(全国)2019版中考数学复习课时训练(三十五)概率试题
2019-2020年中考数学专项练习概率.docx

2019-2020 年中考数学专项练习概率一、选择题(每小题3 分,共 30 分)1. ( 08 青海西宁)下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为 1% ,买 10000 张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从 A 地到 C 地,可供选择的方案是走水路、走陆路、走空中. 从 A 地到 B 地有 2 条水路、 2 条陆路,从 B 地到C 地有 3 条陆路可供选择,走空中从A 地不经B 地直接到C 地 . 则从 A 地到 C 地可供选择的方案有()A . 20 种B.8种C. 5种D.13种3.一只小狗在如图 1 的方砖上走来走去,最终停在阴影方砖上的概率是( )A .4B.1 C.1 D.2图 11535154.下列事件发生的概率为 0 的是()A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为 1;D .一个转盘被分成 6 个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
5. 某商店举办有奖储蓄活动,购货满100 元者发对奖券一张,在 10000 张奖券中,设特等奖1 个,一等奖 10 个,二等奖 100 个。
若某人购物满 100 元,那么他中一等奖的概率是()1 B.1C.1D.111A.100001001000100006、有 6 张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3 的概率是( )A.1B.1 C.1 D.2 63237. 在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游图 2戏规则是:在 20 个商标牌中,有 5 个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖 , 参与这个游戏的观 众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()121D .5A .B .C .185948. 如图 3, 一飞镖游戏板 , 其中每个小正方形的大小相等, 则随意投掷一个飞镖 , 击中黑色区域的概率是 ( )A.1B.3 C.1 D.1 28439. 如图 4,一小鸟受伤后,落在阴影部分的概率为()A .1B.1C.1D. 123410. 连掷两次骰子,它们的点数都是A.1B.1 C.1 64164 的概率是( D.) 图 4136二、填空题(每小题 3 分,共 30 分)11.(08福建福州)在一个袋子中装有除颜色外其它均相同的 2 个红球和 3 个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______, 小明未被选中的概率为______13. 在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.14. 从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为;抽到黑桃的概率为;抽到红心 3 的概率为15. 任意翻一下2007 年日历,翻出 1 月 6 日的概率为;翻出4月31日的概率为。
北京市2019年中考数学复习统计与概率课时训练十五统计图表(含答案)15

课时训练 ( 十五 )统计图表( 限时 :30 分钟)| 夯实基础 |1.某棉纺织厂为认识一批棉花的质量 , 从中随机抽取了 20 根棉花纤维进行丈量 , 其长度 x(单位: mm)的数据散布以下表,则棉花纤维长度的数据在8≤ x<32这个范围的频次为()棉花纤维长度 x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A. 0. 8B. 0. 7C. 0. 4D. 0. 22. [2018 ·旭日二模 ]小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数 , 并绘制了直方图.图K15- 1依据图中信息 , 以下说法 :①这栋居民楼共有居民140 人;②每周使用手机支付次数为28~35 次的人数最多 ;③有的人每周使用手机支付的次数在35~42 次;④每周使用手机支付不超出21 次的有 15 人.此中正确的选项是()A.①②B. ②③C. ③④D. ④3. [2018 ·怀柔一模 ]图K15-2是某品牌毛衣和衬衫2016 年 9 月至 2017 年 4 月在怀柔京北大世界的销量统计图. 依据统计图供给的信息, 以下推测不合理的是()图K15- 2A. 9 月毛衣的销量最低 , 10 月衬衫的销量最高B.与 10 月对比 ,11 月时 , 毛衣的销量有所增添 , 衬衫的销量有所降落C. 9 月- 11 月毛衣和衬衫的销量逐月增添D. 2 月毛衣的销售量是衬衫销售量的7 倍左右4. [2018 ·海淀第二学期练习]在线教育使学生足不出户也能连结全世界优异的教育资源 . 下边的统计图反应了我国在线教育用户规模的变化状况.图K15- 3( 以上数据摘自《 2017 年中国在线少儿英语教育白皮书》)依据统计图供给的信息, 以下推测必定不合理的是()A. 2015 年 12 月至 2017 年 6 月, 我国在线教育用户规模渐渐上涨B. 2015 年 12 月至 2017 年 6 月, 我国手机在线教育课程用户规模占在线教育用户规模的比率连续上涨C. 2015 年 12 月至 2017 年 6 月, 我国手机在线教育课程用户规模的均匀值超出7000 万D. 2017 年 6 月, 我国手机在线教育课程用户规模超出在线教育用户规模的70%5. [2018 ·丰台一模 ]太阳能是来自太阳的辐射能量. 关于地球上的人类来说, 太阳能是对环境无任何污染的可重生能源, 所以很多国家都在鼎力发展太阳能. 图K15- 4 是 2013- 2017 年我国光伏发电装机容量统计图. 依据统计图供给的信息,判断以下说法不合理的是()图K15- 4A.截止 2017 年末 , 我国光伏发电累计装机容量为13078 万千瓦B. 2013- 2017 年, 我国光伏发电新增装机容量逐年增添C. 2013- 2017 年, 我国光伏发电新增装机容量的均匀值约为2500 万千瓦D. 2017 年我国光伏发电新增装机容量大概占当年累计装机容量的40%6. [2018 ·东城一模 ]举重比赛的总成绩是选手的挺举与抓举两项成绩之和, 若此中一项三次挑战失败 , 则该项成绩为 0.甲、乙是同一重量级其余举重选手 , 他们近三年六次重要比赛的成绩以下 ( 单位 : 公斤 ):年份 2015 上 2015 下 2016 上 2016 下2017 上2017 下选手半年半年半年半年半年半年290 170( 没292 135( 没298300甲( 冠军 )获奖) (季军)获奖) (冠军) (冠军)285287293292294296乙( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 ) ( 亚军 )假如你是教练, 要选派一名选手参加国际比赛, 那么你会选派( 填“甲”或“乙”),原因是.7. [2017 ·顺义一模 ] 图 K15- 5①为北京市女生从出生到 15 岁的均匀身高统计图 , 图K15- 5②是北京市某女生从出生到 12 岁的身高统计图.图K15- 5请你依据以上信息展望该女生15 岁时的身高约为, 你的展望原因是.8. [2018 ·旭日二模 ]鼓舞科技创新、技术发明,北京市2012-2017年专利受权量如图K15- 6所示 .依据统计图中供给信息, 预估2018年北京市专利受权量约件,你的预估原因是.图K15- 69. [2017 ·旭日二模 ]在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基真同样 , 他随机记录了此中某些天上学所用的时间, 整理以下表 :交通工具所需时间 ( 单位 :min)自行车14,14,14,15,15,15,15,15,15,15,15,15,15,15,15公共汽车 10,10,11,11,11,12,12,12,12,13,15,16,17,17,19下边有四个推测 :①均匀来说 , 乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比较简单估计;③假如小军想在上学路上花的时间更少, 他应当更多地乘坐公共汽车;④假如小军必定要在16 min 内抵达学校 , 他应当乘坐公共汽车.此中合理的是( 填序号 ) .10. [2018 ·门头沟一模 ] 地球环境问题已经成为我们日趋关注的问题.学校为了普及生态环保知识 , 提高学生生态环境保护意识 , 举办了“我参加 , 我环保”的知识比赛 . 以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行检查剖析, 成绩以下 :初一 :76889365789489689550898889897794 87889291初二 :74979689987469767278997297769974 99739874(1)依据上边的数据 , 将以下表格增补完好 ;整理、描绘数据 :成绩 x50≤ 60≤ 70≤ 80≤人数90≤x≤100x≤59x≤69x≤79x≤89年级初一1236初二011018( 说明 : 成绩 90 分及以上为优异 ,80 ~90 分为优异 ,60 ~80 分为合格 ,60 分以下为不合格 )剖析数据 :年级均匀数中位数众数初一8488. 5初二 84 . 274(2)得出结论 :你以为哪个年级掌握生态环保知识水平较好并说明原因. (起码从两个不一样的角度说明推测的合理性 )11. [2018 ·延庆一模 ]从北京市环保局证明,为知足2022年冬奥会对环境质量的要求 , 北京延庆正在对其周边的环境污染进行综合治理, 抢先在部分村镇进行“煤改电”改造 . 在治理的过程中,环保部门随机选用了永宁镇和千家店镇进行空气质量监测 .过程以下 , 请增补完好.采集数据 :从 2016 年 12 月初开始 , 连续一年对两镇的空气质量进行监测, 将 30 天的空气污介入数 ( 简称 :API) 的均匀值作为每个月的空气污介入数,12 个月的空气污介入数以下 :千家店镇 :120 115 100 100 95 85 80 70 50 50 5045永宁镇 :110 90 105 80 90 85 90 60 90 45 7060(1)整理、描绘数据 :按下表整理、描绘这两镇空气污介入数的数据:空气空气质空气质空气质量次数质量量为优量为良为轻度污染镇千家店镇462永宁镇( 说明 : 空气污介入数≤ 50 时, 空气质量为优 ;50 <空气污介入数≤ 100 时, 空气质量为良 ;100 <空气污介入数≤ 150 时, 空气质量为轻度污染 )(2)剖析数据 :两镇的空气污介入数的均匀数、中位数、众数以下表所示:城镇均匀数中位数众数千家店镇 8050永宁镇81. 387. 5请将以上两个表格增补完好;(3) 得出结论 : 可以推断出镇这一年中环境状况比较好,理由:. (起码从两个不一样的角度说明推测的合理性)12. [2018 ·东城二模 ] 十八大报告初次提出建设生态文明 , 建设漂亮中国.十九大报告再次明确 , 到 2035 年漂亮中国目标基本实现.丛林是人类生计发展的重要生态保障 , 提高丛林的数目和质量对生态文明建设特别重点.截止到 2013年, 我国已经进行了八次丛林资源清点 , 此中全国和北京的丛林面积和丛林覆盖率状况如下:表1 全国丛林面积和丛林覆盖率清点次数丛林面积 ( 万公顷 ) 丛林覆盖率一(1976 年)1220012. 7%二(1981 年)1150012%三(1988 年)1250012. 98%四(1993 年)1340013. 92%五(1998 年)15894. 0916. 55%六(2003 年)17490. 9218. 21%七(2008 年)19545. 2220. 36%八(2013 年)20768. 7321. 63%表2 北京丛林面积和丛林覆盖率清点次数丛林面积 ( 万公顷 ) 丛林覆盖率一(1976年)11. 2%二(1981年)8.1%三(1988年)12.08%四(1993年)14.99%五(1998年)33. 7418.93%六(2003年)37. 8821.26%七(2008年)52. 0531.72%八(2013年)58. 8135.84%( 以上数据根源于中国林业网)请依据以上信息解答以下问题:(1) 从第次清点开始,北京的丛林覆盖率超出全国的丛林覆盖率;(2)补全以下北京丛林覆盖率折线统计图 , 并在图中注明相应数据 ;图K15- 7(3)第八次清点的全国丛林面积20768. 73( 万公顷 ) 记为a, 全国丛林覆盖率21.63%记为b, 到 2018 年第九次丛林资源清点时, 假如全国丛林覆盖率达到2715%,那么全国丛林面积能够达到万公顷 ( 用含a 和b的式子表示 )..| 拓展提高 |13. [2018 ·丰台二模 ]某校七年级6个班的180名学生马上参加北京市中学生开放性科学实践活动送课到校课程的学习 . 学习内容包含以下7个领域:A . 自然与环境,B .健康与安全 ,C.构造与机械 ,D.电子与控制 ,E .数据与信息 ,F .能源与资料 ,G.人文与历史 . 为认识学生喜爱的课程领域,学生会展开了一次检查研究,请将下边的过程补全 .采集数据学生会计划检查 30 名学生喜爱的课程领域作为样本, 下边抽样检查的对象选择合理的是;( 填序号 )①选择七年级 1 班、 2 班各 15 名学生作为检核对象 ;②选择机器人社团的30 名学生作为检核对象 ;③选择各班学号为 6 的倍数的 30 名学生作为检核对象.检核对象确立后 , 检查小组获取了30 名学生喜爱的课程领域以下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描绘数据整理、描绘样本数据 , 绘制统计图表以下 , 请补全统计表和统计图.某校七年级学生喜爱的课程领域统计表课程领域 ABCDEFG共计人数4433230图K15- 8剖析数据、推测结论域, 你的介绍是喜爱这个课程领域 .请你依据上述检查结果向学校介绍本次送课到校的课程领( 填 A-G的字母代号 ), 估计整年级大概有名学生参照答案1. A2. B3. C4. B5. B6.答案不独一 , 原因须支撑选项.7. 170 厘米12 岁时该女生比均匀身高高8 厘米 , 展望她 15 岁时也比均匀身高高8厘米( 答案不独一 , 合理即可 ) .8.答案不独一 , 原因须支撑推测的合理性.9.①②③10.解:(1) 补全表格以下 :初一 :8;众数 :89;中位数 :77 .(2)略. 能够从给出的三个统计量去判断,假如利用其余标准推测要有数听说明合理才能得分 .11.解:(1)19 2(2)82 . 590(3)千家店原因 : 千家店镇污介入数均匀数为 80, 永宁镇污介入数均匀数为 81. 3, 所以千家店镇污介入数均匀数较低 , 空气质量较好 ; 千家店镇空气质量为优的次数是 4, 永宁镇空气质量为优的次数是 1, 所以千家店镇空气质量为优的次数多 , 空气质量较好.12.解:(1) 四(2)如图 .(3)13.解: 采集数据③整理、描绘数据某校七年级学生喜爱的课程领域统计表课程领域 ABCDEF G 共计人数 4 4332410 30某校七年级学生喜爱的课程领域统计图剖析数据、推测结论G60。
2019年全国各地中考数学试题分类汇编(第二期) :概率 (PDF版,含解析)

概率一.选择题1 .(2019•贵阳•3 分)如图,在 3×3 的正方形网格中,有三个小正方形己经涂成灰色,若再 任意涂灰 1 个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构 成灰色部分的图形是轴对称图形的概率是()A .B . 分析】直接利用轴对称图形的性质分析得出答案.解答】解:如图所示:当 1,2 两个分别涂成灰色,新构成灰色部分的图形是轴对称图 C . D .【 【 形,故新构成灰色部分的图形是轴对称图形的概率是: = . 故选:D .【 点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键. . (2019•海南•3 分)某路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 25 秒,黄灯亮 5 秒, 当小明到达该路口时,遇到绿灯的概率是( A .B .2) C .D .【 【 分析】随机事件 A 的概率 P (A )=事件 A 可能出现的结果数÷所有可能出现的结果数. 解答】解:∵每分钟红灯亮 30 秒,绿灯亮 25 秒,黄灯亮 5 秒, ∴ 当小明到达该路口时,遇到绿灯的概率 P = =,故选:D .点评】本题考查了概率,熟练掌握概率公式是解题的关键..(2019•浙江湖州•3 分)已知现有的 10 瓶饮料中有 2 瓶已过了保质期,从这 10 瓶饮料中 任取 1 瓶,恰好取到已过了保质期的饮料的概率是(【 3 )A .B . 分析】直接利用概率公式求解.解答】解:从这 10 瓶饮料中任取 1 瓶,恰好取到已过了保质期的饮料的概率= C . D .【 【 =. 故选:C .【 点评】本题考查了概率公式:随机事件 A 的概率 P (A )=事件 A 可能出现的结果数除 以所有可能出现的结果数.4 . (2019•广西北部湾经济区•3 分)下列事件为必然事件的是(A. 打开电视机,正在播放新闻 )B. 任意画一个三角形,其内角和是C. 买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上 【 【答案】B解析】 解:∵A ,C ,D 选项为不确定事件,即随机事件,故不符合题意.一定发生的事件只有 B ,任意画一个三角形,其内角和是 180°,是必然事件,符合题意. ∴ 故选:B .必然事件就是一定发生的事件,即发生的概率是 1的事件.本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学 的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件 指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可 能不发生的事件.5 . (2019•广西北部湾经济区•3 分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服 务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是() A. B. C. D. 【 【 答案】A 解析】解:画树状图为:(用 A.B.C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有 9种等可能的结果数,其中两人恰好选择同一场馆的结果数为 3, 所以两人恰好选择同一场馆的概率= = 故选:A ..画树状图(用 A.B.C 分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有 9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n ,再从中选 出符合事件 A 或 B 的结果数目 m ,然后利用概率公式计算事件 A 或事件 B 的概率. 二.填空题1 2 3 . (2019•贵阳•4 分)一个袋中装有 m 个红球,10 个黄球,n 个白球,每个球除颜色外都相 同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么 m 与 n 的关系是 m +n = 【【 10 .分析】直接利用概率相同的频数相同进而得出答案. 解答】解:∵一个袋中装有 m 个红球,10 个黄球,n 个白球,摸到黄球的概率与不是 黄球的概率相同,m 与 n 的关系是:m +n =10. 故答案为:m +n =10.点评】此题主要考查了概率公式,正确理解概率求法是解题关键.∴ 【 . (2019•江苏宿迁•3 分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是 3 的倍数的概 率是分析】由骰子的六个面上分别刻有 1 到 6 的点数,点数为 3 的倍数的有 2 个,利用概 率公式直接求解即可求得答案..【 【 ∴ 解答】解:∵骰子的六个面上分别刻有 1 到 6 的点数,点数为 3 的倍数的有 2 个, 掷得朝上一面的点数为 3 的倍数的概率为: = . 故答案为: .点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.【 . (2 019·江苏盐城·3 分)如图,转盘中 6 个扇形的面积都相等.任意转动转盘 1 次, 当转盘停止转动时,指针落在阴影部分的概率为________.12【 【 答案】。
上海市2019年中考数学真题与模拟题分类 专题20 统计与概率之填空题(35道题)(解析版)

专题20 统计与概率之填空题参考答案与试题解析一.填空题(共35小题)1.(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【答案】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为,故答案为:.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.2.(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克.【答案】解:估计该小区300户居民这一天投放的可回收垃圾共约100×15%=90(千克),故答案为:90.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.3.(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【答案】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.4.(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为77.5%.【答案】解:77.5%,故答案为:77.5%.【点睛】本题考查频数(率)直方图,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为160名.【答案】解:根据题意结合统计图知:估计这个学校全体学生每天做作业时间不少于2小时的人数约为560160人,故答案为:160.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为72度.【答案】解:扇形统计图中表示C等次的扇形所对的圆心角的度数为:360°72°,故答案为:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.7.(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为92%.【答案】解:∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为100%=92%,故答案为:92%【点睛】本题考查的是频数分布表的知识,准确读表、从中获取准确的信息是解题的关键,注意用样本估计总体的运用.8.(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为72人.【答案】解:∵从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,∴从左至右前四个小组的频率为:0.04,0.08,0.34,0.3;∴跳绳次数不少于135次的频率为1﹣0.04﹣0.08﹣0.34﹣0.3=0.24,∴全年级达到跳绳优秀的人数为300×0.24=72人,故答案为:72人.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,读懂题目信息,求出第⑤、⑥组的频率是解题的关键.9.(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是25%.【答案】解:由题意得,参加篮球兴趣小组的人数为:80×45%=36(人),∴参加排球兴趣小组的人数为:80﹣36﹣24=20(人),∴参加排球兴趣小组的人数占体育兴趣小组总人数的百分数为:20÷80×100%=25%,故答案为:25%.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.10.(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是1620.【答案】解:由题意可得,样本中成绩在70~80分的人数为:600﹣12﹣18﹣180﹣600×0.16﹣600×0.04=270,36001620,故答案为:1620.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出全区此次成绩在70~80分的人数.11.(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是17.2克.【答案】解:∵每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,∴设100克鲤鱼肉的蛋白质含量是x克,由题意可得:(17.9+15.3+x)=16.8,解得:x=17.2.故答案为:17.2.【点睛】此题主要考查了频数分布直方图,由直方图获取正确信息是解题关键.12.(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=9.【答案】解:,c=50﹣6﹣20﹣15=9,故答案为:9【点睛】本题考查频数分布表,解题的关键是明确题意,利用表格中的数据,求出所求问题的答案.13.(2019•杨浦区二模)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.那么,其中最喜欢足球的学生数占被调查总人数的百分比为24%.【答案】解:∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比100%=24%,故答案为:24.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.14.(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为1500人.【答案】解:∵从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,∴从左至右前四组的频率依次为0.02×5=0.1、0.03×5=0.15、0.04×5=0.2、0.05×5=0.25,∴后两组的频率之和为:1﹣0.1﹣0.15﹣0.2﹣0.25=0.3,∴体重不小于60千克的学生人数约为:5000×0.3=1500人,故答案为:1500.【点睛】本题考查了频数分布图和频率分布直方图的知识,根据频率、频数及样本容量之间的关系进行正确的运算是解题的关键.15.(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为170cm.【答案】解:∵某班10名学生校服尺寸分别是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm、180cm,∴这10名学生校服尺寸的中位数为:(170+170)÷2=340÷2=170(cm)答:这10名学生校服尺寸的中位数为170cm.故答案为:170.【点睛】此题主要考查了中位数的含义和应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是95分.【答案】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.【点睛】此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.17.(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是28分.【答案】解:将这组数据从小到大的顺序排列后,处于中间位置的数是28分,28分,它们的平均数是28分,那么由中位数的定义可知,这组数据的中位数是28分.故答案为:28分.【点睛】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.18.(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是7小时.【答案】解:∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是7小时;故答案为:7.【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).19.(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.【答案】解:由表格中数据可得本班一共有:3+7+9+13+8=40(人),故中位数是第20个和第21个数据的平均数,则该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.故答案为:26∽30分.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.20.(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是8.5.【答案】解:由表格中数据可得射击次数为20,中位数是第10个和第11个数据的平均数,故这个射击运动员这次成绩的中位数是:(8+9)=8.5.故答案为:8.5.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.21.(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是.【答案】解:根据题意,画树状图如下:由树状图可知,共有6种等可能排列的方式,其中恰好排列成“创建智慧校园”的只有1种,∴恰好排列成“创建智慧校园”的概率是,故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是.【答案】解:共有6种情况,是偶数的有2种情况,所以组成的两位数是偶数的概率为,故答案为:.【点睛】此题主要考查了树状图法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),注意本题是不放回实验.23.(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是.【答案】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能的结果数,所以取得的3个数中不含2的概率.故答案为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.24.(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有6个.【答案】解:设红球有x个,根据题意得:0.4,解得:x=6,答:红球有6个;故答案为:6.【点睛】本题考查了概率公式,设出未知数,列出方程是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.25.(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【答案】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为,故答案为:.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.26.(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是,那么白色棋子的个数是8.【答案】解:设白色棋子的个数为x,根据题意得,解得x=8,即白色棋子的个数为8.故答案为8.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.27.(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【答案】解:任意摸出一个棋子,摸到黑色棋子的概率.故答案为.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.28.(2019•金山区二模)从方程x2=0,1,x2﹣2x+4=0中,任选一个方程,选出的这个方程无实数解的概率为.【答案】解:∵1,x2﹣2x+4=0无实数解,∴无实数解的概率为,故答案为:.【点睛】此题主要考查了概率公式和一元二次方程的解法,关键是掌握算术平方根具有非负性,掌握判断一元二次方程解的方法.29.(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【答案】解:如图所示:在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,符合题意的有:1,2,3,4,5共5个,故这个事件的概率是:.故答案为:.【点睛】此题主要考查了概率的意义,正确把握轴对称图形的性质是解题关键.30.(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【答案】解:从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确应用概率公式是解题关键.31.(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【答案】解:掷一次骰子,向上的一面出现的点数是2的倍数的有2、4,6,故骰子向上的一面出现的点数是2的倍数的概率是:.故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.32.(2019•杨浦区二模)从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为.【答案】解:在﹣5,,,﹣1,0,2,π这七个数中,为负整数的有﹣5,﹣1,共2个数,则恰好为负整数的概率为;故答案为.【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.33.(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【答案】解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中2、3、5是素数,所以概率为,故答案为:.【点睛】本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.34.(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【答案】解:画树状图得:∵共有9种等可能的结果,两人打出相同标识手势的有3种情况,∴两人打出相同标识手势的概率是:.故答案为:.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.35.(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.【答案】解:∵1,2,3,4,5,6,7,8这8个数有4个素数,∴2,3,5,7;故取到素数的概率是.故答案为:.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到素数的个数为易错点.。
2019年全国各地中考数学模拟试卷精选精练:概率【含答案】

概率一、选择题1、(安徽芜湖一模)九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于3的概率是().A. 19B .13C .59D .23答案:C2、(山东省德州一模)现掷A 、B 两枚均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y,并以此确定点P (x y ,),那么各掷一次所确定的点P 落在已知抛物线24yxx 上的概率为()A.118B.112C.19D.16答案:B3、(山西中考模拟六)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率答案:B4、(温州市中考模拟)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等都完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为A .B.C .D.答案:B5、(湖州市中考模拟试卷8)在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数2y x 图象上的概率是()A .12B .13C .14D .16答案:D6、(湖州市中考模拟试卷10)在一个不透明的布袋中,黄色、白色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是个.答案:47、 (河北省一摸)|随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的点数是奇数的概率为A .21 B .31 C .41 D .51答案:A8、(温州一摸)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等都完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为A . B.C .D.答案:B二、填空题1、(吉林镇赉县一模)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是 . 答案:132、(曲阜市实验中学中考模拟)甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏(填“公平”或“不公平”)答案:不公平3、(深圳育才二中一摸)在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是54,则n ▲ 答案:84、(广西南丹中学一摸)某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.答案:0.045、(河南西华县王营中学一摸)从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20xx k 的k 值,则所得的方程中有两个不相等的实数根的概率是.答案:0.66、(上海市) “上升数”是一个数中右边数字比左边数字大的自然数(如:34、568、2469等).任取一个两位数,是“上升数”的概率是▲ .答案:25三、解答题1、(河北二摸)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.答案:21.解:(1)袋中黄球的个数为1个;…………………………………………2分(2)列表或树状图略…………………………………………………………6分所以两次摸到不同颜色球的概率为:105126P. ……………………8分2、(吉林镇赉县一模)如图,是一副扑克牌中的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,作画树形图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是奇数的概率.答案3、(江苏射阴特庸中学)在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字12,2,4,- 13. 小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.(1)用列表法或画树状图,表示所有这些点的坐标;(2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=x 图象上方时小明获胜,否则小华获胜. 你认为这个游戏公平吗?请说明理由.答案:(1)用表格列出这些点所有可能出现的结果如下:……4分1/22 4 -1/3 1/2 (1/2,2)(1/2,4) (1/2,-1/3) 2 (2,1/2) (2,4) (2,-1/3) 4 (4,1/2)(4,2) (4,-1/3)-1/3(-1/3,1/2)(-1/3,2)(-1/3,4)(2)在正比例函数y=x 图象上方的点有:(1/2,2)、(1/2,4)、(2,4)、(-1/3,1/2)、(-1/3,2)、(-1/3,4). ……6分∴P(小明获胜)=1/2,P(小华获胜)=1/2. ∴这个游戏是公平的. ……8分4、(山西中考模拟六) 初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目。
2019年全国中考数学真题汇编-专题16统计与概率

56,58,56,这组数据的众数、中位数分别是
A.53,53
Байду номын сангаас
B.53,56
C.56,53
D.56,56
【答案】D
【解析】将数据重新排列为 51,53,53,56,56,56,58,所以这组数据的中位数为 56,众数为 56,
故选 D.
【名师点睛】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几
A.甲
B.乙
C.丙
D.丁
【答案】A
【解析】当 x≤1 时,中位数与平均数相等,则得到: (x+3+1+6+3)=3,解得 x=2(舍去);
当 1<x<3 时,中位数与平均数相等,则得到: (x+3+1+6+3)=3,解得 x=2;
当 3≤x<6 时,中位数与平均数相等,则得到: (x+3+1+6+3)=3,解得 x=2(舍去);
2019年全国各地中考数学真题汇编:统计与概率(江苏专版)(解析卷)

2019年全国各地中考数学真题汇编(江苏专版)统计与概率参考答案与试题解析一.选择题(共2小题)1.(2019•泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.800解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.2.(2019•无锡)已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是()A.66,62B.66,66C.67,62D.67,66解:把这组数据按照从小到大的顺序排列为:62,63,66,66,67,第3个数是66,所以中位数是66,在这组数据中出现次数最多的是66,即众数是66,故选:B.二.填空题(共8小题)3.(2019•苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.4.(2019•南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是7200.解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.5.(2019•宿迁)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.6.(2019•盐城)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为.解:∵圆被等分成6份,其中阴影部分占3份,∴落在阴影区域的概率为,故答案为:.7.(2019•镇江)一组数据4,3,x,1,5的众数是5,则x=5.解:∵数据4,3,x,1,5的众数是5,∴x=5,故答案为:5.8.(2019•盐城)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是乙.(填“甲”或“乙”)解:∵甲的方差为0.14s2,乙的方差为0.06s2,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.9.(2019•宿迁)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.10.(2019•镇江)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是,则转盘B中标有数字1的扇形的圆心角的度数是80°.解:设转盘B中指针落在标有数字1的扇形区域内的概率为x,根据题意得:,解得,∴转盘B中标有数字1的扇形的圆心角的度数为:360°×=80°.故答案为:80.三.解答题(共20小题)11.(2019•南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.12.(2019•无锡)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)解:(1)从布袋中任意摸出1个球,摸出是红球的概率==;故答案为:;(2)画树状图为:共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以两次摸到红球的概率==.13.(2019•南京)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.14.(2019•常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是30,这组数据的众数为10元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).15.(2019•无锡)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是4%;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.解:(1)扇形统计图中“不及格”所占的百分比是1﹣52%﹣18%﹣26%=4%;故答案为:4%;(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1;答:所抽取的学生的测试成绩的平均分为84.1分;(3)设总人数为n个,80.0≤41.3×n×4%≤89.9 所以48<n<54 又因为4%n为整数所以n =50,即优秀的学生有52%×50÷10%=260 人.16.(2019•苏州)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.17.(2019•常州)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.18.(2019•连云港)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了200名中学生,其中课外阅读时长“2~4小时”的有40人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为144°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.解:(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.19.(2019•苏州)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=36,n=16;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).20.(2019•淮安)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C 级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有40人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800×=160,所以估计该企业员工中对安全生产知识的掌握能达到A级的人数为160人.21.(2019•连云港)现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.解:(1)从A盒中摸出红球的概率为;故答案为:;(2)画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,∴摸出的三个球中至少有一个红球的概率为=.22.(2019•淮安)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.(1)用树状图或列表等方法列出所有可能结果;(2)求两次摸到不同数字的概率.解:(1)画树状图如图所示:所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,∴两次摸到不同数字的概率为.23.(2019•泰州)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.解:画树状图如下由树状图知共有6种等可能结果,其中小明恰好抽中B、D两个项目的只有1种情况,所以小明恰好抽中B、D两个项目的概率为.24.(2019•盐城)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a=0.26、b=50;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.解:(1)根据题意得:b=3÷0.06=50,a==0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216,则该季度被评为“优秀员工”的人数为216人.25.(2019•扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.根据以上信息,回答下列问题:(1)表中a=120,b=0.1;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).26.(2019•镇江)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.解:根据题意画树状图如下:共有9种等情况数,其中小丽和小明在同一天值日的有3种,则小丽和小明在同一天值日的概率是=.27.(2019•扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是;(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是.故答案为.(2)树状图如图所示:共有12种可能,满足条件的有4种可能,所以抽到的两个素数之和等于30的概率==28.(2019•镇江)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是6分;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.故答案为6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98﹣48=50(人).设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.由题意,得,解得.答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.29.(2019•泰州)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上城市PM2.5平均浓度统计表(单位:μg/m3)(1)2018年7~12月PM 2.5平均浓度的中位数为μg /m 3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM 2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.解:(1)2018年7~12月PM 2.5平均浓度的中位数为=μg /m 3;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图, 故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM 2.5平均浓度下降了.30.(2019•宿迁)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图. 男、女生所选类别人数统计表根据以上信息解决下列问题 (1)m = 20 ,n = 2 ;(2)扇形统计图中“科学类”所对应扇形圆心角度数为 79.2 °;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.。
精编2019深圳中考数学第一轮课时训练含答案(31-40课时).docx

精编2019深圳中考数学第一轮课时训练含答案(31-40课时)目录:2019深圳中考数学第一轮课时训练含答案31:2019深圳中考数学第一轮课时训练含答案32:2019深圳中考数学第一轮课时训练含答案33:2019深圳中考数学第一轮课时训练含答案34:2019深圳中考数学第一轮课时训练含答案35:2019深圳中考数学第一轮课时训练含答案36:2019深圳中考数学第一轮课时训练含答案37:2019深圳中考数学第一轮课时训练含答案38:2019深圳中考数学第一轮课时训练含答案39:圆的有关性质直线与圆的位置关系弧长和扇形面积投影与三视图多面体的表面展开图图形的变换图形变换的应用数据与图表2019深圳中考数学第一轮课时训练含答案40:概率课时训练(三十一)圆的有关性质(限时:40分钟)/考场过关/1. [2017 •泸州]如图K31-1,初是00的直径,弦〃丄個于点氏若A. V7B. 2^7C. 6D. 82. [2018 •盐城]如图K31-2,初为00的直径,仞为00的弦,么ADC=35°,则ZGJg 的度数为 ()A. 35°B.45。
C. 55°D. 65°3..[2018 •白银]如图 K31-3,过点 0(0, 0), C 血,0), 〃(0, 1),点〃是x 轴下方CM 上的一点,连接% 血则ZO 肋的度数是 ()畑8,处二1,则弦〃的长是图 K31-24. [2017 •西宁]如图K31~4,初 是OO 的直径,弦皿 交初 于点P 、AP=2, BP 弋 ZAPC=30° ・则〃的长为()图K3WA. V15B. 2V5C. 2V15D. 85. [2018 •烟台]如图K31-5,方格纸上每个小正方形的边长均为1个 单位长度,点a 勺$ C 在格点(两条网格线的交点叫格点)上,以点。
为 原点建立直角坐标系,则过昇,3 C 三点的圆的圆心坐标 为 ・图 K31-56. [2017 -十堰]如图 K31-6, A ABC 内接于 OO, ZACB^0° , ZACB 的 平分线交O 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练(三十五)概率
(限时:30分钟)
|夯实基础|
1.[2018·齐齐哈尔]下列成语中,表示不可能事件的是()
A.缘木求鱼
B.杀鸡取卵
C.探囊取物
D.日月经天,江河行地
2.[2018·贵港]笔筒中有10只型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从铅笔中任意抽出一支铅笔,则抽到的编号是3的倍数的概率是()
B.1
A.1
10
D.2
C.
10
3.[2018·苏州]如图K35-1,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()
图K35-1
B.1
C.
D.
A.1
2
4.[2018·山西]在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()
A. B.1 C.2 D.1
5.[2018·玉林]某小组做“用频率估计概率”的实验时,绘出某一结果出现的频率折线图如图K35-2,则符合这一结果的实验可能是()
图K35-2
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
6.[2017·威海]甲、乙两人用如图K35-3所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()
图K35-3
A.1
B.
C.
D.2
7.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为 ()
A.1
B.1
C.1
D.1
2
8.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12图象上的概率是()
A.1
B.1
C.1
D.1
2
9.[2018·淮安]某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是.(精确到0.01)
10.[2018·扬州]有4根细木棒,长度分别为 2 cm,3 cm,4 cm,5 cm,从中任选3根,恰好能搭成一个三角形的概率是.
11.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.
12.[2017·德州]淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.
13.如图K35-4,在3×3的网格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是.
图K35-4
14.[2018·湘潭]为进一步深化基础教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A.书法,B.阅读,C.足球,D.器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?
15.有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图K35-5),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
图K35-5
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
|拓展提升|
16.[2018·烟台]随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:
(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;
(2)将条形统计图补充完整,观察此图,支付方式的“众数”是“”;
(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图
或列表的方法,求出两人恰好选择同一种支付方式的概率.
图K35-6
参考答案
1.A [解析] 不可能事件表示在生活中不可能出现的情况,即概率为0的事件,选项B,C,D 在生活中都能出现,只有选项A 在生活中不可能出现.故选A .
2.C [解析] 依题意共有10种等可能的抽取方法,其中抽到3的倍数的方法有3种,所以P (3的倍数)=
10,故选C .
3.C [解析] 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2
,阴影部分的面积为4×1
2
×a×2a=4a 2
,则飞镖落在阴影部分的概率为: 2 2=
,故选C .
4.A [解析]
所有的等可能结果共有9种,其中符合要求的有4种,所以P=
.
5.D [解析] P (A)=1
2,P (B)=1
,P (C)=1
,P (D)=1
,由图可知,随着实验次数的增加,频率逐渐稳定在0.3~0.4,由此可知选D . 6.C [解析] 列表得:
由表知共有9种等可能的结果,其中数字之和为偶数的有5种,故甲获胜的概率是
.
7.C [解析] 从四条线段中任意选取三条,所有可能的选法有1,3,5;1,3,7;1,5,7;3,5,7,共4种,其中能构成三角形的有3,5,7,共1种,则P (构成三角形)=1
.
8.D [解析] 需要注意两点:一、从2,3,4,5中选出一组数的所有可能结果,注意任选两个,是指不能重复;二、反比例函数的图象经过的点的特点.
9.0.90 [解析] 本题考查利用频率估计概率,根据表中的数据可知频率接近0.90,进而可得其概率.根据题意知,射手击中靶心的频率接近0.90,所以射手击中靶心的概率的估计值为0.90.故答案为0.90.
10.
[解析] 根据题意,从4根细木棒中任取3根,有2,3,4;3,4,5;2,3,5;2,4,5,共4种取法,而能搭成一个三角形的有2,3,4;3,4,5;2,4,5三种,故其概率为
.
11.20[解析] ∵摸到黄球的频率稳定在30%,
∴在大量重复上述试验后,可估计摸到黄球的概率为30%=0.3,而袋中黄球有6个,
∴袋中小球大约有6÷0.3=20(个),
故答案为20.
12.1[解析] 画树状图如下:
或列表如下:
可知共有9种等可能的结果,其中两人都抽到物理实验的情况只有1种,所以他们两人都抽到物理实验的概率是1. 13.[解析] 从C,D,E,F四个点中任意取一点,一共有4种可能,选取D,C,F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=.
故答案为.
14.解:(1)画树状图为:
共有12种等可能的情况.
(2)画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
=1.
所以他们两人恰好选修同一门课程的概率=
1
15.解:(1)画树状图得:
∴共有16种等可能的结果.
=1. (2)∵既是中心对称图形又是轴对称图形的是纸牌B,C上的图形,∴既是轴对称图形又是中心对称图形的概率为
1
16.解:(1)20081°
(2)微信;补全条形统计图如图所示:
(3)设使用“微信”支付为a,使用“支付宝”支付为b,使用“银行卡”支付为c,列表如下:
共有9种情况,符合条件的有3种,即(a,a),(b,b),(c,c),
∴P(两人恰好选择同一种支付方式)==1.。