C.2个D.1个7.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.8.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±209.如图所示的几何体的主视图是( )A.B.C.D.10.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.11.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是»AC上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°12.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D.120πcm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=1455x+和x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.则A3的坐标为_______..14.不等式组2332xx-<⎧⎨+<⎩的解集是_____________.15.分解因式:8x²-8xy+2y²= _________________________ .16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.17.计算2x3·x2的结果是_______.18.在反比例函数2yx图象的每一支上,y随x的增大而______(用“增大”或“减小”填空).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.20.(6分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.21.(6分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.22.(8分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.23.(8分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.24.(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)25.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.26.(12分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA=4,OC=3,若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交AC 于点D ,动点P 在抛物线对称轴上,动点Q 在抛物线上.(1)求抛物线的解析式;(2)当PO+PC 的值最小时,求点P 的坐标;(3)是否存在以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出P ,Q 的坐标;若不存在,请说明理由.27.(12分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6;(1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由折线统计图和条形统计图对各选项逐一判断即可得.【详解】解:A 、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B 、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;C 、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D 、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B .【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况. 2.B【解析】【分析】如图所示,过O 点作a 的平行线d ,根据平行线的性质得到∠2=∠3,进而求出将木条c 绕点O 旋转到与直线a 平行时的最小旋转角.【详解】如图所示,过O 点作a 的平行线d ,∵a ∥d ,由两直线平行同位角相等得到∠2=∠3=50°,木条c 绕O点与直线d 重合时,与直线a 平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质. 3.D【解析】【分析】【详解】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.4.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.5.C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.6.B【解析】【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.7.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.8.B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.9.C【解析】【分析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.10.A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.11.B【解析】【分析】。

2019年辽宁省本溪市中考数学模拟试卷一(word版含评分标准)

2019年辽宁省本溪市中考数学模拟试卷一(word版含评分标准)

2019年辽宁省本溪市中考模拟试卷一数 学 试 题题号一二三四五六七八总分得分一.单项选择题。

(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案,请将正确的答案的序号填入括号中。

)1.在﹣7,5,0,﹣3这四个数中,最大的数是( )A .﹣7B .5C .0D .﹣32.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列计算正确的是( )A .(xy )3=xy 3B .x 5÷x 5=xC .3x2•5x 3=15x 5D .5x 2y 3+2x 2y 3=10x 4y 94.如图所示的某零件左视图是( )A .B .C .D .5.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,66.下列事件为必然事件的是( )得 分 评卷人A.掷一枚普通的正方体骰子,掷得的点数不小于1B.任意购买一张电影票,座位号是奇数C.抛一枚普通的硬币,正面朝上D.一年有367天7.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )A.1<m<B.1≤m<C.1<m≤D.1≤m≤8.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为( )进球数012345人数15x y32A.B.C.D.9.如图,过反比例函数y=(x<0)图象上的一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值是( )A.2B.﹣2C.4D.﹣410.如图1,在菱形ABCD中,∠BAD=120°,点Q是BC边的中点,点P为AB边上的一个动点,设AP=x,图1中线段PQ的长为y,若表示y与x的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A.4B.2C.8D.12得分评卷人二、填空题(本大题共8小题,满分24分,每小题3分。

2019年辽宁本溪高新技术开发区中二考一模数学试题及答案(WORD版)

2019年辽宁本溪高新技术开发区中二考一模数学试题及答案(WORD版)

2019年辽宁省本溪市高新技术开发区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.3x2﹣7x=﹣4x B.﹣3y2+4y2=y2C.(﹣a2)3=a6D.(﹣a)2•a4=﹣a62.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.若a>b成立,则下列不等式成立的是()A.﹣a>﹣b B.﹣a+1>﹣b+1C.﹣(a﹣1)>﹣(b﹣1)D.a﹣1>b﹣15.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形6.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.7.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为()A.+=21B.+=21C.+=21D.+=218.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣210.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.12.因式分解:m3n﹣9mn=.13.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.15.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是16.已知=1,则的值等于.17.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.18.在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是.三.解答题(共2小题,满分22分)19.先化简,再求值:(2﹣)÷,其中x=﹣3.20.已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.四.解答题(共2小题,满分24分,每小题12分)21.某校开展了以“责任、感恩”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,(1)该班有人,学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度;(2)如果该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有人;(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).22.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.五.解答题(共1小题,满分12分,每小题12分)23.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)六.解答题(共1小题,满分12分,每小题12分)24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七.解答题(共1小题,满分12分,每小题12分)25.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.八.解答题(共1小题,满分14分,每小题14分)26.如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC(1)点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;(2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ 沿PQ翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.2019年辽宁省本溪市高新技术开发区中考数学一模试卷参考答案一.选择题(共10小题,满分30分,每小题3分)1--5.BDCDB6--10.BBDCA二.填空题(共8小题,满分24分,每小题3分)11.1.02×10﹣7.12.mn(m+3)(m﹣3)13.2.14.75°.15.7.16.0.17.72°.18.22017.三.解答题(共2小题,满分22分)19.解:原式=×=,把x=﹣3代入得:原式===1﹣2.20.证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形四.解答题(共2小题,满分24分,每小题12分)21.解:(1)该班的总人数是:12÷30%=40(人);选择“和谐”观点的有40×10%=4(人);“和谐”观点所在扇形区域的圆心角是360°×10%=36°.(2)该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有:360×25%=90(人).(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示:共有20种情况,选择和谐、感恩的有2种情况,因而恰好选到“和谐”和“感恩”观点的概率是:=.故答案是:40,4,36;90.22.解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.五.解答题(共1小题,满分12分,每小题12分)23.解:(1)如图2中,当P位于初始位置时,CP0=2m,如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C=m,∴P0P1=CP0﹣P1C=2﹣≈0.6m,即为使遮阳效果最佳,点P需从P0上调0.6m.(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.∵P2E∥AB,∴∠CP2E=∠CAB=90°,∵∠DP2E=20°,∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=2×1×cos70°≈0.68m,∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,即点P在(1)的基础上还需上调0.7m.六.解答题(共1小题,满分12分,每小题12分)24.解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.七.解答题(共1小题,满分12分,每小题12分)25.解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.八.解答题(共1小题,满分14分,每小题14分)26.解:(1)y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4∴抛物线与x轴交于点A(﹣1,0)、点B(3,0),与y轴交于点C(0,3),顶点D(1,4),∴直线CB解析式:y=﹣x+3,∠BCO=45°∵GE∥y轴,GF⊥BC∴∠GEF=∠BCO=45°,∠GFE=90°∴△GEF是等腰直角三角形,EF=FG=GE=EF+FG+GE=(+1)GE∴C△GEF设点G(a,﹣a2+2a+3),则点E(a,﹣a+3),其中0<a<3∴GE=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a=﹣(a﹣)2+∴a=时,GE有最大值为∴△GEF的周长最大时,G(,),E(,),∴MN=EF=,E点可看作点F向右平移个单位、向下平移个单位如图1,作点D关于直线BC的对称点D1(﹣1,2),过N作ND2∥D1M且ND2=D1M∴DM=D1M=ND2,D2(﹣1+,2﹣)即D2(,)∴DM+MN+NG=MN+ND2+NG∴当D2、N、G在同一直线上时,ND2+NG=D2G为最小值∵D2G=∴DM+MN+NG最小值为(2)连接DD'、D'B,设D'P与BQ交点为H(如图2)∵△△DPQ沿PQ翻折得△D'PQ∴DD'⊥PQ,PD=PD',DQ=D'Q,∠DQP=∠D'QP∵P为BD中点∴PB=PD=PD',P(2,2)∴△BDD'是直角三角形,∠BD'D=90°∴PQ∥BD'∴∠PQH=∠D'BH∵H为D'P中点∴PH=D'H在△PQH与△D'BH中∴△PQH≌△D'BH(AAS)∴PQ=BD'∴四边形BPQD'是平行四边形∴D'Q∥BP∴∠DPQ=∠D'QP∴∠DQP=∠DPQ∴DQ=DP∴DQ2=DP2=(2﹣1)2+(2﹣4)2=5设Q(q,﹣q+3)(0<q<3)∴(q﹣1)2+(﹣q+3﹣4)2=5解得:q1=,q2=(舍去)∴点Q坐标为(,3﹣)∵△AOC绕点O逆时针旋转60°得到△A′OC′∴A'(﹣,﹣),C'(﹣,)∴A'、C'横坐标差为,纵坐标差为A'、Q横坐标差为,纵坐标差为当有平行四边形A'C'TQ时(如图3),点T横坐标为,纵坐标为当有平行四边形A'C'QT时(如图4),点T横坐标为,纵坐标为当有平行四边形A'TC'Q时(如图5),点T横坐标为,纵坐标为综上所述,点T的坐标为()或(,)或()。

(解析版)辽宁本溪2019年初三上第一次抽考数学试卷.doc

(解析版)辽宁本溪2019年初三上第一次抽考数学试卷.doc

(解析版)辽宁本溪2019年初三上第一次抽考数学试卷【一】选择题〔本大题15个小题,每题4分,共60分〕1、〔4分〕在方程X2+X=Y,X﹣2X2=3,〔X﹣1〕〔X﹣2〕=0,X2﹣=4,X 〔X﹣1〕=1中,一元二次方程的个数是〔〕A、 1个B、 2个C、 3个D、 4个2、〔4分〕如图,在▱ABCD中,增加一个条件四边形ABCD就成为矩形,这个条件是〔〕A、 AB=CDB、∠A+∠C=180°C、 BD=2ABD、 AC⊥BD3、〔4分〕如图,在周长为12的菱形ABCD中,∠BAC=60°,那么对角线AC的长为〔〕A、 3B、 6C、 9D、 124、〔4分〕一元二次方程〔X+6〕2=16可转化为两个一元一次方程,其中一个一元一次方程是X+6=4,那么另一个一元一次方程是〔〕A、 X﹣6=﹣4B、 X﹣6=4C、 X+6=4D、 X+6=﹣45、〔4分〕如图,点E在正方形ABCD的边BC的延长线上,且BE=BD,那么∠E的度数为〔〕A、 45°B、 60°C、 67、5°D、 75°6、〔4分〕在数学活动课上,老师和同学们判断一个四边形窗框是否为菱形,下面是某合作小组的4位同学拟定的方案,其中正确的选项是〔〕A、测量对角线是否相互垂直B、测量两组对边是否分别相等C、测量四个角是否相等D、测四条边是否相等7、〔4分〕把方程﹣2X2+X+8=1化为二次项系数为正数的一般形式后,它的常数项是〔〕A、 7B、﹣7C、﹣8D、﹣98、〔4分〕如图,将△ABC沿BC方向平移得到△DCE,连接AD,以下条件能够判定四边形ACED为菱形的是〔〕A、 AB=BCB、 AC=BCC、∠B=60°D、∠ACB=60°9、〔4分〕用配方法解方程4X2﹣3X=4时应在方程的两边同时加上〔〕A、B、C、D、10、〔4分〕如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE 绕点E旋转180°得△CFE,那么四边形ADCF一定是〔〕A、矩形B、菱形C、正方形D、梯形11、〔4分〕如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,那么以下结论不正确的选项是〔〕A、 BE=AFB、∠DAF=∠BECC、∠AFB+∠BEC=90°D、 AG⊥BE12、〔4分〕用配方法解关于X的一元二次方程X2﹣2X﹣M=0,配方后得到的方程为〔〕A、〔X﹣1〕2=M﹣1B、〔X﹣1〕2=M+1C、〔X﹣1〕2=1﹣MD、〔X﹣1〕2=M2﹣113、〔4分〕M是方程X2+X﹣1=0的根,那么式子M3+2M2+2018的值为〔〕A、 2018B、 2018C、 2016D、 201714、〔4分〕如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22、5°,EF⊥AB,垂足为F,那么EF的长为〔〕A、 1B、C、 4﹣2D、 3﹣415、〔4分〕如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,BC′交AD 于点E,假设AB=4,AD=8,那么DE的长为〔〕A、 2B、 3C、 4D、 5【二】填空题〔本大题5个小题,每题4分,共20分〕16、〔4分〕根据如表确定一元二次方程X2+2X﹣9=0的一个解的范围是、X 0 1 2 3 4X2+2X﹣9 ﹣9 ﹣6 ﹣1 6 1517、〔4分〕点O是矩形ABCD的对角线AC的中点,点M是AD的中点,假设AB=5,AD=12,那么四边形ABOM的周长为、18、〔4分〕如图,从正方形ABCD上截取宽为2CM的矩形BCEF,剩下矩形AFED的面积为48CM2,那么正方形ABCD的边长为CM、19、〔4分〕如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,那么△CDP的面积为、20、〔4分〕如图,在菱形ABCD中,AB=4,∠C=120°,AE⊥BC于E,AF⊥CD于F,连接EF,那么△AEF的面积为、【三】解答题〔本大题8个小题,共70分〕21、〔6分〕用配方法解方程:3X2+8X+4=0、22、〔6分〕如图,在菱形ABCD中,AC、BD交于点O,DE⊥AB于E,假设AC=8,BD=6,求DE的长、23、〔8分〕在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED、〔1〕求证:△BEC≌△DEC;〔2〕延长BE交AD于F,当∠BED=120°时,求∠EFD的度数、24、〔8分〕:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF、〔1〕求证:△DOE≌△BOF;〔2〕当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由、25、〔10分〕有两个正方形,小正方形的边长比大正方形的边长的一半多1CM,大正方形的面积比小正方形的面积的2倍多4CM2、〔1〕假设设大正方形的边长为XCM,请列出方程,并将其化为一般形式、〔2〕完成下表:X 5 6 7 8 9 10AX2+BX+C〔3〕根据上表求出大正方形的边长、26、〔10分〕如图,矩形ABCD的边长AB=3CM,BC=6CM,某一时刻,动点M从点A 出发沿AB方向以1CM∕S的速度向点B匀速运动;同时,动点N从点D沿DA方向以2CM∕S的速度向点A匀速运动、经过多少时间,△AMN的面积等于矩形ABCD面积的?27、〔10分〕如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G、〔1〕求证:四边形DEBF是菱形;〔2〕请判断四边形AGBD是什么特殊四边形?并加以证明、28、〔12分〕如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H、〔1〕求证:EB=GD;〔2〕判断EB与GD的位置关系,并说明理由;〔3〕假设AB=2,AG=,求EB的长、辽宁省本溪市2018届九年级上学期第一次月考数学试卷参考答案与试题解析【一】选择题〔本大题15个小题,每题4分,共60分〕1、〔4分〕在方程X2+X=Y,X﹣2X2=3,〔X﹣1〕〔X﹣2〕=0,X2﹣=4,X 〔X﹣1〕=1中,一元二次方程的个数是〔〕A、 1个B、 2个C、 3个D、 4个考点:一元二次方程的定义、分析:此题根据一元二次方程的定义解答、一元二次方程必须满足四个条件:〔1〕未知数的最高次数是2;〔2〕二次项系数不为0;〔3〕是整式方程;〔4〕含有一个未知数、由这四个条件对四个选项进行验证,满足这四个条件者为正确答案、解答:解:X2+X=Y方程含有两个未知数,故错误;X﹣2X2=3,〔X﹣1〕〔X﹣2〕=0,X〔X﹣1〕=1符合一元二次方程的定义,正确;X2﹣=4,不是整式方程,故错误、应选:C、点评:此题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2、2、〔4分〕如图,在▱ABCD中,增加一个条件四边形ABCD就成为矩形,这个条件是〔〕A、 AB=CDB、∠A+∠C=180°C、 BD=2ABD、 AC⊥BD考点:矩形的判定、分析:根据矩形的判定〔有一个角是直角的平行四边形是矩形〕、解答:解:根据矩形的判定〔有一个角是直角的平行四边形是矩形〕可得∠A+∠B=180°,∠A+∠C=180°故∠B=∠C=90°增加的条件是∠A+∠C=180°、应选B、点评:考查了矩形的判定,矩形的判定定理有:〔1〕有一个角是直角的平行四边形是矩形;〔2〕有三个角是直角的四边形是矩形;〔3〕对角线互相平分且相等的四边形是矩形、3、〔4分〕如图,在周长为12的菱形ABCD中,∠BAC=60°,那么对角线AC的长为〔〕A、 3B、 6C、 9D、 12考点:菱形的性质、分析:根据菱形的四条边都相等求出边长,再判断出△ABC是等边三角形,然后根据等边三角形的三条边都相等解答、解答:解:∵菱形的周长为12,∴菱形的边长AB=BC=12÷4=3,∵∠BAC=60°,∴△ABC是等边三角形,∴AC=AB=3、应选A、点评:此题考查了菱形的性质,等边三角形的判定与性质,是基础题,熟记各性质是解题的关键、4、〔4分〕一元二次方程〔X+6〕2=16可转化为两个一元一次方程,其中一个一元一次方程是X+6=4,那么另一个一元一次方程是〔〕A、 X﹣6=﹣4B、 X﹣6=4C、 X+6=4D、 X+6=﹣4考点:解一元二次方程-直接开平方法、分析:方程两边直接开平方可达到降次的目的,进而可直接得到答案、解答:解:〔X+6〕2=16,两边直接开平方得:X+6=±4,那么:X+6=4,X+6=﹣4,应选:D、点评:此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负数,根据法那么:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解、5、〔4分〕如图,点E在正方形ABCD的边BC的延长线上,且BE=BD,那么∠E的度数为〔〕A、 45°B、 60°C、 67、5°D、 75°考点:正方形的性质、分析:根据正方形的对角线平分一组对角线求出∠CBD=45°,再根据等腰三角形两底角相等列式计算即可得解、解答:解:在正方形ABCD中,∠CBD=45°,∵BE=BD,∴∠E=〔180°﹣45°〕=67、5°、应选C、点评:此题考查了正方形的性质,等腰三角形的性质,熟记各性质并准确识图是解题的关键、6、〔4分〕在数学活动课上,老师和同学们判断一个四边形窗框是否为菱形,下面是某合作小组的4位同学拟定的方案,其中正确的选项是〔〕A、测量对角线是否相互垂直B、测量两组对边是否分别相等C、测量四个角是否相等D、测四条边是否相等考点:菱形的判定、专题:应用题、分析:根据菱形的判定定理分别进行解答即可得出答案、菱形的判定定理有:〔1〕邻边相等的平行四边形是菱形;〔2〕四条边都相等的四边形是菱形;〔3〕对角线互相垂直的平行四边形的四边形是菱形、解答:解:A、对角线是否垂直不能判定形状;B、所有的平行四边形的对边均相等,故错误;C、四个角均相等的四边形是矩形,不能判定形状;D、其中四边形的四条边都相等,能判定菱形、应选D、点评:此题考查了菱形的判定,用到的知识点是菱形的判定定理,难度不大、7、〔4分〕把方程﹣2X2+X+8=1化为二次项系数为正数的一般形式后,它的常数项是〔〕A、 7B、﹣7C、﹣8D、﹣9考点:一元二次方程的一般形式、分析:把方程移项得到﹣2X2+X+7=0,再方程两边同时除以﹣1得2X2﹣X﹣7=0,再找常数项即可、解答:解:﹣2X2+X+8=1移项,得﹣2X2+X+7=0,方程两边同时除以﹣1得2X2﹣X﹣7=0,常数项是﹣7,应选:B、点评:一元二次方程的一般形式是:AX2+BX+C=0〔A,B,C是常数且A≠0〕特别要注意A≠0的条件、这是在做题过程中容易忽视的知识点、在一般形式中AX2叫二次项,BX叫一次项,C是常数项、其中A,B,C分别叫二次项系数,一次项系数,常数项、8、〔4分〕如图,将△ABC沿BC方向平移得到△DCE,连接AD,以下条件能够判定四边形ACED为菱形的是〔〕A、 AB=BCB、 AC=BCC、∠B=60°D、∠ACB=60°考点:菱形的判定;平移的性质、分析:首先根据平移的性质得出AB CD,得出四边形ABCD为平行四边形,进而利用菱形的判定得出答案、解答:解:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形、应选:B、点评:此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB CD是解题关键、9、〔4分〕用配方法解方程4X2﹣3X=4时应在方程的两边同时加上〔〕A、B、C、D、考点:解一元二次方程-配方法、分析:先方程两边都除以4,再方程两边都加上一次项系数一半的平方,即可得出答案、解答:解:4X2﹣3X=4,X2﹣X=1,X2﹣X+〔〕2=1+〔〕2,即方程两边都加上,应选D、点评:此题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中、10、〔4分〕如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE 绕点E旋转180°得△CFE,那么四边形ADCF一定是〔〕A、矩形B、菱形C、正方形D、梯形考点:旋转的性质;矩形的判定、分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答、解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形、应选:A、点评:此题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键、11、〔4分〕如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,那么以下结论不正确的选项是〔〕A、 BE=AFB、∠DAF=∠BECC、∠AFB+∠BEC=90°D、 AG⊥BE考点:正方形的性质;全等三角形的判定与性质、专题:证明题;压轴题、分析:分析图形,根据正方形及三角形性质找到各角边的关系就很容易求解、解答:解:∵ABCD是正方形∴∠ABF=∠C=90°,AB=BC∵BF=CE∴△ABF≌△BCE∴AF=BE〔第一个正确〕∠BAF=∠CBE,∠BFA=∠BEC〔第三个错误〕∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°∴∠DAF=∠BEC〔第二个正确〕∵∠BAF=∠CBE,∠BAF+∠AFB=90°∴∠CBE+∠AFB=90°∴AG⊥BE〔第四个正确〕所以不正确的选项是C,应选C、点评:此题主要考查了学生对正方形的性质及全等三角形的判定的掌握情况、12、〔4分〕用配方法解关于X的一元二次方程X2﹣2X﹣M=0,配方后得到的方程为〔〕A、〔X﹣1〕2=M﹣1B、〔X﹣1〕2=M+1C、〔X﹣1〕2=1﹣MD、〔X﹣1〕2=M2﹣1考点:解一元二次方程-配方法、分析:把常数项﹣M移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方、解答:解:把方程X2﹣2X﹣M=0的常数项移到等号的右边,得到X2﹣2X=M,方程两边同时加上一次项系数一半的平方,得到X2﹣2X+1=M+1,配方得〔X﹣1〕2=M+1、应选:B、点评:此题考查了配方法解一元二次方程、配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方、选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数、13、〔4分〕M是方程X2+X﹣1=0的根,那么式子M3+2M2+2018的值为〔〕A、 2018B、 2018C、 2016D、 2017考点:一元二次方程的解、分析:把M代入X2+X﹣1=0得到M2+M﹣1=0,即M2+M=1,把M2+M=1代入式子:M3+2M2+2018,再将式子变形为M〔M2+M〕+M2+2018的形式,即可求出式子的值、解答:解:∵M是方程X2+X﹣1=0的根,∴M2+M﹣1=0,即M2+M=1,∴M3+2M2+2018=M〔M2+M〕+M2+2018=M+M2+2018=1+2018=2018、应选B、点评:考查了一元二次方程的解,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式M2+M的值,然后利用“整体代入法”求代数式的值、14、〔4分〕如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22、5°,EF⊥AB,垂足为F,那么EF的长为〔〕A、 1B、C、 4﹣2D、 3﹣4考点:正方形的性质、专题:压轴题、分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠D AE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解、解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22、5°,∴∠DAE=90°﹣∠BAE=90°﹣22、5°=67、5°,在△ADE中,∠AED=180°﹣45°﹣67、5°=67、5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×〔4﹣4〕=4﹣2、应选:C、点评:此题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是此题的难点、15、〔4分〕如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,BC′交AD 于点E,假设AB=4,AD=8,那么DE的长为〔〕A、 2B、 3C、 4D、 5考点:翻折变换〔折叠问题〕、分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE 的方程,解方程即可解决问题、解答:解:设ED=X,那么AE=8﹣X;∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=X;由勾股定理得:BE2=AB2+AE2,即X2=42+〔8﹣X〕2,解得:X=5,应选D、换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答、【二】填空题〔本大题5个小题,每题4分,共20分〕16、〔4分〕根据如表确定一元二次方程X2+2X﹣9=0的一个解的范围是2《X《3、X 0 1 2 3 4X2+2X﹣9 ﹣9 ﹣6 ﹣1 6 15考点:估算一元二次方程的近似解、分析:观察表格可知,随X的值逐渐增大,X2+2X﹣9的值在2~3之间由负到正,故可判断X2+2X﹣9=0时,对应的X的值在2《X《3之间、解答:解:根据表格可知,X2+2X﹣9=0时,对应的X的值在2《X《3之间,故答案为2《X《3、点评:此题考查了二次函数图象与一元二次方程的解之间的关系、关键是观察表格,确定函数值由负到正时,对应的自变量取值范围、17、〔4分〕点O是矩形ABCD的对角线AC的中点,点M是AD的中点,假设AB=5,AD=12,那么四边形ABOM的周长为20、考点:矩形的性质、专题:计算题、分析:根据矩形的性质得出DC=AB=5,∠D=∠ABC=90°,根据勾股定理求出AC,求出AM、OM、BO,即可求出答案、解答:解:∵四边形ABCD是矩形,∴DC=AB=5,∠D=∠ABC=90°,由勾股定理得:AC==13,∵点O是矩形ABCD的对角线AC的中点,点M是AD的中点,∴OM=CD=,BO=AC=,AM=AD=6,∴四边形ABOM的周长为:AB+BO+OM+AM=5+++6=20,故答案为:20、点评:此题考查了矩形的性质,直角三角形斜边上中线,三角形的中位线的应用,解此题的关键是求出四边形ABOM的各个边的长度、18、〔4分〕如图,从正方形ABCD上截取宽为2CM的矩形BCEF,剩下矩形AFED的面积为48CM2,那么正方形ABCD的边长为8CM、考点:一元二次方程的应用、专题:几何图形问题、分析:首先设出正方形的边长,然后表示出矩形的宽,利用矩形的面积公式进行计算即可、解答:解:设正方形的边长为XCM,那么AF的长为〔X﹣2〕,根据题意得:X〔X﹣2〕=48,解得:X=8或X=﹣6〔舍去〕,故答案为:8、点评:此题考查了一元二次方程的应用,能够根据设出的正方形的边长表示出矩形的宽是解答此题的关键、19、〔4分〕如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,那么△CDP的面积为1、考点:正方形的性质;等腰三角形的性质、分析:首先利用等腰三角形的性质得出PE=1,进而利用三角形面积求法得出即可、解答:解:过点P作PE⊥DC于点E,∵△PBC为等腰三角形,∴P在线段BC的垂直平分线上,∴PE=BC=1,∴△CDP的面积为:×2×1=1、故答案为:1、点评:此题主要考查了正方形的性质以及等腰三角形的性质,得出PE的长是解题关键、20、〔4分〕如图,在菱形ABCD中,AB=4,∠C=120°,AE⊥BC于E,AF⊥CD于F,连接EF,那么△AEF的面积为3、考点:菱形的性质、分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积、解答:解:∵四边形ABCD是菱形,∠C=120°,∴AB∥CD,BC=CD,∴∠B=∠D=180°﹣120°=60°,∵AE⊥BC,AF⊥CD,∴AB•AE=AD•AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,过A作AM⊥EF,∴AM=AE•SIN60°=3,∴△AEF的面积是:EF•AM=×2×3=3、故答案为:3、点评:此题考查菱形的性质,等边三角形的判定及三角函数的运用、关键是掌握菱形的性质,证明△AEF是等边三角形、【三】解答题〔本大题8个小题,共70分〕21、〔6分〕用配方法解方程:3X2+8X+4=0、考点:解一元二次方程-配方法、分析:首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解、解答:解:由3X2+8X+4=0,得移项,得3X2+8X=﹣4,化系数为1,得X2+X=﹣,配方,得X2+X+〔〕2=﹣+〔〕2,即〔X﹣〕2=,开方,得X﹣=±,解得X1=2,X2=、点评:此题考查了配方法解一元二次方程、配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方、选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数、22、〔6分〕如图,在菱形ABCD中,AC、BD交于点O,DE⊥AB于E,假设AC=8,BD=6,求DE的长、考点:菱形的性质、分析:根据菱形性质求出AC⊥BD,AO=OC,BO=DO,求出AO和BO,根据勾股定理求出AB,根据菱形面积的求法求出即可、解答:解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,BO=DO,∵AC=8,BD=6,∴∠AOB=90°,AO=4,BO=3,由勾股定理得:AB==5,由菱形面积公式得:AC×BD=AB×DE,∴×8×6=5×DE,∴DE=4、8、点评:此题考查了勾股定理,菱形的性质的应用,解此题的关键是得出关于DE 的方程、23、〔8分〕在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED、〔1〕求证:△BEC≌△DEC;〔2〕延长BE交AD于F,当∠BED=120°时,求∠EFD的度数、考点:正方形的性质;全等三角形的判定与性质、专题:计算题;证明题、分析:〔1〕在证明△BEC≌△DEC时,根据题意知,运用SAS公理就行;〔2〕根据全等三角形的性质知对应角相等,即∠BEC=∠DEC=∠BED,又由对顶角相等、三角形的一个内角的补角是另外两个内角的和求得∠EFD=∠BEC+∠CAD、解答:〔1〕证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°、∴在△BEC与△DEC中,∴△BEC≌△DEC〔SAS〕、〔2〕解:∵△BEC≌△DEC,∴∠BEC=∠DEC=∠BED、∵∠BED=120°,∴∠BEC=60°=∠AEF、∴∠EFD=60°+45°=105°、点评:解答此题要充分利用正方形的特殊性质、全等三角形的判定与性质、以及对顶角相等等知识、24、〔8分〕:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF、〔1〕求证:△DOE≌△BOF;〔2〕当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由、考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定、专题:几何综合题、分析:〔1〕利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF 〔ASA〕;〔2〕首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案、解答:〔1〕证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF〔ASA〕;〔2〕解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形、点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键、25、〔10分〕有两个正方形,小正方形的边长比大正方形的边长的一半多1CM,大正方形的面积比小正方形的面积的2倍多4CM2、〔1〕假设设大正方形的边长为XCM,请列出方程,并将其化为一般形式、〔2〕完成下表:X 5 6 7 8 9 10AX2+BX+C ﹣7 0 9 20 33 48〔3〕根据上表求出大正方形的边长、考点:一元二次方程的应用、专题:几何图形问题、分析:〔1〕可设大正方形的边长为XCM,从而可以表示出小正方形的边长,然后根据题意就可建立关于X的方程,再将其化为一般形式即可、〔2〕只需将X所对应的值代入X2﹣4X﹣12即可解决问题、〔3〕由表可知大正方形的边长就是使得代数式X2﹣4X﹣12的值等于0的X的值、解答:解:〔1〕设大正方形的边长为XCM,那么小正方形的边长为〔X+1〕CM、根据题意,得X2=2〔X+1〕2+4,整理得:X2﹣4X﹣12=0、〔2〕当X=5时,X2﹣4X﹣12=﹣7;当X=6时,X2﹣4X﹣12=0;当X=7时,X2﹣4X﹣12=9;当X=8时,X2﹣4X﹣12=20;当X=9时,X2﹣4X﹣12=33;当X=10时,X2﹣4X﹣12=48、故答案分别为:﹣7、0、9、20、33、48、〔3〕由表格可知:当X=6时,X2﹣4X﹣12=0、故由上表能知道大正方形的边长,该边长是6CM、点评:此题主要是考查一元二次方程的应用,将问题设计成问题串的形式,指引了思维的方向,有利于问题的解决、26、〔10分〕如图,矩形ABCD的边长AB=3CM,BC=6CM,某一时刻,动点M从点A 出发沿AB方向以1CM∕S的速度向点B匀速运动;同时,动点N从点D沿DA方向以2CM∕S的速度向点A匀速运动、经过多少时间,△AMN的面积等于矩形ABCD面积的?考点:一元二次方程的应用;矩形的性质、专题:几何图形问题、分析:易得AM,AN的长,利用△AMN的面积等于矩形ABCD面积的列出等式求解即可、解答:解:设经过T秒,S△AMN等于S矩形ABCD的,AM=T,AN=6﹣2T,,,T2﹣3T+2=0,T1=2,T2=1、答:经过1秒或2秒时,△AMN的面积等于矩形ABCD面积的、点评:考查一元二次方程的应用;得到三角形的面积与矩形面积的关系式是解决此题的关键、27、〔10分〕如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G、〔1〕求证:四边形DEBF是菱形;〔2〕请判断四边形AGBD是什么特殊四边形?并加以证明、考点:矩形的判定;等边三角形的判定与性质;三角形中位线定理;平行四边形的性质;菱形的判定、专题:几何综合题、分析:〔1〕利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;〔2〕利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形、解答:〔1〕证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BCE,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=DF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°∴△AED是等边三角形,即DE=AE=AD,故DE=BE∴平行四边形DEBF是菱形、〔2〕解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB∴四边形AGBD是平行四边形由〔1〕的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°故∠ADB=90°∴平行四边形AGBD是矩形、点评:此题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法、28、〔12分〕如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H、〔1〕求证:EB=GD;〔2〕判断EB与GD的位置关系,并说明理由;〔3〕假设AB=2,AG=,求EB的长、考点:正方形的性质;全等三角形的判定与性质;勾股定理、专题:几何综合题;压轴题、分析:〔1〕在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD;〔2〕EB⊥GD,由〔1〕得∠ADG=∠ABE那么在△BDH中,∠DHB=90°所以EB⊥GD;〔3〕设BD与AC交于点O,由AB=AD=2在RT△ABD中求得DB,所以得到结果、解答:〔1〕证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB〔SAS〕,∴EB=GD;〔2〕解:EB⊥GD、理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB〔对顶角相等〕,∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣〔∠HDM+∠DMH〕=180°﹣90°=90°,∴EB⊥GD、〔3〕解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在RT△ABD中,DB=,在RT△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=、点评:此题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长、。

辽宁省本溪市2019-2020学年中考数学模拟试题(1)含解析

辽宁省本溪市2019-2020学年中考数学模拟试题(1)含解析

辽宁省本溪市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )A.1 B.2 C.3 D.42.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣13.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=25.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线6yx=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5 B.6 C.7 D.87.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80°B.70°C.60°D.50°8.某运动会颁奖台如图所示,它的主视图是()A.B.C.D.9.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70°B.80°C.90°D.100°10.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.11.下列图形中,是正方体表面展开图的是()A.B.C. D.12.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:263⨯+=________.14.如图,在正六边形ABCDEF中,AC于FB相交于点G,则AGGC值为_____.15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.16.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.17.如图,路灯距离地面6m,身高1.5m的小明站在距离灯的底部(点O)15m的A处,则小明的影子AM的长为________m.18.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC 交于点B 、C ,测得∠ABC =45°,∠ACB =30°,且BC =20米.(1)请用圆规和直尺画出路灯A 到地面BC 的距离AD ;(不要求写出画法,但要保留作图痕迹) (2)求出路灯A 离地面的高度AD .(精确到0.1米)(参考数据:2≈1.414,3≈1.732).20.(6分)已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (﹣12,32),M (0,-1)中,⊙O 的“关联点”为______; (2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为5,求n 的值; (3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线y =﹣43x+4与x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.21.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图2,(1)分别以点B 和点C 为圆心,BA ,CA 为半径作弧,两弧相交于点E ;(2)作直线AE 交BC 边于点D .所以线段AD 就是所求作的高.请回答:该尺规作图的依据是______.22.(8分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 23.(8分)先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.24.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.25.(10分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.26.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.27.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,ACD CBEADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质. 2.D【解析】【分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.3.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA+=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.4.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.5.C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.6.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12C E•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.7.B【解析】【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.8.C【解析】【分析】【详解】从正面看到的图形如图所示:,故选C.9.B【解析】【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.10.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.12.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】【分析】分母有理化,然后相加即可.【详解】解:原式=33=【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.12.【解析】【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴AGGC=12;故答案为:12.【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.15.6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒,第3个图形有10=6×1+8根火柴棒,……,第n个图形有6n+1根火柴棒.16.23﹣2 3π【解析】【分析】过点F作FE⊥AD于点E,则AE=12AD=12AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3.∴S弓形AF=S扇形ADF-S△ADF=60412233 36023ππ⨯-⨯⨯=-,∴ S阴影=2(S扇形BAF-S弓形AF)=2×[304233603ππ⨯⎛⎫--⎪⎝⎭]=2×(12333ππ-+)=2233π-.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.17.1.【解析】【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.解:根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知 AB AM OC OA AM=+ , 即1.5615AM AM=+, 解得AM=1m .则小明的影长为1米.故答案是:1.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.18.3【解析】【分析】延长AC 和BD ,交于M 点,M 、E 、F 三点共线,EF=MF -ME.【详解】延长AC 和BD ,交于M 点,M 、E 、F 三点共线,∵∠C+∠D=90°,∴△MCD 是直角三角形,∴MF=1CD 2,同理ME=1AB 2,∴EF=MF -ME=4-1=3. 【点睛】本题考查了直角三角形斜边中线的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)是7.3米【解析】【分析】 (1)图1,先以A 为圆心,大于A 到BC 的距离为半径画弧交BC 与EF 两点,然后分别以E 、F 为圆心画弧,交点为G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;图2,分别以B 、C 为圆心,BA 为半径画弧,交于点G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;(2)在△ABD 中,DB=AD ;在△ACD 中,3,BC=BD+CD ,由此可以建立关于AD 的方程,解方程求解.解:(1)如下图,图1,先以A 为圆心,大于A 到BC 的距离为半径画弧交BC 与EF 两点,然后分别以E 、F 为圆心画弧,交点为G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;图2,分别以B 、C 为圆心,BA 为半径画弧,交于点G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;(2)设AD =x ,在Rt △ABD 中,∠ABD =45°,∴BD =AD =x ,∴CD =20﹣x .∵tan ∠ACD =AD DC, 即tan30°=20x x -, ∴x =20tan 301tan 3031︒︒=++=1031)≈7.3(米). 答:路灯A 离地面的高度AD 约是7.3米.【点睛】解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可.20.(1)F ,M ;(1)n =1或﹣1;(31365-或65 13 【解析】【分析】(1)根据定义,认真审题即可解题,(1)在直角三角形PHQ 中勾股定理解题即可,(3)当⊙D 与线段AB 相切于点T 时,由sin ∠OBA=OA DT AB BD =,得DT =DH 1=65,进而求出m 1=65即可,②当⊙D 过点A 时,连接AD .由勾股定理得DA 22OD OA +DH 113.【详解】解:(1)∵OF =OM =1,∴点F 、点M 在⊙上,∴F 、M 是⊙O 的“关联点”,故答案为F,M.(1)如图1,过点Q作QH⊥x轴于H.∵PH=1,QH=n,PQ=5.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=(5)1,解得,n=1或﹣1.(3)由y=﹣43x+4,知A(3,0),B(0,4)∴可得AB=5①如图1(1),当⊙D与线段AB相切于点T时,连接DT.则DT⊥AB,∠DTB=90°∵sin∠OBA=OA DT AB BD,∴可得DT=DH1=6 5 ,∴m1=6 5 ,②如图1(1),当⊙D过点A时,连接AD.由勾股定理得DA22OD OA+DH1131365-或6513【点睛】本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.21.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】【分析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.22.3 5【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b +-++,=b a b+, 解方程组2428a b a b --⎧⎨+⎩==得23a b ⎧⎨⎩==, 所以原式=33=2+35. 【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.24.(1)y=12(x ﹣3)1﹣1;(1)11<x 3+x 4+x 5<. 【解析】【分析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x 轴的直线与图象“G”有1个交点、1个交点时x 3+x 4+x 5的取值范围,易得直线与图象“G”要有3个交点时x 3+x 4+x 5的取值范围.【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)设二次函数表达式为:y=a (x ﹣3)1﹣1.∵该图象过A(1,0)∴0=a(1﹣3)1﹣1,解得a=12.∴表达式为y=12(x﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=12(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣12(x﹣3)1+1,∴令12(x﹣3)1+1=﹣1时,解得2或x=3﹣2∴x3+x4+x5<2综上所述11<x3+x4+x5<2【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.25.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.26.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.27.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y x y x =-⎧⎪⎨=⎪⎩,解得:1122x y =⎧⎨=⎩,2214x y =-⎧⎨=-⎩, ∴C (﹣1,﹣4),由图象得:y 1<y 1时x 的取值范围是x <﹣1或0<x <1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.。

辽宁省本溪市2019-2020学年中考数学仿真第一次备考试题含解析

辽宁省本溪市2019-2020学年中考数学仿真第一次备考试题含解析

辽宁省本溪市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D . 2.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些3.如图所示的几何体,它的左视图与俯视图都正确的是( )A .B .C .D .4.如图,点F 是Y ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A .18B .22C .24D .465.m-n 的一个有理化因式是( )A .m n +B .m n -C .m n +D .m n -6.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)7.如图,△ABC 中,∠C=90°,D 、E 是AB 、BC 上两点,将△ABC 沿DE 折叠,使点B 落在AC 边上点F 处,并且DF ∥BC ,若CF=3,BC=9,则AB 的长是( )A .254B .15C .454D .98.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 9.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .610.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( )A .三条高的交点B .重心C .内心D .外心 11.若分式31x +在实数范围内有意义,则实数x 的取值范围是( ) A .1x >- B .1x <- C .1x =- D .1x ≠-12.如图,在平行四边形ABCD 中,E 是边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F ,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )A .40°B .36°C .50°D .45°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC 中,∠C=90°,AM 是BC 边上的中线,cos∠AMC3=5,则tan∠B 的值为__________.14.8的算术平方根是_____.15.函数y=12x的定义域是________.16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.17.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.18.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A 的坐标为(6,0),⊙P的半径为13,则点P的坐标为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.20.(6分)如图,一次函数y=﹣34x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)21.(6分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.22.(8分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF(1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.23.(8分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.24.(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.25.(10分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求直线AB和反比例函数的解析式;(1)求△OCD的面积.26.(12分)在正方形ABCD 中,M 是BC 边上一点,且点M 不与B、C 重合,点P 在射线AM 上,将线段AP 绕点 A 顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C 恰好在同一条直线上,则BP 与AB 的数量关系为:.27.(12分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.2.B【解析】试题解析:方差越小,波动越小.22,A B s s Q数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D .考点:D.4.B【解析】【分析】连接FC ,先证明△AEF ∽△BEC ,得出AE ∶EC=1∶3,所以S △EFC =3S △AEF ,在根据点F 是□ABCD 的边AD 上的三等分点得出S △FCD =2S △AFC ,四边形CDFE 的面积=S △FCD + S △EFC ,再代入△AEF 的面积为2即可求出四边形CDFE 的面积.【详解】解:∵AD ∥BC ,∴∠EAF=∠ACB,∠AFE=∠FBC ;∵∠AEF=∠BEC ,∴△AEF ∽△BEC , ∴AF BC =AE EC =13, ∵△AEF 与△EFC 高相等,∴S △EFC =3S △AEF ,∵点F 是□ABCD 的边AD 上的三等分点,∴S △FCD =2S △AFC ,∵△AEF 的面积为2,∴四边形CDFE 的面积=S △FCD + S △EFC =16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.5.B【解析】【分析】找出原式的一个有理化因式即可.【详解】故选B.【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.6.B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.7.C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.8.D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.9.C【解析】【分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.10.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.11.D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:x10+≠,x1∴≠-,故选:D.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.12.B【解析】【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D ′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED′是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23【解析】【分析】根据cos ∠AMC 3=5,设3MC x =, 5AM x =,由勾股定理求出AC 的长度,根据中线表达出BC 即可求解.【详解】解:∵cos ∠AMC 3=5, 35MC cos AMC AM ∠==, 设3MC x =, 5AM x =,∴在Rt △ACM 中,4AC x =∵AM 是 BC 边上的中线,∴BM=MC=3x ,∴BC=6x ,∴在Rt △ABC 中,42tan 63AC x B BC x ∠===, 故答案为:23. 【点睛】 本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.14..【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8,,∴8的算术平方根是.故答案为.考点:算术平方根.x≠15.2【解析】分析:根据分式有意义的条件是分母不为0,即可求解.≠.详解:由题意得:x-2≠0,即x2≠故答案为x2点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.16.15【解析】【分析】根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.【详解】解:∵OABC为平行四边形,OA=OC=OB,∴四边形OABC为菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案为:15.【点睛】本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.17.1.1【解析】【分析】求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴DF DE BC CE=,∴1 32 DF=,∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.18.(3,2).【解析】【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【详解】过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=12OA=3,在Rt△OPD中∵13OD=3,∴PD=2∴P(3,2) .故答案为(3,2).【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.20.(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】【分析】(1)先求出△OPA的面积为6时BP的长,再求出点P的坐标;(2)分别讨论AO=AP,AP=OP和AO=OP三种情况. 【详解】(1)在y=-34x+6中,令x=0,得y=6,令y=0,得x=8,∴A(0,6),B(8,0),∴OA=6,OB=8,∴AB=10,∴AB边上的高为6×8÷10=245,∵P点的运动时间为t,∴BP=t,则AP=10t-,当△AOP面积为6时,则有12AP×245=6,即1102t-×245=6,解得t=7.5或12.5,过P作PE⊥x轴,PF⊥y轴,垂足分别为E、F,则PE=·AO PBAB=4.5或7.5,BE=·OB PBAB=6或10,则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由题意可知BP=t,AP=10t-,当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.①当AP=AO时,则有10t-=6,解得t=4或16;②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,则AN=12AP=12(10-t),∵PH∥AO,∴△AOB∽△PHB,∴PBPH=ABAO,即tPH=106,∴PH=35t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,又∠ANO=∠PHB,∴△ANO∽△PHB,∴PBAO=PHAN,即6t=()351102tt-,解得t=145;综上可知当t的值为145、4、5和16时,△AOP为等腰三角形.21.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y 2=mx+n ,∵3261m n m n +=⎧⎨+=⎩, ∴ 133m n ⎧=-⎪⎨⎪=⎩ ,∴直线C′B′的解析式为y 2=﹣13x+3; (3)由图象可知反比例函数y 1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y 1<y 2时,则3<x <1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt △CAN 和Rt △AOB ;(2)利用平移的性质结合点B 、C 的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.22.(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE 为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到∠FAB=∠CAB ,然后利用SAS 证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE 为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE ,利用邻边相等的平行四边形是菱形进行判断四边形ADFE 是菱形.详解:(1)证明:∵EF ∥AB∴∠FAB=∠EFA ,∠CAB=∠E∵AE=AF∴∠EFA =∠E∴∠FAB=∠CAB∵AC=AF ,AB=AB∴△ABC ≌△ABF∴∠AFB=∠ACB=90°, ∴BF 是⊙A 的切线.(2)当∠CAB=60°时,四边形ADFE为菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等边三角形∴AE=EF,∵AE=AD∴EF=AD∴四边形ADFE是平行四边形∵AE=EF∴平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.23.作图见解析.【解析】【分析】由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.24.(1)50(2)420(3)P=5 8【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;(2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有1450×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:816=12.考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频25.(1)122y x=-+,6yx=-;(1)2.【解析】试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO=AO CE BO BE==12,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为y kx b=+,则240bk b=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,故直线AB的解析式为122y x=-+,设反比例函数的解析式为myx=(0m≠),将点C的坐标代入,得3=2m-,∴m=﹣3.∴该反比例函数的解析式为6yx=-;(1)联立反比例函数的解析式和直线AB的解析式可得6122yxy x⎧=-⎪⎪⎨⎪=-+⎪⎩,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.考点:反比例函数与一次函数的交点问题.26.(1)详见解析;(1)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP 绕点 A 顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD 中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图 3 中,连接AC,延长CD 到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴27.(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.。

辽宁省本溪市2019-2020学年中考数学一模考试卷含解析

辽宁省本溪市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩2.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG 于点F,则AE-GF的值为()A.1 B.C.D.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图的立体图形,从左面看可能是()A.B.C.D.5.若正六边形的边长为6,则其外接圆半径为()A.3 B.2C.3D.66.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=22.其中正确的结论有()A.4个B.3个C.2个D.1个8.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.10.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣13x的图象如图所示,则方程ax2+(b+13)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定11.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.412.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.14.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.15.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).16.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.17.从-5,-103,6,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)20.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.21.(6分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?22.(8分)如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.23.(8分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;若AD=DC=2,求AB的长.24.(10分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B 两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.(1)图中的线段l 1是 (填“甲”或“乙”)的函数图象,C 地在B 地的正北方向 千米处;(2)谁先到达C 地?并求出甲乙两人到达C 地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C 地,求他提速后的速度. 25.(10分)如图,在Rt △ABC 中,∠C=90°,O 、D 分别为AB 、AC 上的点,经过A 、D 两点的⊙O 分别交于AB 、AC 于点E 、F ,且BC 与⊙O 相切于点D .(1)求证:;(2)当AC=2,CD=1时,求⊙O 的面积.26.(12分)已知开口向下的抛物线y=ax 2-2ax+2与y 轴的交点为A ,顶点为B ,对称轴与x 轴的交点为C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N .(1)求点D 的坐标.(2)求点M 的坐标(用含a 的代数式表示).(3)当点N 在第一象限,且∠OMB=∠ONA 时,求a 的值.27.(12分)如图,在平面直角坐标系中,直线y x m =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,与函数(0)k y x x=>的图象的一个交点为(3,)C n .(1)求m ,n ,k 的值;(2)将线段AB 向右平移得到对应线段A B '',当点B '落在函数(0)k y x x=>的图象上时,求线段AB 扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 2.D【解析】【分析】设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=AD=,同理:BE=AE=x, CD=AB=x,∴CG=CD-DG=x -1,同理: CG=GF,∴FG=,∴AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3.C【解析】【分析】根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质4.A【解析】【分析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.5.D【解析】【分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.6.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数7.A【解析】【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正确.由AD∥BC,推出△AEF∽△CBF,推出AEBC=AFCF,由AE=12AD=12BC,推出AFCF=12,即CF=2AF;③正确.只要证明DM垂直平分CF,即可证明;④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,可得tan∠CAD=CDAD=2ba=22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=22.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.8.D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.9.C【解析】.详解:49 911,4 <<Q由被开方数越大算术平方根越大,<<即73,2<<故选C.的大小. 10.C【解析】【分析】设20(0)ax bx c a++=≠的两根为x1,x2,由二次函数的图象可知12x x0+<,a>0;设方程210(0)3ax b x c a⎛⎫+++=≠⎪⎝⎭的两根为m,n,再根据根与系数的关系即可得出结论.【详解】解:设20(0)ax bx c a++=≠的两根为x1,x2,∵由二次函数的图象可知12x x0+<,a>0,ba∴-<.设方程210(0)3ax b x c a⎛⎫+++=≠⎪⎝⎭的两根为m,n,则1133b bm na a a++=-=--10300a a b am m >∴-<-<∴+<Q Q . 故选C .【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键.11.B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键. 12.A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12,∴AM=cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,2).故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.14.3【解析】【分析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.15.③【解析】【分析】根据直线与点的位置关系即可求解.【详解】①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为③.【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.16.y1<y1【解析】【分析】直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.17.2 7【解析】【分析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:2 7【详解】105,,1,0,2, 3π---这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:2 7故答案为2 7【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.18.1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2 -1 1 2-2 2 -2 -4-1 2 -1 -21 -2 -1 22 -4 -2 2由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A【解析】过点A作AD⊥BC于点D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A20.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =﹣10x 2+130x+2300=﹣10(x ﹣6.5)2+2722.5,∵a =﹣10<0,∴当x =6.5时,y 有最大值为2722.5,∵0<x≤10且x 为正整数,∴当x =6时,30+x =36,y =2720(元),当x =7时,30+x =37,y =2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.22.(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.【详解】(1)当x=1时,n=﹣12×1+4=1, ∴点B 的坐标为(1,1).∵反比例函数y=k x过点B (1,1), ∴k=1×1=1;(2)∵k=1>0,∴当x >0时,y 随x 值增大而减小,∴当2≤x≤1时,1≤y≤2.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.23.(1)证明见解析;(2)【解析】【详解】(1)证明:∵90ABC ∠=o ,DE ⊥AC 于点F ,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.连接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴1122 AF AC AE ==∴∠E=30°∴∠FAD=∠E=30°∴324.(1)乙;3;(2)甲先到达,到达目的地的时间差为32小时;(3)速度慢的人提速后的速度为43千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处. (2)甲先到达.设甲的函数解析式为s=kt,则有4=t,∴s=4t.∴当s=6时,t=3 2 .设乙的函数解析式为s=nt+3,则有4=n+3,即n=1. ∴乙的函数解析式为s=t+3.∴当s=6时,t=3.∴甲、乙到达目的地的时间差为:33322-=(小时).(3)设提速后乙的速度为v千米/小时,∵相遇处距离A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原来相遇后乙行2小时才到达C地,∴乙提速后2千米应用时1.5小时.即322v=,解得:43v=,答:速度慢的人提速后的速度为43千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.25.(1)证明见解析;(2).【解析】【分析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.【详解】证明:连接OD,∵BC为圆O的切线,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,则;(2)解:连接ED,在Rt△ACD中,AC=2,CD=1,根据勾股定理得:AD=,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即AD2=AC•AE,∴AE=,即圆的半径为,则圆的面积为.【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.26.(1)D(2,2);(2)22,0Ma⎛⎫-⎪⎝⎭;(3)12【解析】【分析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D 关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N 的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+-∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得: 2{22a k bk b -=+=+ ,解得:{22k ab a ==-∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a -∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭(3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得: 2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形. ∵OA=2∴,21a +)12(1a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a---=,BE=2-a ∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴AE BE EN CM=,即222121aaaaa-=--⎛⎫⎪+⎝⎭解得:a=12+或a12=-∵抛物线开口向下,故a<0,∴ a=12+舍去,a12=-【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.27.(1)m=4, n=1,k=3.(2)3.【解析】【分析】(1)把点(4,0)A,分别代入直线y x m=-+中即可求出m=4,再把(3,)C n代入直线y x m=-+即可求出n=1.把(3,1)C代入函数(0)ky xx=>求出k即可;(2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点(4,0)A ,分别代入直线y x m =-+中得:-4+m=0,m=4,∴直线解析式为4y x =-+. 把(3,)C n 代入4y x =-+得: n=-3+4=1.∴点C 的坐标为(3,1)把(3,1)代入函数(0)k y x x =>得: 13k = 解得:k=3.∴m=4, n=1,k=3.(2)如图,设点B 的坐标为(0,y )则y=-0+4=4 ∴点B 的坐标是(0,4)当y=4时,34x= 解得,34x = ∴点B’(34,4) ∵A’,B’是由A,B 向右平移得到, ∴四边形AA’B’B 是平行四边形, 故四边形AA’B’B 的面积=34⨯4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.。

辽宁本溪高新技术开发区2019中考一模数学试卷(解析版)

2019年辽宁省本溪市高新技术开发区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.3x2﹣7x=﹣4x B.﹣3y2+4y2=y2C.(﹣a2)3=a6D.(﹣a)2•a4=﹣a62.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.若a>b成立,则下列不等式成立的是()A.﹣a>﹣b B.﹣a+1>﹣b+1C.﹣(a﹣1)>﹣(b﹣1)D.a﹣1>b﹣15.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形6.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.7.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为()A.+=21B.+=21C.+=21D.+=218.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣210.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.12.因式分解:m3n﹣9mn=.13.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.15.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是16.已知=1,则的值等于.17.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.18.在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是.三.解答题(共2小题,满分22分)19.先化简,再求值:(2﹣)÷,其中x=﹣3.20.已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.四.解答题(共2小题,满分24分,每小题12分)21.某校开展了以“责任、感恩”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,(1)该班有人,学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度;(2)如果该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有人;(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).22.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.五.解答题(共1小题,满分12分,每小题12分)23.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)六.解答题(共1小题,满分12分,每小题12分)24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七.解答题(共1小题,满分12分,每小题12分)25.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.八.解答题(共1小题,满分14分,每小题14分)26.如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC(1)点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;(2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ沿PQ翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.2019年辽宁省本溪市高新技术开发区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据合并同类项、同底数幂的乘方和幂的乘方计算即可.【解答】解:A、3x2与﹣7x不是同类项,不能合并,错误;B、﹣3y2+4y2=y2,正确;C、(﹣a2)3=﹣a6,错误;D、(﹣a)2•a4=a6,错误;故选:B.【点评】此题考查幂的乘方与积的乘方,关键是根据法则解答.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.4.【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变可知.【解答】解:A、不等式a>b两边都乘﹣1,不等号的方向不变,不等式不成立,不符合题意;B、不等式a>b两边都乘﹣1,不等号的方向改变,都加1,不等号的方向不变,不等式不成立,不符合题意;C、不等式a>b两边都减1,不等号的方向不变,都乘﹣1,不等号的方向改变,不等式不成立,不符合题意;D、不等式a>b两边都减1,不等号的方向不变,不等式成立,符合题意;故选:D.【点评】主要考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.5.【分析】把点的坐标代入可判断A;由函数解析式可求得图象所在的位置,则可判断B;利用反比例函数的增减性可判断C;利用图象的性质可判断D;则可求得答案.【解答】解:当x=﹣1时,y=﹣=4≠﹣4,故点(﹣1,﹣4)不在函数图象上,故A不正确;在y=﹣中,k=﹣4<0,∴当x<0时,其图象在第二象限,在每个象限内y随x的增大而增大,图象既是轴对称图形也是中心对称图形,故B正确,C、D不正确;故选:B.【点评】本题主要考查反比例函数的性质,掌握反比例函数图象的性质是解题的关键,即在y=中,由k的符号判断出图象的位置、增减性等.6.【分析】根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.【分析】设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,根据工作时间=工作总量÷工作效率结合共用了21天完成全部任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,依题意,得:+=21.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.9.【分析】由于原点是抛物线y=(m+1)x2的最低点,这要求抛物线必须开口向上,则m+1>0,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最低点,∴m+1>0,即m>﹣1.故选:C.【点评】本题考查了二次函数最值、二次函数的性质,二次函数有最低点,抛物线的开口向上是解题的关键.10.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共8小题,满分24分,每小题3分)11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】原式提取mn后,利用平方差公式分解即可.【解答】解:原式=mn(m2﹣9)=mn(m+3)(m﹣3).故答案为:mn(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据平均数确定出x后,再根据方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算方差.【解答】解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.【点评】此题考查了平均数和方差的定义.平均数是所以数据的和除以所有数据的个数.方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].14.【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【解答】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.【点评】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.15.【分析】首先由平均数的定义得出x1+x2+…,+x n的值,再运用求算术平均数的公式计算,求出样本x1+2,x2+2,…,x n+2的平均数.【解答】解:∵样本x1,x2,…x n的平均数为5,(x1+2)+(x2+2)+…+(x n+2)=(x1+x2+…+x n)+2n ∴样本x1+2,x2+2,…,x n+2的平均数=5+2=7,故答案为:7.【点评】主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.16.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.【点评】本题考查了分式的化简求值、整体代入的思想.解题的关键是先求出a﹣b的值.17.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】从特殊得到一般探究规律后,利用规律解决问题即可;【解答】解:∵直线l:y=x﹣与x轴交于点B1∴B1(1,0),OB1=1,△OA1B1的边长为1;∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,∴∠A1B1B2=90°,∵∠A1B2B1=30°,∴A1B2=2A1B1=2,△A2B3A3的边长是2,同法可得:A2B3=4,△A2B3A3的边长是22;由此可得,△A n B n+1A n+1的边长是2n,∴△A2017B2018A2018的边长是22017.故答案为22017.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△A n B n+1A n+1的边长是2n.三.解答题(共2小题,满分22分)19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)根据选择进取的人数是12,占总人数的30%,据此即可求得总人数;总人数乘以选择“和谐”观点的比例即可求得选择“和谐”观点的人数;选择“和谐”观点的百分比乘以360°,即可求得,“和谐”观点所在扇形区域的圆心角;(2)总人数360乘以选择“感恩”观点比例,即可求得;(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示,即可利用概率公式求解.【解答】解:(1)该班的总人数是:12÷30%=40(人);选择“和谐”观点的有40×10%=4(人);“和谐”观点所在扇形区域的圆心角是360°×10%=36°.(2)该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有:360×25%=90(人).(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示:共有20种情况,选择和谐、感恩的有2种情况,因而恰好选到“和谐”和“感恩”观点的概率是:=.故答案是:40,4,36;90.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.五.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)只要证明△CFP1是等腰直角三角形,即可解决问题;(2)解直角三角形求出CP2的长即可解决问题;【解答】解:(1)如图2中,当P位于初始位置时,CP0=2m,如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C=m,∴P0P1=CP0﹣P1C=2﹣≈0.6m,即为使遮阳效果最佳,点P需从P0上调0.6m.(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.∵P2E∥AB,∴∠CP2E=∠CAB=90°,∵∠DP2E=20°,∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=2×1×cos70°≈0.68m,∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,即点P在(1)的基础上还需上调0.7m.【点评】本题考查了解直角三角形的应用﹣方向角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.六.解答题(共1小题,满分12分,每小题12分)24.【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;(2)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解;(3)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w关于x的函数解析式,再根据二次函数的性质即可求解.【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点评】本题考查了二次函数的应用,一元二次方程的应用,待定系数法求一次函数的解析式,根据题意找出等量关系列出关系式是解题的关键.七.解答题(共1小题,满分12分,每小题12分)25.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.八.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)先求出点B、C、D的坐标,可求直线BC解析式且得到∠OCB=45°.由GE∥y轴和GF⊥BC可得△GEF是等腰直角三角形,则GE最大时其周长最大.设点G坐标为(a,﹣a2+2a+3),则点E(a,﹣a+3),可列得GE与a的函数关系式,配方可求出其最大值,得到此时的G坐标和EF的长,即得到MN 长.求DM+MN+NG最小值转化为求DM+NG最小值.先作D关于直线BC的对称点D1,再通过平移MD1得D2,构造“将军饮马”的基本图形求解.(2)由翻折得DD'⊥PQ,PD=PD',再由P为BD中点证得∠BD'D=90°,得PQ∥BD',又D'P中点H在BQ上,可证△PQH≌△D'BH,所以有D'Q∥BP即四边形DQD'P为菱形,得DQ=DP.设Q点坐标为(q,﹣q+3)即可列方程求得.再根据题意把点A'、C'求出.以点Q、A′、C′、T为顶点的四边形是平行四边形,要进行分类讨论,结合图形,利用平行四边形对边平行的性质,用平移坐标的方法即可求得点T.【解答】解:(1)y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4∴抛物线与x轴交于点A(﹣1,0)、点B(3,0),与y轴交于点C(0,3),顶点D(1,4),∴直线CB解析式:y=﹣x+3,∠BCO=45°∵GE∥y轴,GF⊥BC∴∠GEF=∠BCO=45°,∠GFE=90°∴△GEF是等腰直角三角形,EF=FG=GE=EF+FG+GE=(+1)GE∴C△GEF设点G(a,﹣a2+2a+3),则点E(a,﹣a+3),其中0<a<3∴GE=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a=﹣(a﹣)2+∴a=时,GE有最大值为∴△GEF的周长最大时,G(,),E(,),∴MN=EF=,E点可看作点F向右平移个单位、向下平移个单位如图1,作点D关于直线BC的对称点D1(﹣1,2),过N作ND2∥D1M且ND2=D1M∴DM=D1M=ND2,D2(﹣1+,2﹣)即D2(,)∴DM+MN+NG=MN+ND2+NG∴当D2、N、G在同一直线上时,ND2+NG=D2G为最小值∵D2G=∴DM+MN+NG最小值为(2)连接DD'、D'B,设D'P与BQ交点为H(如图2)∵△△DPQ沿PQ翻折得△D'PQ∴DD'⊥PQ,PD=PD',DQ=D'Q,∠DQP=∠D'QP∵P为BD中点∴PB=PD=PD',P(2,2)∴△BDD'是直角三角形,∠BD'D=90°∴PQ∥BD'∴∠PQH=∠D'BH∵H为D'P中点∴PH=D'H在△PQH与△D'BH中∴△PQH≌△D'BH(AAS)∴PQ=BD'∴四边形BPQD'是平行四边形∴D'Q∥BP∴∠DPQ=∠D'QP∴∠DQP=∠DPQ∴DQ=DP∴DQ2=DP2=(2﹣1)2+(2﹣4)2=5设Q(q,﹣q+3)(0<q<3)∴(q﹣1)2+(﹣q+3﹣4)2=5解得:q1=,q2=(舍去)∴点Q坐标为(,3﹣)∵△AOC绕点O逆时针旋转60°得到△A′OC′∴A'(﹣,﹣),C'(﹣,)∴A'、C'横坐标差为,纵坐标差为A'、Q横坐标差为,纵坐标差为当有平行四边形A'C'TQ时(如图3),点T横坐标为,纵坐标为当有平行四边形A'C'QT时(如图4),点T横坐标为,纵坐标为当有平行四边形A'TC'Q时(如图5),点T横坐标为,纵坐标为综上所述,点T的坐标为()或(,)或()【点评】本题考查了二次函数的性质,平移的性质,轴对称求最短路径问题,旋转,轴对称性质,全等三角形的判定和性质,两点间距离公式,平行四边形的判定.考查了分类讨论、几何变换、转化思想.第(1)题关键是通过轴对称和平移构造“将军饮马”的基本图形求线段和最小值,第(2)题解题关键是发现四边形DQD'P的特殊性,再利用方程思想求点Q坐标;已知三点求构成平行四边形的第4个点坐标是常见题型,但此题已知的三点坐标数值都不是整数,计算量较大.。

辽宁省本溪市2019-2020学年中考一诊数学试题含解析

辽宁省本溪市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x a =2,x b =3,则x 3a ﹣2b 等于( )A .89B .﹣1C .17D .72 2.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D . 3.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah .例如:三点坐标分别为A (1,2),B (﹣3,1),C (2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D (1,2)、E (﹣2,1)、F (0,t )三点的“矩面积”为18,则t 的值为( )A .﹣3或7B .﹣4或6C .﹣4或7D .﹣3或6 4.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83πC .6πD .以上答案都不对5.实数4的倒数是( )A .4B .14C .﹣4D .﹣146.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 7.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A.3月份B.4月份C.5月份D.6月份8.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A 落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.49.下列图形中,不是轴对称图形的是()A.B.C.D.10.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.711.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩12.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A.众数B.中位数C.平均数D.方差二、填空题:(本大题共6个小题,每小题4分,共24分.)215.若代数式1x 在实数范围内有意义,则x的取值范围是_______.16.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O 的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.17.因式分解:x2﹣10x+24=_____.18.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=kx的图像交于E、F两点,若△DEF的面积为98,则k的值_______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)问题探究(1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求ADBE的值;(2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y 与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?21.(6分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.22.(8分)解方程:252112xx x+--=1.23.(8分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?25.(10分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长26.(12分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.27.(12分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= 89,故选A. 2.D根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.4.D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.5.B根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14. 故选:B .【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.6.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.7.B【解析】【分析】【详解】解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,【解析】【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.9.A【解析】【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.10.C【解析】则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.11.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.12.B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.减小【解析】【分析】根据反比例函数的性质,依据比例系数k的符号即可确定.【详解】∵k=2>0,∴y随x的增大而减小.故答案是:减小.【点睛】位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.14.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.15.1x≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵1x-在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.16.2 233π-【解析】试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S△OCD﹣S扇形COB=12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积. 17.(x﹣4)(x﹣6)【解析】【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)18.1【解析】【分析】利用对称性可设出E 、F 的两点坐标,表示出△DEF 的面积,可求出k 的值.【详解】解:设AF =a (a <2),则F (a ,2),E (2,a ),∴FD =DE =2−a ,∴S △DEF =12DF•DE =12()22a -=98, 解得a =12或a =72(不合题意,舍去), ∴F (12,2), 把点F (12,2)代入k y x= 解得:k =1,故答案为1.【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E 和F 的坐标是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2;(2(3【解析】【分析】(1)由等腰直角三角形的性质可得,∠ACB=∠DCE=45°,可证△ACD ∽△BCE ,可得AD CD BE CE ==2; (2)由题意可证点A ,点Q ,点C ,点P 四点共圆,可得∠QAC=∠QPC ,可证△ABC ∽△PQC ,可得PQ QC AB BC=,可得当QC ⊥AB 时,PQ 的值最小,即可求PQ 的最小值; (3)作∠DCE=∠ACB ,交射线DA 于点E ,取CE 中点F ,连接AC ,BE ,DF ,BF ,由题意可证△ABC ∽△DEC ,可得BC CE AC CD=,且∠BCE=∠ACD ,可证△BCE ∽△ACD ,可得∠BEC=∠ADC=90°,由勾股定理可求CE ,DF ,BF 的长,由三角形三边关系可求BD 的最大值.【详解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=32,CE=2,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵BCAC=323=2,CECD=2,∴BC CEAC CD==2,∠BCE=∠ACD,∴△ACD∽△BCE,∴AD CDBE CE==22;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=43,AB=2AC=83,∵∠QAP=∠QCP=90°,∴点A,点Q,点C,点P四点共圆,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴PQ QC AB BC=,∴PQ=ABBC×QC=233QC,∴当QC的长度最小时,PQ的长度最小,即当QC⊥AB时,PQ的值最小,此时QC=2,PQ的最小值为43;(3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴BC CE AC CD=,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=22BC=22,∵点F是EC中点,∴DF=EF=12CE=2,∴BF=22BE EF+=10,∴BD≤DF+BF=10+2【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.20.(1)y=23(4)8x-(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.【解析】分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC 时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=12AB,BF=12DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件. 详解:(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=B E,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键. 21.1m【解析】【分析】连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.【详解】连接AN、BQ,∵点A在点N的正北方向,点B在点Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=AN MN,∴3在Rt△BMQ中:tan∠BMQ=BQ MQ,∴3,过B作BE⊥AN于点E,则BE=NQ=30,∴AE=AN-BQ=303,在Rt△ABE中,AB2=AE2+BE2,AB2=(303)2+302,∴AB=1.答:湖中两个小亭A、B之间的距离为1米.【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 23.30元【解析】试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.考点:分式方程的应用.24.(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%, 解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(1)见解析;(2)PE=4.【解析】【分析】(1)根据同角的余角相等得到∠ACD=∠B ,然后由圆周角定理可得结论;(2)连结OE ,根据圆周角定理和等腰三角形的性质证明OE ∥CD ,然后由△POE ∽△PCD 列出比例式,求解即可.【详解】解:(1)证明:∵BC 是⊙O 的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴PO PE PC PD=∵PB=BO,DE=2 ∴PB=BO=OC∴23 PO PE PC PD==∴223 PEPE=+∴PE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.26.(1)BD ,CE 的关系是相等;(2)53417或203417;(3)1,1 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ; (2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE ,进而得到PD=53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD =,进而得出PB=63434,PD=BD+PB=203417; (3)以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.分两种情况进行讨论,即可得到旋转过程中线段PD 的最小值以及最大值.详解:(1)BD ,CE 的关系是相等.理由:∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA ,∠BAD=∠CAE ,DA=EA ,∴△ABD ≌△ACE ,∴BD=CE ;故答案为相等.(2)作出旋转后的图形,若点C 在AD 上,如图2所示:∵∠EAC=90°,∴2234AC AE +=∵∠PDA=∠AEC ,∠PCD=∠ACE ,∴△PCD ∽△ACE ,∴PD CD AE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD=2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,1=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.27.1【解析】【分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.。

2019年辽宁省本溪市高新技术开发区中考数学一模试卷(含答案解析).doc

学校班级姓名学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】2019年辽宁省本溪市高新技术开发区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.3x2﹣7x=﹣4x B.﹣3y2+4y2=y2C.(﹣a2)3=a6D.(﹣a)2•a4=﹣a62.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.若a>b成立,则下列不等式成立的是()A.﹣a>﹣b B.﹣a+1>﹣b+1C.﹣(a﹣1)>﹣(b﹣1)D.a﹣1>b﹣15.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形6.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.7.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为()A.+=21B.+=21C.+=21D.+=218.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣210.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.12.因式分解:m3n﹣9mn=.13.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.15.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是16.已知=1,则的值等于.17.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.18.在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是.三.解答题(共2小题,满分22分)19.先化简,再求值:(2﹣)÷,其中x=﹣3.20.已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.四.解答题(共2小题,满分24分,每小题12分)21.某校开展了以“责任、感恩”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,(1)该班有人,学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度;(2)如果该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有人;(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).22.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.五.解答题(共1小题,满分12分,每小题12分)23.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)六.解答题(共1小题,满分12分,每小题12分)24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.销售单价x(元) 3.5 5.5销售量y(袋)280120(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七.解答题(共1小题,满分12分,每小题12分)25.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.八.解答题(共1小题,满分14分,每小题14分)26.如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC(1)点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;(2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ 沿PQ翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.2019年辽宁省本溪市高新技术开发区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据合并同类项、同底数幂的乘方和幂的乘方计算即可.【解答】解:A、3x2与﹣7x不是同类项,不能合并,错误;B、﹣3y2+4y2=y2,正确;C、(﹣a2)3=﹣a6,错误;D、(﹣a)2•a4=a6,错误;故选:B.【点评】此题考查幂的乘方与积的乘方,关键是根据法则解答.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.4.【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变可知.【解答】解:A、不等式a>b两边都乘﹣1,不等号的方向不变,不等式不成立,不符合题意;B、不等式a>b两边都乘﹣1,不等号的方向改变,都加1,不等号的方向不变,不等式不成立,不符合题意;C、不等式a>b两边都减1,不等号的方向不变,都乘﹣1,不等号的方向改变,不等式不成立,不符合题意;D、不等式a>b两边都减1,不等号的方向不变,不等式成立,符合题意;故选:D.【点评】主要考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.5.【分析】把点的坐标代入可判断A;由函数解析式可求得图象所在的位置,则可判断B;利用反比例函数的增减性可判断C;利用图象的性质可判断D;则可求得答案.【解答】解:当x=﹣1时,y=﹣=4≠﹣4,故点(﹣1,﹣4)不在函数图象上,故A不正确;在y=﹣中,k=﹣4<0,∴当x<0时,其图象在第二象限,在每个象限内y随x的增大而增大,图象既是轴对称图形也是中心对称图形,故B正确,C、D不正确;故选:B.【点评】本题主要考查反比例函数的性质,掌握反比例函数图象的性质是解题的关键,即在y=中,由k的符号判断出图象的位置、增减性等.6.【分析】根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.【分析】设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,根据工作时间=工作总量÷工作效率结合共用了21天完成全部任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,依题意,得:+=21.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.9.【分析】由于原点是抛物线y=(m+1)x2的最低点,这要求抛物线必须开口向上,则m+1>0,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最低点,∴m+1>0,即m>﹣1.故选:C.【点评】本题考查了二次函数最值、二次函数的性质,二次函数有最低点,抛物线的开口向上是解题的关键.10.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共8小题,满分24分,每小题3分)11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】原式提取mn后,利用平方差公式分解即可.【解答】解:原式=mn(m2﹣9)=mn(m+3)(m﹣3).故答案为:mn(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据平均数确定出x后,再根据方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2]计算方差.【解答】解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.【点评】此题考查了平均数和方差的定义.平均数是所以数据的和除以所有数据的个数.方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].14.【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【解答】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.【点评】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.15.【分析】首先由平均数的定义得出x1+x2+…,+x n的值,再运用求算术平均数的公式计算,求出样本x1+2,x2+2,…,x n+2的平均数.【解答】解:∵样本x1,x2,…x n的平均数为5,(x1+2)+(x2+2)+…+(x n+2)=(x1+x2+…+x n)+2n∴样本x1+2,x2+2,…,x n+2的平均数=5+2=7,故答案为:7.【点评】主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.16.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.【点评】本题考查了分式的化简求值、整体代入的思想.解题的关键是先求出a﹣b的值.17.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】从特殊得到一般探究规律后,利用规律解决问题即可;【解答】解:∵直线l:y=x﹣与x轴交于点B1∴B1(1,0),OB1=1,△OA1B1的边长为1;∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,∴∠A1B1B2=90°,∵∠A1B2B1=30°,∴A1B2=2A1B1=2,△A2B3A3的边长是2,同法可得:A2B3=4,△A2B3A3的边长是22;由此可得,△A n B n+1A n+1的边长是2n,∴△A2017B2018A2018的边长是22017.故答案为22017.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△A n B n+1A n+1的边长是2n.三.解答题(共2小题,满分22分)19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)根据选择进取的人数是12,占总人数的30%,据此即可求得总人数;总人数乘以选择“和谐”观点的比例即可求得选择“和谐”观点的人数;选择“和谐”观点的百分比乘以360°,即可求得,“和谐”观点所在扇形区域的圆心角;(2)总人数360乘以选择“感恩”观点比例,即可求得;(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示,即可利用概率公式求解.【解答】解:(1)该班的总人数是:12÷30%=40(人);选择“和谐”观点的有40×10%=4(人);“和谐”观点所在扇形区域的圆心角是360°×10%=36°.(2)该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有:360×25%=90(人).(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示:共有20种情况,选择和谐、感恩的有2种情况,因而恰好选到“和谐”和“感恩”观点的概率是:=.故答案是:40,4,36;90.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.五.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)只要证明△CFP1是等腰直角三角形,即可解决问题;(2)解直角三角形求出CP2的长即可解决问题;【解答】解:(1)如图2中,当P位于初始位置时,CP0=2m,如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C=m,∴P0P1=CP0﹣P1C=2﹣≈0.6m,即为使遮阳效果最佳,点P需从P0上调0.6m.(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.∵P2E∥AB,∴∠CP2E=∠CAB=90°,∵∠DP2E=20°,∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=2×1×cos70°≈0.68m,∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,即点P在(1)的基础上还需上调0.7m.【点评】本题考查了解直角三角形的应用﹣方向角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.六.解答题(共1小题,满分12分,每小题12分)24.【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y =kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;(2)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解;(3)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w关于x的函数解析式,再根据二次函数的性质即可求解.【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点评】本题考查了二次函数的应用,一元二次方程的应用,待定系数法求一次函数的解析式,根据题意找出等量关系列出关系式是解题的关键.七.解答题(共1小题,满分12分,每小题12分)25.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.八.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)先求出点B、C、D的坐标,可求直线BC解析式且得到∠OCB=45°.由GE∥y轴和GF⊥BC可得△GEF是等腰直角三角形,则GE最大时其周长最大.设点G坐标为(a,﹣a2+2a+3),则点E(a,﹣a+3),可列得GE与a的函数关系式,配方可求出其最大值,得到此时的G坐标和EF的长,即得到MN长.求DM+MN+NG最小值转化为求DM+NG最小值.先作D关于直线BC的对称点D1,再通过平移MD1得D2,构造“将军饮马”的基本图形求解.(2)由翻折得DD'⊥PQ,PD=PD',再由P为BD中点证得∠BD'D=90°,得PQ∥BD',又D'P 中点H在BQ上,可证△PQH≌△D'BH,所以有D'Q∥BP即四边形DQD'P为菱形,得DQ=DP.设Q点坐标为(q,﹣q+3)即可列方程求得.再根据题意把点A'、C'求出.以点Q、A′、C′、T 为顶点的四边形是平行四边形,要进行分类讨论,结合图形,利用平行四边形对边平行的性质,用平移坐标的方法即可求得点T.【解答】解:(1)y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4∴抛物线与x轴交于点A(﹣1,0)、点B(3,0),与y轴交于点C(0,3),顶点D(1,4),∴直线CB解析式:y=﹣x+3,∠BCO=45°∵GE∥y轴,GF⊥BC∴∠GEF=∠BCO=45°,∠GFE=90°∴△GEF是等腰直角三角形,EF=FG=GE∴C=EF+FG+GE=(+1)GE△GEF设点G(a,﹣a2+2a+3),则点E(a,﹣a+3),其中0<a<3∴GE=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a=﹣(a﹣)2+∴a=时,GE有最大值为∴△GEF的周长最大时,G(,),E(,),∴MN=EF=,E点可看作点F向右平移个单位、向下平移个单位如图1,作点D关于直线BC的对称点D1(﹣1,2),过N作ND2∥D1M且ND2=D1M∴DM=D1M=ND2,D2(﹣1+,2﹣)即D2(,)∴DM+MN+NG=MN+ND2+NG∴当D2、N、G在同一直线上时,ND2+NG=D2G为最小值∵D2G=∴DM+MN+NG最小值为(2)连接DD'、D'B,设D'P与BQ交点为H(如图2)∵△△DPQ沿PQ翻折得△D'PQ∴DD'⊥PQ,PD=PD',DQ=D'Q,∠DQP=∠D'QP∵P为BD中点∴PB=PD=PD',P(2,2)∴△BDD'是直角三角形,∠BD'D=90°∴PQ∥BD'∴∠PQH=∠D'BH∵H为D'P中点∴PH=D'H在△PQH与△D'BH中∴△PQH≌△D'BH(AAS)∴PQ=BD'∴四边形BPQD'是平行四边形∴D'Q∥BP∴∠DPQ=∠D'QP∴∠DQP=∠DPQ∴DQ=DP∴DQ2=DP2=(2﹣1)2+(2﹣4)2=5设Q(q,﹣q+3)(0<q<3)∴(q﹣1)2+(﹣q+3﹣4)2=5解得:q1=,q2=(舍去)∴点Q坐标为(,3﹣)∵△AOC绕点O逆时针旋转60°得到△A′OC′∴A'(﹣,﹣),C'(﹣,)∴A'、C'横坐标差为,纵坐标差为A'、Q横坐标差为,纵坐标差为当有平行四边形A'C'TQ时(如图3),点T横坐标为,纵坐标为当有平行四边形A'C'QT时(如图4),点T横坐标为,纵坐标为当有平行四边形A'TC'Q时(如图5),点T横坐标为,纵坐标为综上所述,点T的坐标为()或(,)或()【点评】本题考查了二次函数的性质,平移的性质,轴对称求最短路径问题,旋转,轴对称性质,全等三角形的判定和性质,两点间距离公式,平行四边形的判定.考查了分类讨论、几何变换、转化思想.第(1)题关键是通过轴对称和平移构造“将军饮马”的基本图形求线段和最小值,第(2)题解题关键是发现四边形DQD'P的特殊性,再利用方程思想求点Q坐标;已知三点求构成平行四边形的第4个点坐标是常见题型,但此题已知的三点坐标数值都不是整数,计算量较大.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年辽宁省本溪市高新技术开发区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.3x2﹣7x=﹣4x B.﹣3y2+4y2=y2C.(﹣a2)3=a6D.(﹣a)2•a4=﹣a62.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.若a>b成立,则下列不等式成立的是()A.﹣a>﹣b B.﹣a+1>﹣b+1C.﹣(a﹣1)>﹣(b﹣1)D.a﹣1>b﹣15.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形6.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.7.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为()A.+=21B.+=21C.+=21D.+=218.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠19.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣210.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x 之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.12.因式分解:m3n﹣9mn=.13.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.15.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是16.已知=1,则的值等于.17.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.18.在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l 于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是.三.解答题(共2小题,满分22分)19.先化简,再求值:(2﹣)÷,其中x=﹣3.20.已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.四.解答题(共2小题,满分24分,每小题12分)21.某校开展了以“责任、感恩”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,(1)该班有人,学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度;(2)如果该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有人;(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).22.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.五.解答题(共1小题,满分12分,每小题12分)23.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)六.解答题(共1小题,满分12分,每小题12分)24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?七.解答题(共1小题,满分12分,每小题12分)25.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.八.解答题(共1小题,满分14分,每小题14分)26.如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC(1)点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;(2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ沿PQ 翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.2019年辽宁省本溪市高新技术开发区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据合并同类项、同底数幂的乘方和幂的乘方计算即可.【解答】解:A、3x2与﹣7x不是同类项,不能合并,错误;B、﹣3y2+4y2=y2,正确;C、(﹣a2)3=﹣a6,错误;D、(﹣a)2•a4=a6,错误;故选:B.【点评】此题考查幂的乘方与积的乘方,关键是根据法则解答.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.4.【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变可知.【解答】解:A、不等式a>b两边都乘﹣1,不等号的方向不变,不等式不成立,不符合题意;B、不等式a>b两边都乘﹣1,不等号的方向改变,都加1,不等号的方向不变,不等式不成立,不符合题意;C、不等式a>b两边都减1,不等号的方向不变,都乘﹣1,不等号的方向改变,不等式不成立,不符合题意;D、不等式a>b两边都减1,不等号的方向不变,不等式成立,符合题意;故选:D.【点评】主要考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.5.【分析】把点的坐标代入可判断A;由函数解析式可求得图象所在的位置,则可判断B;利用反比例函数的增减性可判断C;利用图象的性质可判断D;则可求得答案.【解答】解:当x=﹣1时,y=﹣=4≠﹣4,故点(﹣1,﹣4)不在函数图象上,故A不正确;在y=﹣中,k=﹣4<0,∴当x<0时,其图象在第二象限,在每个象限内y随x的增大而增大,图象既是轴对称图形也是中心对称图形,故B正确,C、D不正确;故选:B.【点评】本题主要考查反比例函数的性质,掌握反比例函数图象的性质是解题的关键,即在y=中,由k的符号判断出图象的位置、增减性等.6.【分析】根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.【分析】设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,根据工作时间=工作总量÷工作效率结合共用了21天完成全部任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天生产x个足球,则采用新技术后每天生产(1+20%)x个足球,依题意,得:+=21.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.9.【分析】由于原点是抛物线y=(m+1)x2的最低点,这要求抛物线必须开口向上,则m+1>0,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最低点,∴m+1>0,即m>﹣1.故选:C.【点评】本题考查了二次函数最值、二次函数的性质,二次函数有最低点,抛物线的开口向上是解题的关键.10.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共8小题,满分24分,每小题3分)11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】原式提取mn后,利用平方差公式分解即可.【解答】解:原式=mn(m2﹣9)=mn(m+3)(m﹣3).故答案为:mn(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据平均数确定出x后,再根据方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算方差.【解答】解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.【点评】此题考查了平均数和方差的定义.平均数是所以数据的和除以所有数据的个数.方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].14.【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【解答】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.【点评】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.15.【分析】首先由平均数的定义得出x1+x2+…,+x n的值,再运用求算术平均数的公式计算,求出样本x1+2,x2+2,…,x n+2的平均数.【解答】解:∵样本x1,x2,…x n的平均数为5,(x1+2)+(x2+2)+…+(x n+2)=(x1+x2+…+x n)+2n ∴样本x1+2,x2+2,…,x n+2的平均数=5+2=7,故答案为:7.【点评】主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.16.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.【点评】本题考查了分式的化简求值、整体代入的思想.解题的关键是先求出a﹣b的值.17.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】从特殊得到一般探究规律后,利用规律解决问题即可;【解答】解:∵直线l:y=x﹣与x轴交于点B1∴B1(1,0),OB1=1,△OA1B1的边长为1;∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,∴∠A1B1B2=90°,∵∠A1B2B1=30°,∴A1B2=2A1B1=2,△A2B3A3的边长是2,同法可得:A2B3=4,△A2B3A3的边长是22;由此可得,△A n B n+1A n+1的边长是2n,∴△A2017B2018A2018的边长是22017.故答案为22017.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△A n B n+1A n+1的边长是2n.三.解答题(共2小题,满分22分)19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)根据选择进取的人数是12,占总人数的30%,据此即可求得总人数;总人数乘以选择“和谐”观点的比例即可求得选择“和谐”观点的人数;选择“和谐”观点的百分比乘以360°,即可求得,“和谐”观点所在扇形区域的圆心角;(2)总人数360乘以选择“感恩”观点比例,即可求得;(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示,即可利用概率公式求解.【解答】解:(1)该班的总人数是:12÷30%=40(人);选择“和谐”观点的有40×10%=4(人);“和谐”观点所在扇形区域的圆心角是360°×10%=36°.(2)该校有360名初三学生,利用样本估计选择“感恩”观点的初三学生约有:360×25%=90(人).(3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示:共有20种情况,选择和谐、感恩的有2种情况,因而恰好选到“和谐”和“感恩”观点的概率是:=.故答案是:40,4,36;90.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.五.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)只要证明△CFP1是等腰直角三角形,即可解决问题;(2)解直角三角形求出CP2的长即可解决问题;【解答】解:(1)如图2中,当P位于初始位置时,CP0=2m,如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C=m,∴P0P1=CP0﹣P1C=2﹣≈0.6m,即为使遮阳效果最佳,点P需从P0上调0.6m.(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.∵P2E∥AB,∴∠CP2E=∠CAB=90°,∵∠DP2E=20°,∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=2×1×cos70°≈0.68m,∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,即点P在(1)的基础上还需上调0.7m.【点评】本题考查了解直角三角形的应用﹣方向角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.六.解答题(共1小题,满分12分,每小题12分)24.【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;(2)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解;(3)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w关于x的函数解析式,再根据二次函数的性质即可求解.【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点评】本题考查了二次函数的应用,一元二次方程的应用,待定系数法求一次函数的解析式,根据题意找出等量关系列出关系式是解题的关键.七.解答题(共1小题,满分12分,每小题12分)25.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.八.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)先求出点B、C、D的坐标,可求直线BC解析式且得到∠OCB=45°.由GE∥y轴和GF ⊥BC可得△GEF是等腰直角三角形,则GE最大时其周长最大.设点G坐标为(a,﹣a2+2a+3),则点E (a,﹣a+3),可列得GE与a的函数关系式,配方可求出其最大值,得到此时的G坐标和EF的长,即得到MN长.求DM+MN+NG最小值转化为求DM+NG最小值.先作D关于直线BC的对称点D1,再通过平移MD1得D2,构造“将军饮马”的基本图形求解.(2)由翻折得DD'⊥PQ,PD=PD',再由P为BD中点证得∠BD'D=90°,得PQ∥BD',又D'P中点H在BQ上,可证△PQH≌△D'BH,所以有D'Q∥BP即四边形DQD'P为菱形,得DQ=DP.设Q点坐标为(q,﹣q+3)即可列方程求得.再根据题意把点A'、C'求出.以点Q、A′、C′、T为顶点的四边形是平行四边形,要进行分类讨论,结合图形,利用平行四边形对边平行的性质,用平移坐标的方法即可求得点T.【解答】解:(1)y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4∴抛物线与x轴交于点A(﹣1,0)、点B(3,0),与y轴交于点C(0,3),顶点D(1,4),∴直线CB解析式:y=﹣x+3,∠BCO=45°∵GE∥y轴,GF⊥BC∴∠GEF=∠BCO=45°,∠GFE=90°∴△GEF是等腰直角三角形,EF=FG=GE∴C△GEF=EF+FG+GE=(+1)GE设点G(a,﹣a2+2a+3),则点E(a,﹣a+3),其中0<a<3∴GE=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a=﹣(a﹣)2+∴a=时,GE有最大值为∴△GEF的周长最大时,G(,),E(,),∴MN=EF=,E点可看作点F向右平移个单位、向下平移个单位如图1,作点D关于直线BC的对称点D1(﹣1,2),过N作ND2∥D1M且ND2=D1M∴DM=D1M=ND2,D2(﹣1+,2﹣)即D2(,)∴DM+MN+NG=MN+ND2+NG∴当D2、N、G在同一直线上时,ND2+NG=D2G为最小值∵D2G=∴DM+MN+NG最小值为(2)连接DD'、D'B,设D'P与BQ交点为H(如图2)∵△△DPQ沿PQ翻折得△D'PQ∴DD'⊥PQ,PD=PD',DQ=D'Q,∠DQP=∠D'QP∵P为BD中点∴PB=PD=PD',P(2,2)∴△BDD'是直角三角形,∠BD'D=90°∴PQ∥BD'∴∠PQH=∠D'BH∵H为D'P中点∴PH=D'H在△PQH与△D'BH中∴△PQH≌△D'BH(AAS)∴PQ=BD'∴四边形BPQD'是平行四边形∴D'Q∥BP∴∠DPQ=∠D'QP∴∠DQP=∠DPQ∴DQ=DP∴DQ2=DP2=(2﹣1)2+(2﹣4)2=5设Q(q,﹣q+3)(0<q<3)∴(q﹣1)2+(﹣q+3﹣4)2=5解得:q1=,q2=(舍去)∴点Q坐标为(,3﹣)∵△AOC绕点O逆时针旋转60°得到△A′OC′∴A'(﹣,﹣),C'(﹣,)∴A'、C'横坐标差为,纵坐标差为A'、Q横坐标差为,纵坐标差为当有平行四边形A'C'TQ时(如图3),点T横坐标为,纵坐标为当有平行四边形A'C'QT时(如图4),点T横坐标为,纵坐标为当有平行四边形A'TC'Q时(如图5),点T横坐标为,纵坐标为综上所述,点T的坐标为()或(,)或()【点评】本题考查了二次函数的性质,平移的性质,轴对称求最短路径问题,旋转,轴对称性质,全等三角形的判定和性质,两点间距离公式,平行四边形的判定.考查了分类讨论、几何变换、转化思想.第(1)题关键是通过轴对称和平移构造“将军饮马”的基本图形求线段和最小值,第(2)题解题关键是发现四边形DQD'P的特殊性,再利用方程思想求点Q坐标;已知三点求构成平行四边形的第4个点坐标是常见题型,但此题已知的三点坐标数值都不是整数,计算量较大.。

相关文档
最新文档