最不利原则的讲解

合集下载

最不利原则2

最不利原则2

例 在一副54张的扑克牌中,最少要取出多少张, 才能保证取出的牌中四种花色都有?
提示: 一副扑克牌有大、小 王牌各1张,“红桃”、“黑桃”、 “方块”、“梅花”四种花色各13
张,共计有54张牌。
最不利情况: 取出四种花色中的三种花 色的牌各13张,再加上2 张王牌,再取1张,四种 花色都有了。
13+13+13+2+1=42 (张) 答:最少要取出 42张,才能保证取出的牌中
四种花色都有。
老师总结,我发现
• 解决最不利原则类问题,常用列举的方法,找 到一切不可能的情况。只要把最不利的情况都考 虑到了,一一排除,方能成功。
• 基本公式:一切最不利的情况+1=成功
数学思维 李昭君
最不利原则就是从“最不凑巧”“最糟
糕”的极端情况考虑问题。如果最不利的情
况都满足题目要求,那么其它情况必然也能 满足题目要求。
一个袋里有5个红球,6个黑球,从中最少摸出 多少个球才能保证拿到红球?
分析:
6+1=7(个) 答:从中最少摸出7个球才能保证拿到红球。
刚刚我们碰到的是“最不 凑巧”、“最糟糕”的极端情 况,这样的情况被我们称之为 “最不利情况” 在很多时候,要保证完成 一项任务,经常要考虑到所有 的最不利情况。

四年级 第5讲 最不利原则

四年级 第5讲 最不利原则
同样质地的红、黄、蓝、绿颜色的弹珠各10个。 问:依次最少摸出几个弹珠,才能保证至少有3个弹珠颜色相同?
巩固3
有一个布袋中有5种不同颜色的糖果,每种都有20个。问:一次至少 要取出多少个糖果,才能保证其中至少有3个糖果的颜色相同?
例题4
小白给鱼缸中的鱼换水,需要先将鱼取出然后放至盛有水的容器中。 鱼缸中有黄色小鱼4条,红色小鱼6条,蓝色小鱼8条。小白每次取2条 鱼,那么至少要取几次,才能保证盛有水的容器中3种颜色的鱼都有 ?
例题2
桌子上有大小及形状相同的礼物盒,8个装着水晶球,9个装着小汽车。 问:
(1)从中至少取出多少个礼物盒,才能保证有两个相同的礼物? (2)从中至少取出多少个礼物盒,才能保证有两个不同的礼物?
巩固2
一个口袋里有大小及形状相同的黑球6个,白球7个。问: (1)从中至少摸出多少个小球,才能保证有两个颜色相同的球? (2)从中至少摸出多少个小球,才能保证有两个颜色不同的球?
巩固5
一个箱子里放有型号相同颜色不同的红、黄、白、黑四种颜色的袜 子各10只。只许用手摸,不许用眼看,至少要从箱子中取出多少只 袜子才能保证配成4双?(一双指同颜色的袜子两只)
例题6
桔子、香蕉、梨、苹果四种水果各若干个混放在一起,每个人取出两 个。那么,至少需要多少个人才能保证有4人取出的水果是完全相同 的?(每种水果足够多)
巩固4
笨笨家的小水缸里养着会长大的彩色精灵球,其中白的有9个,黑的 有10个,黄的有5个,绿的有3个。若每次取2个精灵球,至少取几次 才能保证有4个颜色不同的精灵球?
例题5
在布袋中装有18根红色的筷子,16根黑色的筷子,14根黄色的筷子, 5根白色的筷子,3根蓝色的筷子。那么, (1)至少取出多少根才能保证有3双同色的筷子? (2)至少取出多少根才能保证有3双颜色各不相同筷子? (3)至少取出多少根才能保证有3双筷子?

《有趣的小学数学—最不利原则》

《有趣的小学数学—最不利原则》

最不利原则【知识点】1、当问题中出现“保证”二字,就要求我们必须利用“最不利”原则分析问题。

最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。

才能达到“保证”目的。

2、要求:从最不利的条件开始分析;考虑所有最坏的可能。

例题1:一个盒子中装有10个黑球、6个白球和4个红球,一次至少取出多少个球才能保证其中有白球?【答案】15个【分析】最不利的情况是每次取出的都是黑球或红球,就是没有白球。

这时取了10个黑球和4个红球。

然后第15个球就必然能取到白球。

所以一次至少取出10+4+1=15(个)球。

例题2:泡泡糖出售机内有各种颜色的糖,有红色糖10颗、白色糖15颗、蓝色糖16颗、黄色糖20颗,紫色糖3颗。

如果投入1元钱钱币可得到1颗糖,那么至少投入多少元钱,就可以保证得到5颗颜色相同的糖?【答案】20元【分析】要想保证有5颗颜色相同的糖,根据最不利原则,先把数量不够5的得到。

然后让剩下4种颜色的糖都各得到了4颗,那么再任意得到一颗糖就能达到“保证有5颗颜色相同的糖”,算式:3+4×4+1=20(元),至少投20元钱。

例题3:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。

请问:(1)一次至少要取出多少个球,才能保证取出的球至少有3种颜色?(2)一次至少要取出多少个球,才能保证其中必有红色球和黄色球?【答案】(1)19(2)15【分析】(1)要使取出的球至少有3种颜色,最不利的情况是尽量多的取出其中某2种颜色的球,且这2种球的数量要最多。

显然红球和黄球最多,全都取出共有10+8=18个球,此时再多取1个球,就可以保证至少有3种颜色,因此取19个球即可。

(2)要使取出的球中必有红球和黄球,最不利的情况首先是蓝色和绿色的球都取出,然后红色和黄色的其中一种颜色的球都取出(选最多)。

算式:3+1+10+1=15个球。

例题4:一个布袋里有大小相同、颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。

三年级下第4讲 最不利原则

三年级下第4讲  最不利原则

三春第4讲最不利原则一、学习目标1.理解最不利原则,学会从“最倒霉”情况思考问题。

2.利用最不利原则解释并证明一些结论及生活中的一些问题。

二、知识要点日常生活中,我们经常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则.最不利原则就是从“最糟糕”的情况下考虑问题,如果最不利的情况下都能满足要求,那么其他的情况下也必然能满足要求.三、例题精选【例1】教室的讲桌上放着大小及形状相同的白板笔,有5支黑笔,4支蓝笔,3支红笔.小倩蒙着眼睛从中摸笔,那么她要从中至少取出多少支笔,才能保证取出的笔中有蓝笔?【巩固1】一个口袋中装着大小及形状相同的乒乓球,有6个白球,5个黑球,10个黄球.小红闭着眼睛从中摸球,那么她要从中至少取出多少个球,才能保证取出的球中有黑球?【例2】桌子上有大小及形状相同的礼物盒,8个装着水晶球,9个装着小汽车.问:(1)从中至少取出多少个礼物盒,才能保证有两个相同的礼物?(2)从中至少取出多少个礼物盒,才能保证有两个不同的礼物?【巩固2】一个口袋里有大小及形状相同的黑球6个,白球7个.问:(1)从中至少摸出多少个小球,才能保证有两个颜色相同的球?(2)从中至少摸出多少个小球,才能保证有两个颜色不同的球?【例3】口袋里有同样大小和同样质地的红、黄、蓝、绿颜色的弹珠各10个.问:依次最少摸出几个弹珠,才能保证至少有3个弹珠颜色相同?【巩固3】有一个布袋中有5种不同颜色的糖果,每种都有20个.问:一次至少要取出多少个糖果,才能保证其中至少有3个糖果的颜色相同?【例4】小白给鱼缸中的鱼换水,需要先将鱼取出然后放至盛有水的容器中.鱼缸中有黄色小鱼4条,红色小鱼6条,蓝色小鱼8条.小白每次取2条鱼,那么至少要取几次,才能保证盛有水的容器中3种颜色的鱼都有?【巩固4】笨笨家的小水缸里养着会长大的彩色精灵球,其中白的有9个,黑的有10个,黄的有5个,绿的有3个.若每次取2个精灵球,至少取几次才能保证有4个颜色不同的精灵球?【例5】在布袋中装有18根红色的筷子,16根黑色的筷子,14根黄色的筷子,5根白色的筷子,3根蓝色的筷子:那么(1)至少取出多少根才能保证有3双同色的筷子?(2)至少取出多少根才能保证有3双颜色各不相同筷子?(3)至少取出多少根才能保证有3双筷子?【例6】桔子、香蕉、梨、苹果四种水果各若干个混放在一起,每个人取出两个。

(完整版)第十四讲最不利原则

(完整版)第十四讲最不利原则

第十四讲最不利原则在生活中,要保证完成某一个任务,必须考虑最不利条件。

只有用最不利条件下也能实现的做法,才可以使这个任务必能完成,这就是解决问题时要采用的最不利原则。

因此,必须全面分析给定的条件,分析最不利的因素,然后选用万无一失的方法。

本讲运用学生已有的数学工具(如枚举法、余数的妙用、可能性分析等),确定最不利的情况,培养学生严谨的思维习惯和应用现有知识解决实际问题的能力。

例1、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。

问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解:如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。

回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。

如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。

“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。

这样摸出的9个球是“最不利”的情形。

这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。

所以回答应是最少摸出10个球。

由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。

如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。

现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。

例2、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。

其中红球3个、黄球5个、蓝球10个。

现在一次从中任意取出n个,为保证这n 个小球至少有5个同色,n的最小值是多少?分析与解:与例1类似,也要从“最不利”的情况考虑。

最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。

此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。

最不利原则知识点

最不利原则知识点

最不利原则知识点一、知识概述《最不利原则知识点》①基本定义:最不利原则呢,简单说就是考虑最倒霉、最糟糕的情况。

打个比方,你想从一堆盒子里找一个特定的东西,最不利的情况就是你把除了这个东西在的盒子之外的所有盒子都翻了个遍。

②重要程度:在数学学科里特别是在一些概率、组合数学相关的板块中挺重要的。

它可以帮忙在一些问题中确定下限,就像兜底似的,知道最不好的情况就能有所准备。

③前置知识:要知道一些基础的计数知识,像数个数之类的,还有基本的逻辑推理就行了。

④应用价值:在生活中也有用。

比如说抽奖,商家想算一下最坏情况得准备多少奖品,就可能用到这个原则。

还有规划东西的存放等很多实际场景。

二、知识体系①知识图谱:它是数学组合学和概率论里的一个重要补充知识。

比一般的计算情况更加深入地考虑问题。

②关联知识:和概率中的一些事件关系密切,还有组合数学里的排列组合在构建最不利情况时可能会用到。

③重难点分析:难点在于准确判断什么是最不利情况,要想得很周到。

重点是清楚这个概念的核心就是想最倒霉的场景。

掌握的关键是多做实例,积累经验。

④考点分析:在考试里如果涉及到类似要找最坏情况的题目就会用到。

考查方式可能会让你计算在最不利情况下的某个数值,或者判断某个行动在最不利情况下什么时候结束。

三、详细讲解【理论概念类】①概念辨析:最不利原则的准确含义就是要找到一种情况,这种情况对达成目标来说是最不顺利的。

并不是随随便便找个不好的情况,而是那种离成功就差那么一点点的最糟状态。

②特征分析:主要特点就是它是一种极端情况。

性质上是具有唯一性或者说是极限性的,就是说这个糟糕程度在设定问题下不能再糟糕了。

③分类说明:在不同类型的题目里,比如数字抽取型,那最不利就是把所有不符合目标数字的都抽完;物品分配型,就是把最不希望的分配方式都弄完还没达到理想的分配。

④应用范围:适用在各种需要找极限情况的资源分配、搜索目标等问题。

局限性在于题目要是有明确的目标状态,如果目标很模糊那就不太适合用。

抽屉原理与最不利原则

抽屉原理与最不利原则

第十五讲抽屉原理与最不利原则
一、抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

原理2: 把多于m×n+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

原理3: 把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

注意以下几点:
1、抽屉原理讨论的是苹果的数目与抽屉数目之间的关系,要求苹果数大于抽屉数;
2、抽屉原理用来解决存在性的问题,“必有一个”就是必然存在的意思;存在就行,不关心满足要求的抽屉到底是哪个、有多少个;常见的提示语“保证至少有一个”
3、解决问题的关键在于分辨苹果与抽屉,经常需要构造抽屉。

二、最不利原则
最不利原则,即从最坏的情况出发分析问题,如果在最坏的情况下都能满足题目要求,那么所有情况都能保证满足题目要求。

行测数量关系技巧:最不利原则

行测数量关系技巧:最不利原则

行测数量关系技巧:最不利原则任何一场考试取得成功都离不开每日点点滴滴的积累,下面由小编为你精心准备了“行测数量关系技巧:最不利原则”,持续关注本站将可以持续获取更多的考试资讯!行测数量关系技巧:最不利原则多省公务员考试通常在每年四月份进行,行测一直是公务员考试的必考科目,经过多年的发展,考试内容日趋稳定,在数学运算这一部分,常考的知识点比较多,其中就涉及到极值问题的最不利原则,小编在此做一个分享,希望大家能够掌握。

一、基础知识1.题型特征问“至少才能保证”是考虑必然性,需要考虑最不利情况,称为最不利原则,所以最不利原则问题的题型特征是含有“至少……才能保证……”字眼。

2.何为“最不利原则”?最不利原则也可以叫差一点原则,用最不利原则解题时就是考虑与成功一线之差的情况。

而题目一般是求此种情况下的具体数据,即与成功的最小量相差为1的量即为最差的量,考虑此时的情况数即可。

如某场考试的分数都是整数,且及格分数是60分,最不利情况数就是考试分数与及格分相差最小量1的分数,即59分。

3.解题原则当我们找到最不利的情况数之后,若想满足题意,只需在最不利情况数的基础上多1即可。

即最不利原则问题的解题原则是:最不利情况数+1。

二、例题【例题1】袋子中有3种颜色的筷子各10根,至少取多少根才能保证3种颜色的筷子都有被取出?A.3B.4C.20D.21【答案】D【解析】想要保证3种颜色的筷子都有被取出这件事必然出现,我们要找到的最不利情况数是两种颜色的筷子都被取完了,还没找到第三种颜色的筷子,这时只需再取一根就能凑足三种颜色,所以至少取2×10+1=21根筷子,故选择D。

【例题2】有软件设计专业学生90人,市场营销专业学生80人,财务管理专业学生20人及人力资源专业学生16人参加求职招聘会,问至少有多少个人找到工作才能保证有30名找到工作的人专业相同?A.59B.75C.79D.95【答案】D【解析】想要保证有30名找到工作的人专业相同这件事必然出现,我们要找到的最不利情况数是软件设计专业和市场营销专业学生两个专业都只有29人找到工作,财务管理专业学生20人及人力资源专业学生16人都小于29,全部取出,这时只需再多1人就可以满足题意,所以至少要有29×2+20+16+1=95人找到工作,故选择D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲最不利原则
在生活中,要保证完成某一个任务,必须考虑最不利条件。

只有用最不利条件下也能实现的做法,才可以使这个任务必能完成,这就是解决问题时要采用的最不利原则。

因此,必须全面分析给定的条件,分析最不利的因素,然后选用万无一失的方法。

本讲运用学生已有的数学工具(如枚举法、余数的妙用、可能性分析等),确定最不利的情况,培养学生严谨的思维习惯和应用现有知识解决实际问题的能力。

1. 红桃、黑桃各2张,要保证从中摸出两张同色的,至少要摸出张。

2.红桃、黑桃各5张,要保证从中摸出两张同色的,至少要摸出张。

3.红桃、黑桃各4张,要保证从中摸出3张同色的,至少要摸出张。

[解答]两种颜色的扑克,要摸出两张同色的,至少都要摸出3张,就能保证有两个扑克同色,在每种扑克数量足够多的情况下,与扑克的数量多少没有关系。

摸出3张同色的,最不利的情形是先各摸出红、黑2张,再摸出1张,就肯定有3张同色的。

1、3张;
2、3张;
3、5张。

[例1]灰太狼抓住了懒羊羊。

聪明的喜羊羊决定去营救懒羊羊。

他对灰太狼说:“我知道你很聪明,那你有胆量和我比一下么?如果你赢了的话,那么我也愿意被你吃掉;如果你输了,请把懒羊羊放掉。

题目很简单,就是随意把1和2分别填入下面立方体的格子中,使每个面上的4个数的和都不一样”灰太狼不假思索答应了。

请问谁赢了?为什么?
【解析】随意填1,2,那么每个面上4个格子的4个数的和最小为4,最大为8;4到8,共有5个数。

而立方体有6个面。

一定有相同的和。

【例2】120名少先队员选举大队长,有甲、乙、丙三个候选人,每个少先队员只能选他们之中一个人,不能弃权。

若前100票中,甲得45票,乙得35票,甲要当选至少还要()张选票。

【解答】丙已得20票.后面的20票即使全给丙不影响甲当选。

最不利的情况是20票都给了乙。

为了避免这种情况发生,甲还需得6票,就能保证当选。

【例3】某小学四年级的学生身高(都按整数厘米计算),最矮的是138厘米,最高的是160厘米。

如果任意从这些学生中选出若干人,那么至少要选出多少人,才能保证有5人的身高相同?
【解析】138-160中共有22+1个数(植树问题的应用);最不利的情况是每一个厘米数都有4人。

因此保证有5人身高相同,需要选23×4+1=93人。

【例4】皮夹里有2元,3元,4元的邮票各10张,现在要寄一封12元邮资的信,不用眼睛看,从皮夹里抽出若干张邮票,为了保证从抽出的邮票中一定能凑出12元的邮票组合来,那么至少要抽出()张邮票。

【解析】
先分析最有利的情况,取出4元3张;
最不利的情况可能是取出2元6张;但这是最不利的情况吗?
如果取出2元5张,3元1张呢?这种情况不能保证从抽出的邮票中一定能凑出12元的邮票组合来。

但再取一张任意的2,3,4元可以保证完成任务。

答案为7张。

【例5】一把钥匙只能开一把锁,现有8把钥匙和8把相配的锁,至少要试验多少次才能保证全部的钥匙和锁相匹配?
分析:要保证匹配就要从最不利的情况考虑,也就是第一把钥匙试7次,如果都不成功,它必然和第八把锁匹配,所以第一把钥匙只试7次,同理,第二把钥匙在其余的7把锁中试6次,第三把试5次,第四把4次……最后剩一把钥匙一把锁就不用试了。

解:7+6+5+4+3+2+1=28(次)
答:最少要试验28次才能保证全部的钥匙和锁相匹配。

【例6】若干箱货物总重15吨,每箱重量在290—310千克之间,今有载重量为3吨的汽车,至少需要多少辆,才能确保这批货物一次全部运走?
【解析】最有利的情况:汽车的载重量是3吨。

如果每箱的重量是300千克那么每辆汽车都是满载,即运了10箱。

此时需要汽车15÷3=5(辆)。

如果装箱的情况不能使汽车满载,那么5辆汽车就不能把这批货物一次运走。

为了确保把这批货物一次运走,需要从最不利的装箱情况来考虑。

最不利的情况就是使每辆车运得尽量少,即空载最多。

因为310×9<3000,所以每辆车至少装9箱。

每箱300千克,每车能装10箱。

如果每箱比300千克略多一点,比如301千克,那么每车就只能装9箱了。

此时,每车载重301×9=2709(千克),空载3000-2709=291(千克)。

注意,这就是前面所说的“最不利的情况”。

前5辆汽车共空载5×291<3000,也就是说,按最不利的情况,6辆车可确保将这批货物一次运走。

1、一列2个小方格,每个方格中随意涂红黑两种颜色中的一种,当涂完第几列时,至少有2列是相同的?(有一列与另一列重复)。

2、上海世博会的现场,建筑工人们正在努力的工作。

为了保证工作餐的营养,工人叔叔每天的午饭是一个荤菜加上一个素菜。

目前职工食堂的厨师会做5种荤菜,假如你是职工食堂的经理,请你想一想,至少需要多少种素菜才能保证一个月(按31天算)之内吃的午饭不重复。

3、733名小朋友参加2009年走美夏令营,这些小朋友中,至少有多少人是同月同日出生?
4、一个同学用硬币掷着玩,每次掷四枚,而后他将四枚硬币是正面向上还是反面向上的结果记录下来,他一共掷了14次,在他记录的结果中至少有多少次是相同的?
5、一排椅子只有15个座位,部分座位已有人
就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。

问:在乐乐之前已就座的最少有几人?
6、每场足球比赛分胜、负、平3种结果。

英超每轮有10场比赛,给你50000次机会,你一定能猜出所有比赛的正确结果吗?
7.一副扑克牌中,最少要取出多少张,才能保证取出的牌中四种花色都有?
1、有5050张数字卡片,其中一张上写着1,2张上写着2,3张上写着3,……100张上写着100。

现在要从中抽取若干张,为了确保抽出的卡片中至少有10张以上的数字完全相同,至少要抽取()张卡片。

【解答】最不利的情况是
1张1,2张2,3张3,…,9张9,9张10,9张11,…9张100
共计:1+2+3…+9+9×91=864.
至少要取873+1=865.
2、小明和小强玩一个猜数字的游戏。

小明心里想一个100以内的数字,然后小强来猜。

小强每猜一个数字,小明就告诉他,心里想的这个数比猜的这个数大还是小。

请问小强至少要猜多少次才能保证猜到小明想的这个数字?(7次)
3、有1,2,3,4的数字卡片各有100张,每次任意选其中5张卡片相加,至少选()次才能保证有两次相加的和相等。

4、口袋中放有红、黄、白、黑四种颜色的袜子各10只,只需用手摸,不许用眼看,至少要从口袋中取出()只袜子,才能保证配成5双(一双指颜色相同的袜子两只)袜子。

相关文档
最新文档