高中化学 第2章 第2节 第1课时 一些典型分子的空间构型教案 高二化学教案
高中化学人教版2019选修第二册公开课教案设计分子的空间结构

《分子的空间结构》第一课时教学设计积极性。
讲授新课第二节分子的空间结构第一课时分子结构的测定一、分子结构的测定早年的科学家主要靠对物质的化学性质进行系统总结得出规律后推测分子的结构。
如今,科学家应用了许多测定分子结构的现代仪器和方法,如红外光谱、晶体X射线衍射等。
下面先介绍红外光谱,下一章还将介绍晶体X射线衍射。
1.测定分子结构的现代仪器和方法红外光谱:分子中的原子不是固定不动的,而是处于不断振动着的。
红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到谱图上呈现吸收峰。
通过和已有谱图库比对,或通过量子化学计算,可以得知分子中含有何种化学键或官能团的信息。
红外光谱仪原理示意图测分子体结构:红外光谱仪→吸收峰→分析官能团、化学键。
例如,通过红外光谱仪测得某未知物的红外光谱图如上图所示,发现有O—H、C—H、和C—O的振动吸收。
因此,可以初步推测该未知物中含有羟基(—OH)。
认真思考了解分子结构的测定方法。
了解红外光谱和质谱工作原理及应用。
【思考】红外光谱帮助我们确定分子中的化学键和官能团,还有什么现代化仪器帮我们确定有机物的结构呢?现代化学常利用质谱仪测定分子的相对分子质量。
质谱仪的基本原理是:在质谱仪中使分子失去电子变成带正电荷的分子离子和碎片离子等粒子。
由于生成的离子具有不同的相对质量,它们在高压电场加速后,通过狭缝进入磁场得以分离,在记录仪上呈现一系列峰,化学家对这些峰进行系统分析,便可得知样品分子的相对分子质量。
质谱:纵坐标表示相对丰度,横坐标表示粒子的相对质量与其电荷数之比(m/z),简称荷质比,化学家通过分析得知,被测物的相对分子质量是92,该物质是甲苯。
思考二、多样的分子空间结构在多原子构成的分子中,由于原子间排列的空间顺序不一样,于是分子就有了原子的几何学关系和形状,这就是分子的空间结构。
这就是分子的立体构型。
1.双原子分子(直线形)2.三原子分子的空间构型3.四原子分子的空间构型4.四原子分子其他立体构型(直线形、正四面体形)5..五原子分子的空间构型6.其他多原子分子认真思考通过对典型分子空间结构的学习,认识微观结构对分子空间结构的影响,了解共价分子结构的多样性和复杂性。
《第二章 第二节 分子的空间结构》学历案-高中化学人教版19选修2

《分子的空间结构》学历案(第一课时)一、学习主题本课的学习主题为“分子的空间结构”。
本节课主要探讨分子的几何形态及其与化学性质之间的关系,通过学习,学生将掌握分子空间结构的基本概念和常见分子的空间构型。
二、学习目标1. 知识与理解:掌握分子空间结构的基本概念,了解常见分子的空间构型及其特点。
2. 技能与操作:通过观察模型和实验操作,能够识别和描述分子的空间结构。
3. 情感态度与价值观:培养学生对化学学科的兴趣和好奇心,激发其探索未知的欲望。
三、评价任务1. 概念理解评价:通过课堂提问和课后小测验,评价学生对分子空间结构概念的理解程度。
2. 技能操作评价:通过观察学生在实验操作中的表现和提交的实验报告,评价其识别和描述分子空间结构的能力。
3. 综合应用评价:通过完成课后作业和课堂讨论,评价学生将分子空间结构知识应用于实际问题中的能力。
四、学习过程1. 导入新课:通过回顾之前学习的原子结构和化学键知识,引出分子空间结构的学习主题。
2. 新课讲解:通过PPT、模型、实验等方式,讲解分子空间结构的基本概念和常见分子的空间构型。
3. 实验操作:学生动手操作分子模型,观察不同分子的空间构型,并记录观察结果。
4. 课堂讨论:学生分享观察结果,讨论分子空间结构与化学性质的关系。
5. 巩固练习:完成相关练习题,加深对分子空间结构的理解。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对分子空间结构概念的理解程度。
2. 实验报告:学生提交实验报告,评价其识别和描述分子空间结构的能力。
3. 课后作业:布置相关作业,包括选择题、填空题和简答题,巩固所学知识。
4. 作业评讲:教师评讲作业,指出学生存在的问题和不足,提供改进建议。
六、学后反思1. 教师反思:教师反思教学过程,总结经验教训,改进教学方法和手段。
2. 学生反思:学生回顾学习过程,总结所学知识,思考如何将所学知识应用于实际问题中。
3. 学习建议:针对学生的学习情况,提供学习建议和指导,帮助学生更好地掌握分子空间结构知识。
高中化学 人教版选修3 第2章 第2节 分子的立体构型 教学设计、教案

第二节分子的立体构型第1课时价层电子对互斥理论[明确学习目标] 1.认识共价分子结构的多样性和复杂性。
2.能根据价层电子对互斥理论判断简单分子或离子的构型。
学生自主学习一、形形色色的分子1.三原子分子(AB2型)2.四原子分子(AB3型)3.五原子分子(AB4型)最常见的为□09正四面体形,如甲烷分子的立体结构为□10正四面体形,键角为□11109°28′。
二、价层电子对互斥理论1.价层电子对互斥理论(VSEPR)分子中的价层电子对(包括□01σ键电子对和中心原子上的□02孤电子对)由于□03相互排斥而趋向尽可能彼此远离,分子尽可能采取对称的立体构型,以减小斥力。
2.价层电子对的确定方法σ键电子对数可由分子式确定。
a表示中心原子的价电子数,对于主族元素来说,a=原子的□04最外层电子数;对于阳离子来说,a=中心原子的□05价电子数-离子电荷数;对于阴离子来说,a=中心原子的□06价电子数+|离子电荷数|。
x表示与中心原子结合的□07原子数。
b表示与中心原子结合的原子□08最多能接受的电子数,氢为1,其他原子=□098-该原子的价电子数。
3.VSEPR模型预测分子或离子的立体构型(1)中心原子上的价电子都用于形成共价键的分子(2)中心原子上有孤电子对的分子对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的立体构型。
1.五原子的分子空间构型都是正四面体吗?提示:不是,只有中心原子所连四个键的键长相等时才为正四面体。
如CH3Cl 因C—H键和C—Cl键键长不相等,故CH3Cl分子的四面体不再是正四面体。
2.VSEPR模型和分子的立体构型二者相同吗?提示:不一定相同。
(1)VSEPR模型指的是包括σ键电子对和孤电子对在内的空间构型;分子的立体构型指的是组成分子的所有原子(只考虑分子内的σ键)所形成的空间构型。
(2)若分子中没有孤电子对,VSEPR模型和分子立体构型一致;若分子中有孤电子对,VSEPR模型和分子立体构型不一致。
选修3第2章第2节第1课时 一些典型分子的空间构型

碳原子的其他杂化类型sp2杂化
栏目导航
↓
栏目导航
栏目导航
Hale Waihona Puke 目导航杂化轨道只能形成σ键 或容纳未成键的孤电 子对,不能形成π键
栏目导航
苯分子的空间构型
栏目导航
栏目导航
苯分子的空间构型 根据杂化轨道理论,形成苯分子时每个碳原子的价电子原子轨道发生 _s_p_2杂化(如 s、px、py),由此形成的三个 sp2 杂化轨道在同一平面内。这样, 每个碳原子的两个 sp2 杂化轨道上的电子分别与邻近的两个碳原子的 sp2 杂化轨道上的电子配对形成 σ 键,于是六个碳原子组成一个正六边形 的 碳环;每个碳原子的另一个 sp2 杂化轨道上的电子分别与一个氢原子的 1s 电子配对形成 σ 键。与此同时,每个碳原子的一个与碳环平面垂直的未参
一不变:轨道数目不变 3、只有原子形成分子时才会发生轨道杂化,单个原子是不会杂化的 4、只有能量相近的轨道才会相互杂化
栏目导航
如何确定某原子成键时的杂化类型?
ABn型分子或离子
杂化轨道数=中心原子 的价层电子对数
杂化类型
sp 1
sp 2
sp 3
中心原子的价层电
?
?
?
子对中数心原子采取s_p__2_杂化,形成的__分__子一定是平面__三__角形吗?
杂化轨道的数目
__2__
杂化轨道间的夹角 __1_8__0__°__
_3___ __1_2__0_°___
4____ 10__9_._5__°___
空间构型
__直__线__型___ 平_面__三___角__形___ 正四__面__体__型_____
实例
C O 2、C 2H 2
第二章分子结构与性质 第二节分子的空间结构 教案 高二化学人教版(2019)选择性必修2

第二章分子结构与性质2分子的空间结构教学目标1.认识物质的空间结构可以借助某些实验手段,通过这些手段所获得的信息为建立物质结构模型或相关理论解释提供依据。
2.结合实例了解共价分子具有特定的空间结构,并可运用相关理论和模型进行解释和预测,培养证据推理与模型认知的核心素养。
教学重难点重点:分子空间结构;杂化轨道类型的判断难点:分子空间结构;杂化轨道类型的判断教学过程一、导入新课展示教材图片——形形色色的分子。
为什么这些分子会有如此的立体构型呢?而同样是AB2型分子,为什么CO2为直线形,H2O为V形呢?二、新课讲授1、分子结构的测定【师】随着科技的飞速发展,检测手段也越来越先进,那么我们可以用什么方法来测定分子结构呢?【学生活动】讨论回答【PPT】展示红外光谱图【师】许多现代仪器和方法可测定分子结构,如红外光谱、晶体X射线衍射等。
红外光谱可以测定分子中含有哪些化学键或官能团。
2、多样的分子空间结构【PPT】展示图片【师】三原子分子的空间结构——直线形和V形CO2O=C=O180°直线形H 2O105°V形【师】四原子分子的空间结构——平面三角形和三角锥形。
化学式电子式结构式键角分子的空间结构模型空间结构空间充填模型球棍模型CH2 O120°平面三角形NH3107°三角锥形【师】五原子分子的空间结构——正四面体形。
化学式电子式结构式键角分子的空间结构模型空间结构空间充填模型球棍模型CH4109°28'正四面体形3、价层电子对互斥模型【师】价层电子对互斥理论价层电子对互斥模型认为,分子的空间结构是中心原子周围的“价层电子对”相互排斥的结果。
分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,多重键只计其中σ键的电子对,不计π键电子对。
【师】VSEPR模型的两种类型。
①中心原子上的价电子都用于形成共价键的分子。
AB n n=2 n=3 n=4 价层电子 2 3 4对数电子对排布方式空间结构名称直线形平面三角形正四面体形键角180°120°109°28'实例CO2BF3CH4②中心原子上有孤电子对的分子:对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的空间结构。
高中化学第2章第2节第1课时一些典型分子的空间构型教案鲁科版选修3

第1课时一些典型分子的空间构型 [学习目标定位] 知道共价分子结构的多样性和复杂性,能用杂化轨道理论解释或预测某些分子或离子的空间构型。
一杂化轨道及其理论要点1.C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4为什么具有正四面体的空间构型?答案在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。
四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H是等同的。
可表示为2.由以上分析可知:(1)在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化,重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
(2)轨道杂化的过程:激发→杂化→轨道重叠。
3.杂化轨道理论要点(1)原子在成键时,同一原子中能量相近的原子轨道可重新组合成杂化轨道。
(2)参与杂化的原子轨道数等于形成的杂化轨道数。
(3)杂化改变了原子轨道的形状、方向。
杂化使原子的成键能力增大。
[归纳总结]1.杂化轨道数与参与杂化的原子轨道数相同,但能量不同。
2.杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。
3.杂化轨道只用于形成σ键或者用来容纳未参与成键的孤电子对。
4.未参与杂化的p轨道,可用于形成π键。
[活学活用]1.下列关于杂化轨道的说法错误的是( )A.所有原子轨道都参与杂化B.同一原子中能量相近的原子轨道参与杂化C.杂化轨道能量集中,有利于牢固成键D.杂化轨道中不一定有一个电子答案 A解析参与杂化的原子轨道,其能量不能相差太大,如1s轨道与2s、2p轨道能量相差太大,不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A项错误,B项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云重叠程度更大,形成牢固的化学键,故C 项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH 3、H 2O 的形成),故D 项正确。
高中化学 第二章 分子结构与性质 第2节 第1课时 分子的空间结构与价层电子对互斥理论课件 新人教

(3)价层电子对之间相互排斥作用大小的一般规律: 孤电子对-孤电子对>孤电子对-成键电子对>成键电子对-成键电 子对 (4)中心原子的价层电子对数目和立体构型的关系
价层电子对数 2
3
4
5
6
立体构型 直线形 平面三角形 四面体 三角双锥 八面体
用价层电子对互斥理论判断微粒立体构型的步骤 (1)确定中心原子A价电子层电子对数 ①σ键电子对的确定方法 可由分子式确定,即中心原子形成几个σ键,就有几对σ键电子对数。 如H2O中的中心原子为O,O有2对σ键电子对。NH3中,N有3对σ键电子 对。
1.(2019·江苏南京高二期末)下列物质中,分子的立体结构与水分
子相似的是
()
A.CO2 C.PCl3 【答案】B
B.H2S D.SiCl4
【解析】CO2是直线形,H2S是V形,PCl3是三角锥形,SiCl4是正四 面体形。H2O是V形,答案选B。
2.(2019·河北邯郸高二检测)下列对应关系不正确的是 ( )
2.立体构型相同的分子,其键角完全相同吗? 【答案】不一定。如P4和CH4均为正四面体形,但P4的键角是60°, CH4的键角为109°28′。
3.根据价层电子对互斥理论,判断 NH+4 的 VSEPR 模型和 NH+ 4 的立 体构型。
【答案】NH+4 中心氮原子上的孤电子对数为12(a-xb),其中 a=5-1 =4,x=4,b=1,所以12(a-xb)=0,即 NH+4 的孤电子对数为 0;其中 σ 键数为 4,所以 NH+4 的 VSEPR 模型与立体构型均为正四面体形。
三层解读 ·综合提升
课堂巩固 ·夯实双基
课时作业
4.价层电子对互斥理论模型与分子的立体构型一致吗?它们是什 么关系?
高二化学物质结构与性质教案3:2.2.1一些典型分子的空间构型教学设计

第1课时一些典型分子的空间构型【教学目标】1. 理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型;2. 学会用杂化轨道原理解释常见分子的成键情况与空间构型过程与方法:【教学重点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学难点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【课题引入】在宏观世界中,花朵、蝴蝶、冰晶等诸多物质展现出规则与和谐的美。
科学巨匠爱因斯坦曾感叹:“在宇宙的秩序与和谐面前,人类不能不在内心里发出由衷的赞叹,激起无限的好奇。
”实际上,宏观的秩序与和谐源于微观的规则与对称。
通常,不同的分子具有不同的空间构型。
例如,甲烷分子呈正四面体形、氨分子呈三角锥形、苯环呈正六边形。
那么,这些分子为什么具有不同的空间构型呢?【思考】美丽的鲜花、冰晶、蝴蝶与微观粒子的空间构型有关吗?【活动探究】你能身边的材料动手制作水分子、甲烷、氨气、氯气的球棍模型吗?【过渡】我们知道,共价键具有饱和性和方向性,所以原子以共价键所形成的分子具有一定的空间构型。
【板书】(一)甲烷分子的形成及立体构型【联想质疑】研究证实,甲烷(CH4)分子中的四个C—H键的键角均为l09.5º,从而形成非常规则的正四面体构型。
原子之间若要形成共价键,它们的价电子中应当有未成对的电子。
碳原子的价电子排布为2s22p2,也就是说,它只有两个未成对的2p电子,若碳原子与氢原子结合,则应形成CH2;即使碳原子的一个2s电子受外界条件影响跃迁到2p空轨道,使碳原子具有四个未成对电子,它与四个氢原子形成的分子也不应当具有规则的正四面体结构。
那么,甲烷分子的正四面体构型是怎样形成的呢?【过渡】为了解决这一矛盾,鲍林提出了杂化轨道理论,【阅读教材40页】【板书】1. 杂化原子轨道在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【第1课时一些典型分子的空间构型】之小船创作目标与素养:1.了解典型的分子空间构型,能够制作典型分子的空间模型。
(科学探究)2.了解杂化轨道理论,掌握常见的杂化轨道类型。
(模型认知)3.能够应用杂化轨道理论解释典型分子的空间构型。
(宏观辨识与微观探究)一、甲烷分子的空间构型CH4化学式分子结构示意图填充模型球棍模型1.杂化轨道在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
杂化轨道在角度分布上比单纯的s或p轨道在某一方向上更集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更牢固。
通常,有多少个原子轨道参加杂化,就形成多少个杂化轨道。
2.甲烷中碳原子的杂化类型3.杂化轨道的类型根据杂化轨道理论,形成苯分子时每个碳原子的价电子原子轨道发生sp2杂化(如s、p x、p y),由此形成的三个sp2杂化轨道在同一平面内。
这样,每个碳原子的两个sp2杂化轨道上的电子分别与邻近的两个碳原子的sp2杂化轨道上的电子配对形成σ键,于是六个碳原子组成一个正六边形的碳环;每个碳原子的另一个sp2杂化轨道上的电子分别与一个氢原子的1s电子配对形成σ键。
与此同时,每个碳原子的一个与碳环平面垂直的未参与杂化的2p轨道(如2p z)均含有一个未成对电子。
这六个碳原子的2p轨道相互平行,它们以“肩并肩”的方式相互重叠,从而形成含有六个电子、属于六个碳原子的π键。
人们把这种在多原子间形成的多电子的π键称为大π键。
所以,在苯分子中,整个分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°。
三、价电子对互斥理论与等电子原理1.价电子对互斥理论(1)价电子对互斥理论基本观点:分子中的中心原子的价电子对——成键电子对(bp)和孤电子对(lp)由于相互排斥作用,尽可能趋向于彼此远离。
(2)(3)若中心原子没有孤电子对,为使价电子对之间的斥力最小,使分子的结构尽可能采取对称的结构。
2.等电子原理(1)内容:化学通式相同且价电子总数相等的分子或离子具有相同的空间构型和化学键类型等结构特征。
(2)应用①判断一些简单分子或离子的空间结构。
a.SO2-4、PO3-4等离子具有AX4通式,价电子总数为32,中心原子采取sp3杂化,呈四面体空间构型。
b.SO2-3、PO3-3等离子具有AX3通式,价电子总数为26,中心原子采取sp3杂化,由于存在一对孤对电子,分子空间构型呈三角锥形。
②利用等电子体在性质上的相似性制造新材料。
③利用等电子原理针对某物质找等电子体。
1.判断正误(正确的打“√”,错误的打“×”)(1)有多少个原子轨道发生杂化就形成多少个杂化轨道。
(√)(2)杂化轨道用于形成π键。
(×)(3)苯分子中C原子发生sp2杂化。
(√)2.下列对sp3、sp2、sp1杂化轨道的夹角的比较,得出结论正确的是( )A.sp1杂化轨道的夹角最大B.sp2杂化轨道的夹角最大C.sp3杂化轨道的夹角最大D.sp3、sp2、sp杂化轨道的夹角相等[答案]A3.在CCH3OCH3中,中间的碳原子和两边的碳原子分别采用的杂化方式是( )A.sp2sp2B.sp3sp3C.sp2sp3D.sp1sp3C[CO中碳原子形成了3个σ键,无未成键价电子对,需要形成3个杂化轨道,采用的杂化方式是sp2。
两边的碳原子各自形成了4个σ键,无未成键电子对,需要形成4个杂化轨道,采用的是sp3杂化。
]杂化轨道理论1.杂化轨道的特点(1)形成分子时,通常存在激发、杂化和轨道重叠等过程。
(2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。
(3)杂化前后轨道数目不变。
(4)杂化后轨道伸展方向、形状发生改变。
(5)只有能量相近的轨道才能杂化(n s、n p)。
2.分子空间构型的确定轨道杂化类型电子对的空间构型成键电子对数孤电子对数电子对的排列方式分子的空间构型实例sp1直线形 2 0 直线形HC≡CH BeCl2 CO2sp2平面三角形3 0平面三角形BF3BCl3 2 1 V形SnBr2PbCl2sp3四面体4 0正四面体形CH4CCl4 3 1 三角锥形NH3NF32 2 V形H2O【典例1】下列各物质中的中心原子不是采用sp杂化的是( )A.NH3B.H2OC.CO2D.CCl4C[NH3为三角锥形,但中心原子氮原子采用sp3杂化,形成4个等同的轨道,其中一个由孤对电子占据,余下的3个未成对电子各占一个。
H2O为V形,但其中的氧原子也是采用sp3杂化形成4个等同的轨道,其中两对孤对电子分别占据两个轨道,剩余的2个未成对电子各占一个。
CCl4分子中C原子也采用sp3杂化,但CO2分子中C原子为sp1杂化,CO2为直线形分子。
]熟悉和掌握常见分子的中心原子的杂化方式和空间构型的关系,有助于正确分析、解决有关问题。
1.关于原子轨道的说法正确的是( )A.凡是中心原子采取sp3杂化轨道成键的分子其空间构型都是正四面体B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相同的新轨道D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化轨道成键C[中心原子采取sp3杂化,分子的空间构型为正四面体,但如果中心原子还有孤电子对,分子的空间构型不是正四面体。
CH4分子中的sp3杂化轨道是C原子的一个2s与三个2p杂化而成的。
AB3型的共价化合物,A原子可能采取sp2杂化或sp3杂化。
]2.(2019·全国Ⅰ卷)乙二胺(H2NCH2CH2NH2)是一种有机化合物,分子中氮、碳的杂化类型分别是__________________。
[答案]sp3sp3确定分子空间构型的简易方法1.确定中心原子A的价电子数目(1)对于AB m型分子,中心原子的杂化轨道数可以这样计算。
中心原子上的孤电子对数=错误!。
例如,H2O中的中心原子为氧原子,其价电子数为6,与氧原子结合的氢原子未成对电子数为1,可知:氧原子上的孤电子对数=6-2×12=2例如:n=12(中心原子的价电子数+配位原子的成键电子数±电荷数)。
2.确定价电子对的空间构型由于价电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。
价电子对的空间构型与价电子对数目的关系如下表:根据分子中成键电子对数和孤电子对数,可以确定相应的较稳定的分子空间构型,如下表:(1)互为等电子体应满足的条件①化学通式相同。
②价电子总数相等。
(2)等电子原理的应用①利用等电子原理可以判断一些简单分子或离子的空间构型。
如NH3和H3O+的空间构型相似(三角锥形);SiCl4、SO2-4、PO3-4都呈正四面体构型。
②等电子体不仅有相似的空间构型,且有相似的性质。
【典例2】用价电子对互斥理论预测H2S和BF3的空间结构,两个结论都正确的是( )A.直线形;三角锥形B.V形;三角锥形C.直线形;平面三角形D.V形;平面三角形D[S原子最外层尚有孤电子对,参与成键电子对间的排斥,故H2S为V形结构;BF3中B原子最外层电子全部参与成键,三条B—F键等效排斥,故分子的空间构型为平面三角形。
]3.下列分子的空间构型是正四面体形的是( )①CH4②NH3③CF4④SiH4⑤C2H4⑥CO2A.①②③B.①③④C.②④⑤D.①③⑤B[C原子与Si原子的价电子层都是n s2n p2结构,参与成键时都是形成了4个sp3杂化轨道,故它们形成的①CH4,③CF4和④SiH4的空间构型都是正四面体形。
而NH3为三角锥形,C2H4为平面形,CO2为直线形。
]4.通常把原子总数和价电子总数相同的分子或离子称为等电子体,人们发现等电子体的空间结构相同。
已知B3N3H6分子的结构与苯相似,则下列有关说法中正确的是( )A.CH4和NH+4互为等电子体,键角均为60°B.NO-3和CO2-3互为等电子体,均为平面三角形结构C.H3O+和PCl3互为等电子体,均为三角锥形结构D.B3N3H6和苯互为等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道B[CH4和NH+4的原子数都是5,价电子总数都是8,互为等电子体,空间构型为正四面体结构,键角为109.5°,故A错误;NO-3和CO2-3的原子数都是4,价电子总数都是24,互为等电子体,均为平面三角形结构,故B正确;H3O+价电子总数是8,PCl3价电子总数是26,二者价电子总数不同,不互为等电子体,故C错误;B3N3H6分子的结构类似苯,存在π键,π键是p轨道以“肩并肩”的方式重叠形成的,所以B3N3H6分子中存在“肩并肩”式重叠的轨道,故D错误。
]等电子体的换算方法(1)将粒子中的两个原子换成原子序数分别增加n和减少n(n=1,2等)的原子,如N2和CO、N-3和CNO-互为等电子体。
(2)将粒子中一个或几个原子换成原子序数增加(或减少)n的元素对应的带n个单位电荷的阳离子(或阴离子),如N2O和N-3互为等电子体。
(3)同主族元素最外层电子数相等,故可将粒子中的原子换成同主族元素原子,如O3和SO2互为等电子体。
1.能正确表示CH4中碳原子成键方式的示意图为( ) D[碳原子中的2s轨道与2p轨道形成4个等性的杂化轨道,因此碳原子最外层上的4个电子分占在4个sp3杂化轨道上并且自旋方向相同。
]2.乙炔分子中的碳原子采取的杂化方式是( )A.sp1杂化B.sp2杂化C.sp3杂化D.无法确定A[乙炔的结构式为H—C≡C—H,其空间构型为直线形,属于sp1杂化。
]3.有关苯分子中的化学键描述不正确的是( )A.每个碳原子的sp2杂化轨道中的其中一个形成大π键B.每个碳原子的未参加杂化的2p轨道形成大π键C.碳原子的三个sp2杂化轨道与其他原子形成三个σ键D.苯分子中六个碳碳键完全相同,键角均为120°A[苯分子中每个碳原子中的三个sp2杂化轨道分别与两个碳原子和一个氢原子形成σ键。
同时每个碳原子还有一个未参加杂化的2p轨道,它们均有一个未成对电子。
这些2p轨道相互平行,以“肩并肩”方式相互重叠,形成一个多电子的大π键。
所以苯分子中6个碳原子和6个氢原子都在同一平面内,6个碳碳键完全相同,键角皆为120°。
] 4.下列关于苯分子的性质描述错误的是 ( )A.苯分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°B.苯分子中的碳原子采取sp2杂化,6个碳原子中未参与杂化的2p轨道以“肩并肩”形式形成一个大π键C.苯分子中的碳碳键是介于单键和双键之间的一种特殊类型的键D.苯能使溴水和酸性KMnO4溶液退色D[苯分子中的碳原子采取sp2杂化,六个碳碳键完全相同,呈平面正六边形结构,键角皆为120°;在苯分子中间形成一个较稳定的六电子大π键,因此苯分子中的碳碳键并不是单、双键交替结构,不能使溴水和酸性KMnO4溶液退色。