2020届湖南师大附中高三第六次月考数学(理)试题
2020届湖南师大附中高三上学期月考试卷(一)地理试题

湖南师大附中2020届高三月考试卷(一)地理一、选择题(本大题共25个小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项最符合题目要求。
)在我国湖南、湖北、上海、广东等多省市都有喜食槟榔的习惯。
海南盛产槟榔,但95%的槟榔运往湖南加工,海南吃到的槟榔制品基本来自于湖南,“海南槟榔湖南加工”的现象越来越严重。
结合海南槟榔产地分布图,完成下列各题。
1. 推测槟榔树的生活习性是()A. 喜阴坡,怕低温B. 喜缓坡,忌积水C. 分布在高海拔地区D. 喜高温干燥2. 导致海南槟榔大量运往湖南加工的主导因素是()A. 市场B. 交通C. 原料D. 劳动力【答案】1. B 2. A图中湖泊面积随季节而变化。
结合所学知识回答下列各题。
3.图中湖泊面积最大的季节及原因正确的是A. 春季冰雪融水多B. 夏季冰川融水多C. 秋季降水多D. 冬季蒸发小4.图中湖泊面积由小变大期间,河流入湖口位置①靠近湖心②远离湖心③向南移动④向北移动A. ①③B. ①④C. ②③D. ②④【答案】3. B 4. C土林是一种特殊的流水侵蚀地貌。
西藏阿里地区的扎达盆地是我国土林发育最为典型的地区之一。
该地土林物质主要由砾卵石、细粉砂和黏土等组成。
下图示意扎达土林景观。
读图完成下列各题。
5. 形成扎达土林物质的主要地质作用是A. 岩石风化B. 风力沉积C. 流水侵蚀D. 河湖沉积6. 扎达土林得以保存完整的气候条件为A. 海拔高,气温年较差小B. 天气寒冷,暴雨多C. 空气干燥,降水少D. 大气稀簿,光照少【答案】5. D 6. C科罗拉多大峡谷匍伏于凯巴布高原之上。
它的宽度在6公里至25公里之间,平均谷深1600米,谷底宽度762米。
由于人们从谷壁可以观察到从古生代至新生代各个时期的地层,被誉为“活的地质教科书”。
读图完成下列问题。
7. 关于科罗拉多大峡谷的成因,最可能的是()A. 沉积作用——地壳抬升——流水侵蚀B. 流水沉积——地壳抬升——风力侵蚀C. 地壳抬升——板块张裂——风力侵蚀D. 泥沙堆积——板块张裂——冰川侵蚀8. 大峡谷地区年降水量少的主要原因是()A. 属于地中海气候B. 终年受副热带高压控制C. 位于谷地产生焚风效应D. 接近副热带,东西两侧高山阻挡海洋水汽【答案】7. A 8. D下图黑点分别为甲、乙、丙、丁所处的地理位置。
湖南师大附中2023届高三月考物理试卷及答案

炎德·英才支联考湖南师大附中2023届高三月考试卷(二)物理本试题卷分第I卷(选择题)和第E卷(非选择题)两部分,共10页。
时量75分钟,满分100分。
一、单项选择题:本题共6小题,每小题4分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的。
l.A 、B汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方( v 2) 随位置(x )的变化图像如图所示,下列判断正确的是 A 汽车A加速度大小为4m/s 2B.汽车A 、B经4s相遇C.汽车A 、B在x =6m处相遇16D.汽车A 、B在x =τm 处相遇2用“超级显微镜”观察高真空度的空间 ,发现了有一对分子A 和B 环绕一个共同“ 中心”旋转,从而形成了一个“类双星”体系,并且发现引力“中心”离B 分子较近,这两个分子之间的距离用γ表示已知当γ=γ。
时两个分子间的分子力为零。
则上述“类双星”体系中,下列说法正确的是A 间距γ>ro B.间距γ<r oC.A 的质量大于B 的质量D.A 的速率小于B 的速率3.如图所示,木块A 置于上表面水平的木块B 上, 一起沿固定的光滑斜面由静止开始下滑,在下滑过程中,A 、B 始终保持相对静止,下列说法正确的是 A .B 对A 的摩擦力对A 做负功B.A 所受的合力对A 做正功C.B 对A的弹力对A 做正功D.A 对B 的作用力对B 做正功A.2g M r- 2GMB.. Rz 2-----,R 2C. -GMr·4.地球半径为R ,质量为m ,地球到太阳的距离为γC r》岛,太阳 质量为M ,不考虑其他星球的影响,那么地球 在 自转过程中,近太阳点(臼天正午的地方)和远太阳点(深更半夜之处)的 自由落体加速度的差值约为(不考虑公转影响,万有引力常量为G )D. 2GM_l r5.如图所示,轻杆的一端固定一光滑球体,杆的另一端。
为自由转动轴,而球又搁置在光滑斜面上。
若杆与墙面的夹角为卢,斜面倾角为α,开始时卢<α,且α+卢《90。
专题35 空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。
湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。
2022届湖南师范大学附属中学高三上学期月考(一)数学(含答案)

湖南师大附中2022届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
时量120分钟。
满分150分得分:_____第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1A =-,101x B x x ⎧+⎫=≤⎨⎬-⎩⎭,则A B =( ) A.{}0B.{}1,0-C.{}0,1D.{}1,0,1-2.已知i 是虚数单位,则化简20201i 1i +⎛⎫⎪-⎝⎭的结果为( )A.iB.i -C.1-D.1 3.已知向量()1,2a =-,()1,b m =,则“12m <”是“,a b 为钝角”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 4.设函数()1ln1xf x x x+=-,则函数()f x 的图象可能为( ) A. B.C.D.5.直线l 过抛物线24y x =的焦点F 且与抛物线交于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则4m n +的最小值是( ) A.10 B.9 C.8D.76.已知函数()12log ,0,1,0,3xx a x x f x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩若关于x 的方程()0f f x =⎡⎤⎣⎦有且只有一个实数根,则实数a 的取值范围是( ) A.()(),00,1-∞B.()(),01,-∞+∞C.(),0-∞D.()()0,11,+∞7.在《爸爸去哪儿》第二季第四期中,假如村长给6位“萌娃”布置一项到A 、B 、C 三个位置搜寻空投食物的任务,每两位“萌娃”搜寻一个位置.考虑到位置远近及年龄大小,Grace 不去较远的A 位置,多多不去较近的C 位置,则不同的搜寻安排方案有( ) A.20种B.40种C.42种D.48种8.如图,1F ,2F 是双曲线l :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线与双曲线左、右两支分别交于点P ,Q .若115FQ F P =,M 为PQ 的中点,且12FQ F M ⊥,则双曲线的离心率为( )D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分.9.在“新冠肺炎”疫情期间,各口罩企业都加大了生产力度,如图是2020年第一季度A 、B 、C 、D 、E 五个企业的生产量情况,下列叙述正确的是( )A.2020年第一季度生产量增速由高到低排位第5的是A 企业B.2020年第一季度生产总量和增速由高到低排位均居同一位次的企业只有一个C.2019年同期C 企业的生产总量不超过2000万只D.与2019年同期相比,各企业2020年第一季度的生产总量都实现了增长10.在等差数列{}n a 中,100a <,110a >,且1110a a >,则使{}n a 的前n 项和0n S <成立的自然数n 可能为( ) A.17 B.18C.19D.2011.已知函数()()sin x f x ωϕ=+(0ω>,02πϕ<<),满足()203f x f x π⎛⎫-+-= ⎪⎝⎭,()3f x f x π⎛⎫+=- ⎪⎝⎭,且()f x 在()0,π上有且仅有7个零点,下述结论正确的是( )A.6πϕ=B.5ω=C.()f x 在()0,π上有且仅有4个极大值点D.()f x 在0,42π⎛⎫⎪⎝⎭上单调递增 12.已知实数a ,b ,c 满足2e 111a a cb d --==-,其中e 是自然对数的底数,那么()()22a cb d -+-的值可能是( )A.8B.6C.10D.7第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.()()101011x x --+的展开式中x 最高次项的系数为______.(用数字)14.设α满足3sin 4α=,则()22sin sin 2sin2πααα++=_____. 15.已知正方形ABCD 边长为1,E ,F 分别是线段BC ,CD 上的动点,则22EF EA AF ⋅+的最小值是______.16.如图,已知ABC △是边长为1的等边三角形,D 是AB 边上异于端点的一个动点,DE BC ⊥于点E ,将BDE △沿DE 翻折至DE B '△的位置,其中B DE A '--为直二面角,则四棱雉B ADEC '-体积的最大值为_____.四、解答题:本题共6小题,共70分。
湖南省长沙市湖南师范大学附属中学2022-2023学年高三下学期月考(六)地理试题(原卷版)

湖南师大附中2023届高三考试卷(六)地理本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求)总和生育率是指一个国家或地区妇女在育龄期间平均的生育子女数。
抚养比是非劳动年龄人口对劳动年龄人口数之比。
图示意1960-2018年部分国家总和生育卓、平均寿命的变化情况。
据此完成下面小题。
1.甲、乙、丙、丁四国中,1960年总和生育率受国际人口迁移影响最大的是()A.甲国B.乙国C.丙国D.丁国2.1960-2018年期间,乙国.总和生育串和平均寿命的显著变化,反映该国()A.经济高速发展B.人均碳排放减少C.人口迅速增长D.人口抚养比降低西班牙黑蹄猪散养在南部山区的橡果牧场中,生长周期长,吃橡果、喝山泉水。
以黑蹄猪为主要原材料的伊比利亚火腿加工需要在适宜温度、湿度条件下微生物的参与,生产厂家大部分位于偏远乡村。
顶级的伊比利亚火腿从饲养、加工到售卖的4~5年时间里都有严格监管。
下图为西班牙位置图和伊比利亚火腿传统生产流程图。
据此完成下面小题。
3.伊比利亚黑蹄猪生长周期长直接导致()A.需求量小B.品质不好C.产量较小D.破坏营养4.生产厂家大部分位于偏远乡村最主要的原因是()A.交通运输不便B.劳动力廉价C.靠近消费市场D.环境质量好5.流程④的最佳选择是()A.储存在地窖中B.晾晒在阳台上C.悬挂于屋檐下D.放置于无菌仓库下图为某地地质地形图。
据此完成下面小题。
6.断层形成之前,甲乙间的地质构造有利于()A.存储石油B.蓄积地下水C.发现自流井D.温泉喷涌7.该地断层形成的时间大约在()A.O2与S2之间B.S1与S2之间C.S2与T之间D.J之后8.甲乙间地貌形成的主要外力作用是()A.风化、侵蚀B.流水堆积C.风力堆积D.岩层挤压读某年4月28日8:00近地面等压线图(单位:百帕),完成下面小题。
湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)

湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020届湖南师大附中高三第六次月考数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题
1.设集合x
A {y |y 2,x R}==∈,
B {x |y x R}==∈,则A B (⋂= )
A .{}1
B .()0,∞+
C .()0,1
D .(]
0,1 答案:D
化简集合,A B ,根据交集的定义计算A B ⋂. 解:
因为集合{}
()|2,0,x
A y y x R ==∈=+∞,
化简{}
(]|1B x y x R ,
==∈=-∞, 所以(]
0,1A B ⋂=,故选D . 点评:
研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合.
2.复数()1z i i -=(i 为虚数单位),则z 的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
答案:C
由复数除法求出z ,写出共轭复数,写出共轭复数对应点坐标即得 解:
解析:()()()1111111222i i i i z i i i i +-+=
===-+--+Q ,11
22
z i ∴=--, 对应点为11(,)22
--,在第三象限.
故选:C . 点评:
本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.
3.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A .这半年中,网民对该关键词相关的信息关注度呈周期性变化
B .这半年中,网民对该关键词相关的信息关注度不断减弱
C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 答案:D 解:
选项A 错,并无周期变化,选项B 错,并不是不断减弱,中间有增强.C 选项错,10月的波动大小11月分,所以方差要大.D 选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.
4.已知函数()(1)()f x =x - a x+b 为偶函数且在(0,)+∞单调递减,则(3)0f -x <的解集为( ) A .(2,4) B .(,2)(4,)-∞⋃+∞ C .(-1,1) D .(,1)(1,)-∞-+∞U
答案:B
根据函数奇偶性的定义,求出a ,b 的关系,结合函数的单调性判断a 的符号,然后根据不等式的解法进行求解即可.
解:
∵f (x )=(x-1)(ax+b )=ax 2
+(b-a )x-b 为偶函数, ∴f (-x )=f (x ),
则ax 2-(b-a )x-b=ax 2+(b-a )x-b , 即-(b-a )=b-a , 得b-a=0,得b=a , 则f (x )=ax 2
-a=a (x 2
-1), 若f (x )在(0,+∞)单调递减, 则a <0,
由f (3-x )<0得a[(3-x )2
-1)]<0,即(3-x )2
-1>0, 得x >4或x <2,
即不等式的解集为(-∞,2)∪(4,+∞), 故选B . 点评:
本题主要考查不等式的求解,根据函数奇偶性的性质求出a ,b 的关系是解决本题的关键.
5.等比数列的前n 项和,前2n 项和,前3n 项的和分别为A ,B ,C ,则( ) A .A B C += B .2B AC =
C .()2
A B C B +-=
D .()2
2
A B A B C +=+
答案:D
分析:由等比数列的性质,可知其第一个n 项和,第二个n 项和,第三个n 项和仍然构成等比数列,化简即可得结果. 详解:由等比数列的性质可知,
等比数列的第一个n 项和,第二个n 项和, 第三个n 项和仍然构成等比数列, 则有,,A B A C B --构成等比数列,
()()2
B A A
C B ∴-=-,即222B AB A AC AB -+=-,
()22A B A B C ∴+=+,故选D.
点睛:本题考查了等比数列的性质,考查了等比数列前n 项和,意在考查灵活运用所学知识解决问题的能力,是基础题.
6.将函数2n 2)3(si f x x π⎛
⎫=+ ⎪⎝
⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐
标不变,再将所得图像向左平移
12
π
个单位得到数学函数()g x 的图像,在()g x 图像的
所有对称轴中,离原点最近的对称轴为( ) A .24
x π
=-
B .4
x π
=
C .524
x π
=
D .12
x π
=
答案:A
分析:根据平移变换可得243y sin x π⎛⎫
=+ ⎪⎝
⎭
,根据放缩变换可得函数()g x 的解析式,结合对称轴方程求解即可. 详解:将函数()223f x sin x π⎛⎫
=+
⎪⎝
⎭
的图象上的每个点的横坐标缩短为原来的一半, 纵坐标不变,得到243y sin x π⎛⎫
=+ ⎪⎝
⎭
, 再将所得图象向左平移12
π
个单位得到函数()g x 的图象,
即()224241233g x sin x sin x πππ⎡⎤
⎛⎫⎛
⎫
=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎣⎦
, 由24,32x k k Z ππ
π+
=+∈, 得1,424
x k k Z π
π=-
∈, 当0k =时,离原点最近的对称轴方程为24
x π
=-
,故选A.
点睛:本题主要考查三角函数的图象与性质,属于中档题.由 函数sin()y A x ωϕ=+可求得函数的周期为2π
ω
;由2
x k π
ωϕπ+=+
可得对称轴方程;由x k ωϕπ+=可得对
称中心横坐标.
7.如图正方体1111ABCD A B C D -,点M 为线段1BB 的中点,现用一个过点,,M C D 的平面去截正方体,得到上下两部分,用如图的角度去观察上半部分几何体,所得的左视图为()
A.B.
C.D.
答案:B
画出几何体的直观图,然后判断侧视图即可.
解:
上半部分的几何体如图:由此几何体可知,
所得的侧视图为
故选:B.
点评:
思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
8.如图在圆O中,AB,CD是圆O互相垂直的两条直径,现分别以OA,OB,OC,OD为直径作四个圆,在圆O内随机取一点,则此点取自阴影部分的概率是()
A.1
π
B.
1
2π
C.
11
42π
-D.11
2π
-
答案:D
先设出圆O 的半径,然后算出阴影部分的面积,再计算出圆O 的面积,最后利用几何概型公式求出概率. 解:
设圆O 的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S ,则
2112111424
S ππ-=⋅-⨯⨯=,圆O 的面积为224ππ⋅=,在圆O 内随机取一点,则
此点取自阴影部分的概率是P ,则82411442S P ππππ
-===-,故本题选D. 点评:
本题考查了几何概型,正确计算出阴影部分的面积是解题的关键,考查了数学运算能力.
9.已知双曲线()22
2210,0x y a b a b
-=>>与函数)0y x =≥的图象交于点P ,若函
数y =
P 处的切线过双曲线左焦点()4,0F -,则双曲线的离心率是
( )
A B C D 答案:D
设P 的坐标为(m ,用导数表示P 点处切线斜率,再由,P F 两点坐标表示斜率,由此可求得m ,即P 点坐标,写出左焦点坐标,由双曲线定义求得a ,从而可得离心率. 解:
解析:设P 的坐标为(m ,由左焦点()4,0F -,函数的导数'()
f x =
,
则在P 处的切线斜率'()
4k f m m ===+, 即42m m +=,得4m =
则()4,2P ,设右焦点为()4,0A ,
则)
22
1a PF PA =-=
=,即1a =,
4c =Q ∴双曲线的离心率14
c e a =
=
. 故选:D . 点评:。