第五章-电化学基础

合集下载

第五章电化学基础

第五章电化学基础

原电池是将化学能转化为电能的装置
第五章电化学基础
盐桥的作用: 沟通二溶液中的电第五章荷电化学基保础 证反应继续进行
形成原电池的条件
1.一个能够正向自发的氧化还原反应 。 2.氧化反应与还原反应分别在两极进行。 3.必须有盐桥(或多孔陶瓷、离子交换膜)
等连通装置。
第五章电化学基础
2. 电极反应和电池反应 由电流方向知两极反应: e-
金属置于其盐溶液时: M-ne-→Mn+
同时: Mn++ne-→M 当溶解和沉积二过程平
衡时,金属带电荷,
溶液带相反电荷。两种电
荷集中在固-液界面第五章附电化学基近础 。形成了双电层。
• 电极电势的产生


溶液


溶液
M
Mn+(aq) + 2e
双电层的电势差即该电极的平衡电势,
称为电极电势,表示为:
第五章电化学基础
5.2.2 电极电势的确定
1. 标准氢电极:
c(H+) =1 mol·dm-3 p(H2) = 105 Pa
H /H2
0.0000v
第五章电化学基础
2. 标准电极电势的测定:
第五章电化学基础
参比电极
装置图
第五章电化学基础
甘汞电极P表 , tH示 (gl)H 方 2C g2法 (lsC ): (lc) 电极:反 H应 2C g2(ls)2e⇌ 2Hg(2lC)l(aq )
任一自发的氧化还原反应都可以组成一个 原电池。如:
Cu+ FeCl3 CuCl+ FeCl2 (-)Cu∣CuCl(S)∣C第l五-章电化学‖基础 Fe3+,Fe2+∣Pt(+)

《电化学基础》课件

《电化学基础》课件

电化学反应速率
总结词
电化学反应速率描述了电化学反应的快 慢程度,是衡量反应速度的重要参数。
VS
详细描述
电化学反应速率与参与反应的物质的浓度 、温度、催化剂等条件有关。在一定条件 下,反应速率可由实验测定,对于一些特 定的电化学反应,也可以通过理论计算来 预测其反应速率。
反应速率常数
总结词
反应速率常数是描述电化学反应速率的重要参数,它反映了电化学反应的内在性质。
详细描述
反应速率常数与参与反应的物质的性质、温度等条件有关。在一定条件下,反应速率常数可以通过实验测定,也 可以通过理论计算得到。反应速率常数越大,表示该反应的速率越快。
反应机理
总结词
电化学反应机理是描述电化学反应过程中各步骤的详细过程和相互关系的模型。
详细描述
电化学反应机理可以帮助人们深入理解电化学反应的本质和过程,从而更好地控制和优化电化学反应 。不同的电化学反应可能有不同的反应机理,同一电化学反应也可能存在多种可能的反应机理。 Nhomakorabea05
电化学研究方法
实验研究方法
01
重要手段
02
实验研究是电化学研究的重要手段,通过实验可以观察和测量电化学 反应的过程和现象,探究反应机理和反应动力学。
03
实验研究方法包括控制电流、电位、电场等电学参数,以及观察和测 量电流、电位、电导等电化学参数。
04
实验研究需要精密的实验设备和仪器,以及严格的操作规范和实验条 件控制。
01
02
03
电池种类
介绍不同类型电池的制造 过程,如锂离子电池、铅 酸电池、镍镉电池等。
电池材料
阐述电池制造过程中涉及 的主要材料,如正负极材 料、电解液、隔膜等。

电化学知识点总结

电化学知识点总结

电化学知识点总结一、电化学基础1. 电化学的基本概念电化学是研究电化学反应的科学,它涉及到电流和电势的关系,以及在电化学反应中的能量转换和催化作用。

电化学反应通常发生在电极上,电化学反应的方向与电流的流动方向相反。

2. 电化学的基本原理电化学的基本原理包括电极反应、电解、电荷传递和能量转换等。

在电池中,通过氧化还原反应产生的电能被转化为化学能,进而转化为电能,从而产生电流。

3. 电化学的基本参数电化学的基本参数包括电压、电流、电解、电极电势、电导率、离子迁移速率等。

这些参数是电化学研究的基础,也是电化学应用的基本原理。

二、电化学反应1. 电化学反应的基本类型电化学反应包括氧化还原反应、电解反应、电化学合成反应等。

氧化还原反应是电化学反应中最常见的一种,它涉及到电子的转移,产生电压和电流。

电解反应是电化学反应中电流通过电解质溶液时发生的反应,通常涉及到离子的迁移和溶液中的化学反应。

电化学合成反应是指利用电能进行化学合成反应,通常包括电极合成和电解合成两种方式。

2. 电化学反应的热力学和动力学电化学反应的热力学和动力学是电化学研究的重要内容。

热力学研究电化学反应的热能转化和热能产生的条件,动力学研究电化学反应的速率和电化学动力学理论。

三、电化学动力学1. 电化学反应速率电化学反应速率是指单位时间内电化学反应所产生的物质的变化量。

电化学反应速率与电流和电压密切相关,它是电化学反应动力学研究的关键之一。

2. 催化作用催化作用是指通过催化剂来提高电化学反应速率的现象。

催化剂可以降低反应的活化能,提高反应速率,通常在电化学反应中有着重要的应用。

3. 双电层理论双电层是电极表面和电解质溶液之间的一个电荷层,它对电化学反应速率有着重要的影响。

双电层理论是电化学研究的重要理论之一,它涉及到电极和电解质溶液中的电位差和电荷分布。

4. 交换电流交换电流是指在电化学反应中与电流方向相反的电流,它是电化学反应速率的一个重要参数,也是电化学动力学研究的重要内容。

电化学基础知识点总结

电化学基础知识点总结

电化学基础知识点总结电化学是研究电与化学之间相互转化和相互作用的科学。

它是物理学和化学的交叉学科,在电池、电解和电沉积等领域有着广泛的应用。

以下是电化学的基础知识点总结:1. 电化学反应:- 氧化还原反应(简称氧化反应和还原反应),是电化学最基本的反应类型,涉及原子、离子或分子的电荷变化。

- 氧化是指某物质失去电子,还原是指某物质获得电子。

2. 电池原理:- 电池是将化学能转化为电能的装置,由两个电极(阳极和阴极)和电解质组成。

阳极是发生氧化反应的地方,阴极是发生还原反应的地方。

- 在电池中,化学反应产生的电荷通过外部电路流动,从而形成电流。

3. 电解:- 电解是用电流将化合物分解成离子或原子的过程。

在电解槽中,正极是阴离子的聚集地,负极是阳离子的聚集地,而正负极之间的电解液是导电介质。

- 在电解过程中,正负电极上的反应是有差别的,称之为阳极反应和阴极反应。

4. 电解质:- 电解质是能够在溶液中或熔融态中导电的物质。

电解质可以是离子化合物,如盐和酸,也可以是离子溶剂如水。

- 强电解质能够完全离解成离子,而弱电解质只有一小部分离解成离子。

5. 电动势:- 电动势是电池或电化学系统产生电流的驱动力,通常用电压表示。

- 在标准状态下,标准电动势是指正极与负极之间的电压差。

它与化学反应的自由能变化有关,可以通过标准电动势表进行查阅。

6. 极化现象:- 极化是指在电解过程中阻碍电流通过的现象。

- 有两种类型的极化:浓差极化和活化极化。

浓差极化发生在反应物浓度在电极上发生变化的时候,活化极化发生在电化学反应速率受到限制的时候。

7. 电信号:- 在电化学中,电伏是电势大小的基本单位。

它表示单位电荷通过电路所产生的能量的大小。

- 电流是电荷通过导体的速率,单位是安培。

- 除了电伏和电流之外,还有许多其他电信号,例如电阻、电导率和电容。

8. 电化学测量方法:- 常用的电化学测量方法有电压法、电位法、电流法和电导法。

电化学基础知识点总结

电化学基础知识点总结

电化学基础知识点总结电化学是研究电子与离子在电解质溶液中的相互转移和相互作用的科学。

它涉及电荷的移动和化学反应的同时发生。

在电化学中,我们主要关注两个方面的过程:电化学反应和电化学细胞。

1. 电化学反应电化学反应是指在外加电势的作用下,电子和离子之间发生的氧化还原反应。

电化学反应包括两个基本过程:氧化和还原。

氧化是指物质失去电子或氢离子,而还原则是指物质获得电子或氢离子。

在电化学反应中,常常涉及到电极反应和电解质的离子浓度变化。

2. 电化学细胞电化学细胞是一种将化学能转化为电能的装置。

它包括两个半电池:一个作为阳极,用于氧化反应;另一个作为阴极,用于还原反应。

两个半电池通过电解质溶液或电解质桥相连,并且在外部连接一个电路,使电子能够在阳极和阴极之间流动。

这个电路就是外部电路,而电解质溶液或电解质桥则是内部电路。

电化学细胞产生的电势差可以用来驱动电子在电路中进行功的转化。

3. 电化学基础概念在电化学中,有一些基本概念需要了解。

(1)电极:电极是电化学反应发生的场所。

它包括两种类型:阳极和阴极。

阳极是发生氧化反应的地方,电子从阳极流出;而阴极是发生还原反应的地方,电子流入阴极。

(2)电位:电位是指在标准状态下,电解质溶液中某个电极的电势相对于标准氢电极的差异。

标准氢电极的电势被定义为0V,其他电极相对于标准氢电极具有正负的电势。

(3)电解质:电解质是能够在溶液中分解出离子的物质。

电解质可以分为强电解质和弱电解质,具体取决于它们在溶液中的离解程度。

(4)电导率:电导率是指电解质溶液中离子传导电流的能力。

电导率高的溶液具有更好的导电性能。

4. 电化学技术和应用电化学不仅是一门基础科学,还在许多领域中有广泛的应用。

(1)电解:电解是指利用电流将化合物分解为离子的过程。

电解在电解制备金属、电镀、电解解析等方面有着重要的应用。

(3)蓄电池:蓄电池是一种将化学能转化为电能的设备。

它具有可充电性,常用于储存和提供电能。

《无机化学》第五章 氧化还原反应和电化学基础

《无机化学》第五章 氧化还原反应和电化学基础

二、氧化还原反应方程式的配平
1. 氧化值法
配平原则:氧化剂中元素氧化值降低的总数等 于还原剂中元素氧化值升高的总数。
配平步骤: (1)写出反应方程式,标出氧化值有变化 的元素,求元素氧化值的变化值。
(2)根据元素氧化值升高总数和降低总数相等 的原则,调整系数,使氧化值变化数相等。
(3)用观察法使方程式两边的各种原子总数相 等。
酸表。
(4)E是电极处于平衡状态时表现出来的特
征,与反应速率无关。
(5)E仅适用于水溶液。
5.饱和甘汞电极:
Hg | Hg2Cl2(s) |KCl (饱和)
Hg2Cl2 (s) + 2e
2Hg(l) +2Cl-
E (Hg2Cl2/Hg)=0.245V
三、 影响电极电势的因素
1.影响 因素
(1)电极的本性:即电对中氧化型或还 原型物质的本性。
还原型:在电极反应中同一元素低氧化值的物质。)
电对:氧化型/还原型
例:MnO2 +4H+ + 2e
Mn2+ +2H2O
电对:MnO2 / Mn2+
(2)E与电极反应中的化学计量系数无关。
例:Cl2 + 2e 1/2Cl2 + e
2Cl- E(Cl2/Cl-)=1.358V Cl-
(3)电极反应中有OH- 时查碱表,其余状况查
(3)分别配平两个半反应,使等号两边的原子 数和电荷数相等。
(4)根据得失电子数相等的原则,给两个半 反应乘以相应的系数,然后合并成配平的离子 方程式。
(5)将离子方程式写成分子方程式。
离子电子法配平时涉及氧原子数的增加和减 少的法则:

第五章 电化学基础

第五章 电化学基础

0.05917 lg 0.10 0.05917 lg 0.010
0.10 E 0.05917 lg 0.05917 (V) 0.010
二. 比较氧化剂和还原剂的相对强弱
越大 电极的 氧化型物质氧化能力↑
共轭还原型物质还原能力↓
还原型物质还原能力↑ 共轭氧化型物质氧化能力↓
(1)Mn2+ + 2e
2
Mn
2
(Mn / Mn) (Mn
0.05917 / Mn) lg c(Mn 2 ) 2
(2)2H2O + 2e
H2 + 2OH0.05917 1 (H 2O / H 2 ) (H 2O / H 2 ) lg 2 p(H 2 ) {c(OH )}2 Ag + Br-
∵ ∴
(H / H 2 ) 0.00 V
E 待测
例如:测定Zn2+/Zn电极的标准电极电势
将Zn2+/Zn与SHE组成电池
(-)Pt,H2(100kPa)|H+(1mol· -1)||Zn2+(1mol· -1)|Zn(+) L L
298.15K时, E =-0.763V,
电池反应:
二、原电池符号
(-)Zn | Zn2+(c1) || Cu2+(c2) | Cu(+) 相界面 盐桥
电极导体
溶液
同相不同物种用“,”分开,
负极“ - ”在左边,正极“ + ”在右边; 溶液、气体要注明cB,pB ,固体浓度忽略
纯液体、固体和气体写在惰性电极(Pt)一边用“ , ”分开。
例1:将下列反应设计成原电池并以原电池符号表示。 2Fe2 1.0mol L1 Cl2 100kPa

电化学基础_课件

电化学基础_课件

据此反应判断,下列叙述中正确的是(CD )
A. 电池放电时,负极周围溶液的pH不 断增大
B. 电池放电时,镍元素被氧化 C. 电池充电时,氢元素被还原 D. 电池放电时,H2是负极
4. 有人设计出利用CH4和O2的反应,用铂电极在KOH 溶液中构成原电池。电池的总反应类似于CH4在O2中
燃烧,则下列说法正确的是 ( ) A
N
CCuS2SOO4 4
酒精
NaCl溶液
H2SO4 H2SO4
例2. 在盛有稀H2SO4的烧杯中放入用 导线连接的锌片和铜片,下列叙述正
确的是( D )
(A)正极附近的SO42 -离子浓度逐渐增大 (B)电子通过导线由铜片流向锌片
(C)正极有O2逸出 (D)铜片上有H2逸出
强调:原电池的工作原理:
①电极和电解质溶液 ②两电极上分别有还原剂和氧化剂(燃料
电(池2))电解质溶液:
参与电极反应或构成内电路
(3)两导体作电极:
①活动性不同的金属(或一种金属和一种非金属 导
体石墨),与电解质溶液反应的活泼金属为
(负4极)形。成闭合回路。 (两电②极两用不导活泼线的连导接体-,石或墨接或触Pt等。。)(燃料电池电
稀Na硫O酸H溶溶液液
强调:电极的判断及电极反应式的书写
方法一:根据电极材料的性质确定。 1.对于金属—金属电极,
活泼金属是负极,不活泼金属是正极; 2.对于金属—非金属电极,
金属是负极,非金属是正极,如干电池等; 3.对于金属—化合物电极,
金属是负极,化合物是正极。 方法二:根据电极反应的本身确定。 失电子的反应→氧化反应→负极; 得电子的反应→还原反应→正极。
失e,沿导线传递,有电流产生
外电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.

任何两个不同的电极可以组成一个原电池, 甚至同一个电极在不同的状态 (如浓度)下 也可以组成原电池。 因此使许多在通常状态下不能实现的反应 在原电池中(或电极上)可以实现。 反过来任何一个任何一个氧化还原反应都 可以设计成原电池。


5.3 电极电势的产生
1、扩散双电层理论 各电极与其离子溶液存在下列平衡: 还原态 氧化态 十 ne 即 溶解 M(s) Mn+(aq)+ ne



E

0.0592 lg K n
E

0.0592 lg K n
由上式可见,多于电池反应来讲, E 值越大,K 值越大,反应进行越完全 E 值越小,K 值越小 E<0, K 值很小,反应实际不能进行 E可用来判断反应进行的方向和限度
四、 电极电势的应用
1.计算电池的电动势 2.确定氧化剂,还原剂的相对强弱 3.判断氧化还原反应进行的方向
4.判断氧化还原反应进行的限度
1.计算电池的电动势
E = E + - EEѲ = EѲ + _ EѲ
例1 PH的测定
以甘汞电极为参比电极,玻璃电极为指示 电极组成原电池

玻璃电极 Ag AgCl(s ) HCl(0.1mol.L-1 ) 玻璃膜 待测溶液 E = E - 0. 0592pH 甘汞电极 Hg, Hg2Cl2(s) KCl(饱和) Hg2Cl2+2e 2Hg+2Cl E 甘汞 = E ( Hg2Cl2)+0.0592/2 lg 1/c2(Cl-) = 0.2415
沉积

使电极与溶液间形成扩散双电层,产生电势差,即 电极的电极电势,记为E。
不同的电极产生的 E 不同,两个不同的 电极组合成原电池时,电子将从低电势 负极流向高电势正极,从而产生电流。 注意:电流方向与电子流动方向相反

原电池的电动势就是两极之间的电势差, 也记为 E,即 正极的电极电势E+减去负极的电极电势E-

E = E 甘汞 - E 玻璃 = 0.2415- E +0.0592pH
【例2】计算在298.15K 时下列原电池的电动势
(-) Ag|AgNO3(0.01mol· -1)‖AgNO3(1mol· -1) | Ag (+) L L
解:这种由不同浓度的同类电极组成的原电池称浓差电池。
正极反应:Ag+(1mol· -1) + eL Ag(s) 负极反应: Ag(s)- eAg+(0.01mol· -1) L 电池反应: Ag+(1mol· -1) L Ag+(0.01mol· -1) L ∴ E+= EΘ (Ag+/Ag ) + 0.0592 lg[c+(Ag+) /cΘ] E- = EΘ (Ag+/Ag ) - 0.0592 lg[c- (Ag+) /cΘ]
2Cr3++7H2O
[Cr3+]2 [Cr2O72-].[H+]14
6
lg
(3) 溶液的浓度变化,影响电极电势的数值,从 而影响物质的氧化、还原能力。 由能斯特方程
E =
EѲ+
0.059lg
[氧化态]a [还原态]b
n 可知当氧化态物质的浓度增大(或还原态物质的 浓度减小)时,其电极电势的代数值变大,亦即氧 化态物质的氧化性增加; 反之还原态物质的浓度增大时,其电极电势的 代数值变小,亦即还原态物质的还原性增加。
5.4 原电池热力学





一、可逆电池 二、电池电动势与反应Gibbs函数变 三、氧化还原反应中的化学平衡 四、 电极电势的应用 五、电池介绍
一、可逆电池
①热力学上可逆,即通过原电他的电 流无限小,使电池内部始终无限近于平 衡状态; ②电极反应也是可逆的,即在化学上 为可逆反应。

Dianell电池
5.2 电极及其分类
电极就是原电池中半电池,每个电极就 对应着一个电对,就有一个半反应。

根据电对性质的不同,产生了不同类 型的电极。
电极类型
. 电极类型
金属-金属离 子电极
电对示例
Zn2+/ Zn
电极符号
Zn | Zn2+(c)
电极反应示例
Zn2+ + 2e- = Zn
气体电极
Cl2 / Cl-
例: Cr2O72-/Cr3+,Zn2+/Zn, Sn4+/Sn2+ ,
Fe3+/Fe2+ , MnO4-/MnO2, SO42-/H2SO3,
任何一个氧化环反应都包含着两个电 对,每个电对代表着一个半反应。 如电对MnO4-/MnO2分别在弱酸性和 弱碱性介质中的还原半反应方程式。

电对符号 弱酸性 MnO4-/MnO2 MnO4-+4H++3e 弱碱性 MnO4-/MnO2 MnO4-+2H2O+3e
Pt, Cl2(p) | Cl- (c)
Pt | Fe2+(c1), Fe3+(c2)
Cl2 + 2e- = 2Cl-
离子型 电极 金属-金属难 溶盐电极
Fe3 + / Fe2+
Fe3+ + e- = Fe2+
Hg2Cl2 / Hg
Hg | Hg2Cl2 (s) | Cl-(c) Hg2Cl2+2e- =2Hg + 2Cl-
由于我们只能测得原电池的电动势,无法 测得电极电势的绝对值。 就人为规定标准氢电极的电极电势为0,来 测定其它电极的标准电极电势。
1)标准电极电势
以298.15K时的标准氢电极作为负极,待 测电极作为正极,组成原电池,待测电极也 要处于标准态时测得的电极电势就称为该电 极的标准电极电势(特指还原电极电势)。
对于电极反应来说,若有 a氧化态+ne b还原态 则有 [还原态]b RT [还原态]b Ѳ 0.059 E = EѲln [氧化态]= E - n lg a a
nF
[氧化态]
3. Nernst方程式
或 [生成物]b 0.059 E= EѲ- n lg [反应物]a
上述方程式称为能斯特方程,它表明氧化还原反应 中,溶质的浓度、气体的压力对电极电势的影响。
+
2e-
-2.868 2.71 2.372 1.662 0.7618 0.4030 0.257 0.1375 0.1262 0.0000 0.151 0.3419 0.771 0.7973 0.7996 1.498 2.866
氧 化 态 的 氧 化 性 增 强
氢电极使用不方便,常用甘汞电极代替标准氢 电极。 电极组成式 Pt,Hg,Hg2Cl2(s) | Cl-(c) 电极反应式 Hg2Cl2 + 2e-
+0.26808
+0.3337
L 0.1 mol· -1甘汞电极 Hg | Hg2Cl2 (s) | KCl(0.1 mol· -1) L
例:以标准铜电极与饱和甘汞电极组成与原电池,标准铜电
极为正极,饱和甘汞电极为负极,测得原电池电动势为 +0.1004V,求标准铜电极的电极电势。
解:该原电池以简式表示为 (-) Hg| Hg2Cl2 | KCl(饱和)‖ Cu2+(1mol· -1) |Cu(+) L 测得此原电池的电动势Eθ= + 0.1004V,则 E Θ = E+ Θ - E- Θ = E Θ Cu2+/Cu- 0.2415 = 0.1004 ∴ E Θ Cu2+/Cu = E Θ + 0.2415 = 0.1004 + 0.2415 = 0.3419 V
2Hg + 2Cl-
298K时,饱和KCl 溶液时 E Θ = 0.2415 甘汞电极
优点:结构简单、使用方便、 电势稳定,最为常用。
电极名称 饱和甘汞电极
电极组成 Hg | Hg2Cl2 (s) | KCl(饱和)
电极电势E/V +0.2415
1 mol· -1甘汞电极 L
Hg | Hg2Cl2 (s) | KCl(1 mol· -1) L
还 原 态 的 还 原 性 增 强
Ca2-Ca Na-Na Mg2-Mg Al3-Al Zn2-Zn Fe2-Fe Ni2-Ni Sn2 -Sn (白)Pb2 -Pb 2H H2 Sn4 Sn2 Cu2-Cu Fe3-Fe Hg22-Hg Ag -Ag Au3-Au F2(g)-F
第五章
电化学基础
5.1 电化学的概念
电化学是研究化学能和电能相互 转化的一门科学
化学能 电能, G 0 电能 化学能, G 0
1. 氧化还原反应
定义:元素的氧化值发生了变化的化学应。
Sn2++Fe3+ → Sn4+ + Fe2+ 特点: (1)反应中存在着氧化剂与还原剂; (2)每一种元素存在着氧化态与还原态。 ox(氧化态)+ ne- 还原 red(还原态) 氧化
E =

E+ - E-
注: 由于人为规定电极电势还原电极电势,而负极上发 生的氧化反应,所以前面加一负号。
2.标准电极电势
原电池的电动势与电极的属性、各物质的浓 度、温度有关。
人们规定298.15K,各物质处于标准态,即溶液 中离子浓度为1mol·L-1,气体分压为100.0 kPa时
测得的的电极电势为标准电极电势记为EѲ 。 同样在标准状态下,原电池的电动势称为标 准电动势,也记为EѲ 。
不可逆电池
Zn
Cu
Cu
Zn
H2SO4
Volta电池
相关文档
最新文档