Zemax光学设计:Petzval物镜的设计实例
透镜设计导论——ZEMAX设计实例参考作案

光学系统 Kingslake,R.,Optical Systems Design. New York:Academic Press 1983. Smith,W.,Modern Optical Engineering. New York:McGraw-Hill,1966.
史料 Kingslake,R.,A History of the Photographic Lens. New York: Academic Press,1989. King,H.C.,The History of the Telescope. Cambridge:Sky Publishing Corporation,1955.
New York:
几何光学 hecht,E. and Zajac,A,Optics (Firs edition). Boston:Addison-Wesley. 1974. Pedrotii,F.and Pedrotti,L.,Introduction to Optics (Second edition). New Jersey:Prentice Hall,1993. Sears,F,Optics (Third edition). Boston:Addison-Wesley,1958.
343
附录 D 术语表 Lateral Color: Chromatic aberration associated with the chief ray. Magnification: Ratio of image height to object height. Marginal Ray: Ray from the axial object point to the rim of the entrance pupil. Merit Function: A number that summarizes the state of optimization of an imaging system. The lower the number, the better the optimization. Modulation Transfer Function (MTF): A measure of image contrast as a function of spatial frequency. Null Lens: A refractive or reflective optical system interposed between a test point and an aspheric mirror in a radius of curvature test configuration. Compensates for the spherical aberration associated with the normals to the mirror surface. Numerical Aperture: Defines the light collection capability of an optical system in object space for a finite object distance. Optical Path Length: The actual path length multiplied by the refractive index within that path. Optical Path Difference: The separation between an aberrated wavefront and a reference sphere at some point in the exit pupil. Optical Power: The reciprocal of focal length. Principal Plane(s): An optical imaging system has a pair of principal planes (front and rear). These planes, along with a knowledge of focal point locations, can represent the first order imaging properties of the system (no matter how complicated that system may be). The image point location of any object point can be determined via simple graphical ray tracing techniques. Paraxial Plane: For an optical imaging system,trace rays which lie close to the optical axis through the system for a given axial object point. The convergence point of such rays in image space defines the location of the paraxial
ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。
1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长围(Wavelength Range),并且进行优化。
你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。
这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。
首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:•表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等•曲率半径(Radius of Curvature)•表面厚度(Thickness):与下一个表面之间的距离•材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料•表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。
1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。
点击「GEN」或透过菜单的System->General来开启General 的对话框。
点击孔径标签(Aperture Tab)(默认即为孔径页)。
因为我们要建立一个焦距100 mm、F/4的单透镜。
所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:•Aperture Type:Entrance Pupil Diameter•Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。
ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。
1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。
你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。
这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。
首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:∙表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等∙曲率半径(Radius of Curvature)∙表面厚度(Thickness):与下一个表面之间的距离∙材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料∙表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。
1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。
点击「GEN」或透过菜单的System->General 来开启General的对话框。
点击孔径标签(Aperture Tab)(默认即为孔径页)。
因为我们要建立一个焦距100 mm、F/4的单透镜。
所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:∙Aperture Type:Entrance Pupil Diameter∙Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。
设计实例zemax设计照相物镜详细过程

照相物镜设计实例
照相物镜的技术指标要求:
焦距:f’=9.6mm; 焦距:f’=9.6mm; 相对孔径D/f’不小于1/2.8; 图像传感器为1/2.5英寸的CCD, 成像面大小为4.32mm×5.76mm; 后工作距>5mm 在可见光波段设计(取d、F、C三种色光,d为主波 长); 1m成像质量,MTF 轴上>40% @100 lp/mm 轴外0.707 >35%@100 lp/mm ������ 最大畸变<1%
在镜片厚度(Thickness)列顺序输入表1-2中的 镜片厚度;在第七个面厚度处单击右键,选择面 型为Marginal Ray Height。在镜片类型(Glass) 列输入镜片参数,方法是:在表中点右键对话框 Solve Type选中Model,Index nd中输入n值, Abbe Vd中输入v值。结果如下图2-1在systemgeneral-aperture中输入相对孔径值2.8,在 system-wavelength中输入所选波段,根据要求选 d光为主波长。然后在tools-make focus中改焦距 为12mm进行缩放。
照相物镜镜头设计与像差
分析
设计实例
光学设计流程
光学设计初始结构方法
1、计算法
2、计算结合经验法
3、经验法
4、查资料法(孔径、视场、波长、 焦距,整体缩放)
查资料法:确定初始结构
查资料法
E.F.L----Effective Focus Length (有效焦距) B.F.L----Back Focus Length (后工作距) FNo.----F Number (相对孔径) F.A.----Field Angle (视场角)
该镜头不仅体积小, 结构紧凑, 而且像质较 好。在此次设计中,发现光阑面使用非球 面能够很好的平衡像差,只进行了对玻璃 厚度和曲率的简单优化,查阅相关资料后 设想如果将第一面的透镜换为鼓形透镜, 第二面换为弯月透镜或换成折射率更高的 玻璃,还可以进一步做出深度优化,使之 获得更好的性能 。
物理光学课程设计-ZEMAX软件设计望远镜并校正像差

选择设计题目为:设计一放大率8Γ=倍的望远镜,物镜视场角24ω=,出瞳直径4D mm '=,目镜焦距225f mm '=,出瞳距离15mm ,目镜焦截距4mm ,入瞳与物镜重合。
(注:望远镜设计中物镜和目镜可以分开设计,独自校正像差)一、设计思路以及一些计算过程:有题目要求,选择双胶合望远物镜会比较适合。
相对孔径小于五分之一,由公式以及光学设计手册选择物镜的焦距为200mm ,入瞳直径为40mm ,初始结构采用:rd 玻璃 153.16 1.5163,64.1 -112.934 1.6475,33.9 -361.68/1.5163,64.1 /二、软件使用过程:1.透镜结构参数,视场、孔径等光学特性参数:初始结构表:优化情况:System/Prescription DataGENERAL LENS DATA:Surfaces : 7Stop : 1System Aperture : Entrance Pupil Diameter = 40Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 320 (in air at system temperature and pressure)Effective Focal Length : 320 (in image space)Back Focal Length : 310.63Total Track : 775.2221Image Space F/# : 8Paraxial Working F/# : 8Working F/# : 8.002776Image Space NA : 0.06237829Object Space NA : 2e-009Stop Radius : 20Paraxial Image Height : 11.17465Paraxial Magnification : 0Entrance Pupil Diameter : 40Entrance Pupil Position : 0Exit Pupil Diameter : 102.5804Exit Pupil Position : 820.7951Field Type : Angle in degrees Maximum Field : 2Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : -0.3899379Fields : 3Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 1.414000 1.0000003 0.000000 2.000000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.000000Wavelengths : 3Units: オm# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000EDGE THICKNESS DATA:Surf EdgeSTO 439.9418312 11.4721633 11.6235514 312.1845555 0.0000006 0.000000IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.5875620.6562730 20.00 1.00 1.00000000 1.000000001.000000001 20.00 1.00 1.00000000 1.000000001.000000002 SSK4A 20.00 1.00 1.62546752 1.617649751.614266423 LAF9 20.00 1.00 1.81494560 1.795040281.786944504 20.00 1.00 1.00000000 1.000000001.000000005 20.00 1.00 1.00000000 1.000000001.000000006 20.00 1.00 1.00000000 1.000000001.000000007 20.00 1.00 1.00000000 1.000000001.00000000THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 0.000000002 SSK4A 6.100000003 LAF9 7.200000004 0.000000005 0.000000006 0.000000007 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.5875620.656273# Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 8.0042 8.0042 8.0028 8.0028 8.0075 8.00752 1.4140 deg: 7.9964 8.0019 7.9936 8.0001 7.9978 8.00473 2.0000 deg: 7.9889 7.9997 7.9847 7.9974 7.9884 8.0018CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length : -319.976306 319.976306Focal Planes : 124.738587 0.170547Principal Planes : 444.714892 -319.805758Anti-Principal Planes : -195.237719 320.146853Nodal Planes : 444.714892 -319.805758Anti-Nodal Planes : -195.237719 320.146853W = 0.587562 (Primary)Focal Length : -320.000000 320.000000Focal Planes : 124.780118 0.151516Principal Planes : 444.780118 -319.848484Anti-Principal Planes : -195.219882 320.151516Nodal Planes : 444.780118 -319.848484Anti-Nodal Planes : -195.219882 320.151516W = 0.656273Focal Length : -320.220323 320.220323Focal Planes : 124.586499 0.352767Principal Planes : 444.806822 -319.867556Anti-Principal Planes : -195.633824 320.573090Nodal Planes : 444.806822 -319.867556Anti-Nodal Planes : -195.633824 320.5730902.像差指标数据:球差数据分析图:三、学习心得这次的光学设计要结束了,在这里我首先得思过一下,这次的课设可真的是糊里糊涂就过去了。
ZEMAX光学成像设计实例---ZEMAX基础实例-变焦镜头设计

引言● 在我们要求具焦的能● 所谓变同范围变焦距● 由于一是使用大家通变焦镜头我们知道说一个系统大小、视场I 为像高im变焦镜头对孔径保持变焦时采取通过改变ZE 们成像镜头设具备变焦的能能力便可以应变焦,即镜头围景物的成像距来改变拍摄一个系统的焦用类似定焦镜通过举一反三头设计原道,设计好的统的接收面尺场和焦距三者mage, f 为焦头的变焦倍数持不变,但对取相对孔径(变镜片与镜片焦EMAX 设计要求中,能力,如CCT 应用于多种环头的焦距在一像。
我们通常所摄范围,因此焦距在某一范镜头的分析优三的练习可掌理介绍:的一组镜头如寸大小是固定有如下关系焦距,theta 为数为长焦距和于实际的高变即F/#)也跟片之间的间隔焦距变化,视角相应改变X 基础通常分两种:TV 监控镜头,环境条件,放大定范围可调节所说的变焦镜此非常利于画面范围可变,相当优化方法,本节掌握变焦镜头在如果变化镜片定不变的(像: 为视场角度。
和短焦距比值变倍比系统,跟随变化的方隔达到设计的视场变础实例-:定焦镜头与,红外探测镜大缩小或局部节,通过改变镜头一般指摄面构图。
当于由无数多节我们将带领在ZEMAX中片与镜片之间像面:CCD 或。
如下图所不值,也称为“,由于外形尺方案。
的焦距要求,变焦镜与变焦镜头。
镜头,摄影镜部特写,这是变焦距从而改摄像镜头,即多个定焦系统领大家使用Z 中的设计优化间的空气厚度COMS 或其它不:“倍率”。
理尺寸不希望过当系统的入镜头设成像镜头在镜头,双筒望是一个定焦镜改变系统视场即在不改变拍统组成的。
我ZEMAX 来设计化方法。
度,镜头的焦它探测面),理论定义下,过大或二级光入瞳直径D 固设计在很多实际应望远镜等等,镜头所无法完场大小,达到拍摄距离的情我们在设计变计一个完整的焦距会随之变在基础光学在变焦过程光谱校正等问固定时,即系像面尺寸相同应用中通常也镜头具备变完成的。
到不同矩离不情况下通过改变焦镜头时也的变焦镜头,变化。
ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计
第二章 基础实例设计ZEMAX基础实例 ‐ 单透镜设计引言• 在成像光学系统设计中,主要指的是透镜系统设计,当然也有一些反射系统或棱镜系统。
• 在透镜系统设计中,最基础、最简单的便是单透镜设计。
但我们不要小看这样的单透镜系统,因为它也代表了一个光学系统设计的完整流程。
麻雀虽小,五脏俱全!• 本节中,我们通过手把手的操作,为大家展示使用 ZEMAX 进行成像光学设计的完整流程。
使初学者快速领略到ZEMAX光学设计的风采,在轻松的设计中感受到光学设计的乐趣。
• 通过单透镜设计,可以使大家学习到Z EMAX 序列编辑器建模方法,光束大小设置方法,视场设置方法,变量的设罝方法,评价函数设置方法,优化方法,像差分析方法和提髙像质的像差平衡方法等,单透镜系统参数设计任何一个镜头,我们都必须有特定的要求,比如焦距,相对口径,视场,波长,材料,分辨率,渐晕,MTF等等,根据系统的简易程度客户给的要求也各不相同。
由于单透镜最简单的系统,要求也就很少。
本例中我们设计单透镜规格参数如下:EPD = 20mmF/#=10FFOV= 10 degreeWavelength 0.587umMaterial BK7Best RMS Spot Radius首先我们需要把知道的镜头的系统参数输入软件中,系统参数包括三部分:光束孔径大小,视场类型及大小,波长。
在这个单透镜的规格参数中,入瞳直径(EPD)为20mm,全视场(FFOV)为10度,波长0.587微米,分别如下说明。
1、点击System » General或点快捷按扭Gen打开通用设置对话框:入瞳直径即到还有其它像空间F 数互转换。
物空间数值直接定义物随光阑尺寸用这种类型本例中,我2、点击打开即用来直接确它几种光束孔(Image Space 值孔径(Object 物点发光角度寸漂移(Float B 型来计算入瞳我们只需选择开视场对话框定进入系统光孔径定义类型e F/#),用于t Space NA),来约束进入系By Stop Size),瞳的大小。
光学工程课程设计——照相物镜的ZEMAX设计
光学工程课程设计班级:T1003-3班学号:20100030305姓名:李金鑫一.光学设计软件ZEMAX 的使用设计要求:1. 镜头镜片数小于10片2. 图像传感器(CCD)指标像素:1200×960,像元:3.8 3.8m m μμ? 。
3. 物镜定焦,焦距28.0mm ,畸变 < 3.5%焦距280.2f mm mm '=±,相对孔径/1/3.5D f '=轴上点100/lp mm 的MTF 值在0.3以上,轴外0.707视场100/lp mm 的MTF 值在0.15以上, 渐晕:中心相对照度 > 65 %在可见光波段设计(取d 、F 、C 三种色光,d 为主波长)。
4.计算过程:成像面积:(1200*3.8)*(960*3.8)=4.56*3.648mm 2 对角线长度:22648.356.4+=5.84mm像高:5.84/2=2.92mm 无限远入射光线的半视场角为: 96.5)arctan(''==fy w CCD 的特征频率为:1/(2*0.038)=131.6 lp/mm 有效焦距长度:'f =28mm 由于相对孔径'13.5D f =,所以8D mm =。
软件设计结果:1.透镜结构参数,视场、孔径等光学特性参数:GENERAL LENS DATA:Surfaces : 12Stop : 6System Aperture : Entrance Pupil Diameter = 8Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 28.0008(in air at system temperature and pressure) Effective Focal Length : 28.0008(in image space)Back Focal Length : 17.49979Total Track : 40.26Image Space F/# : 3.499992Paraxial Working F/# : 3.499992Working F/# : 3.498718Image Space NA : 0.1414217Object Space NA : 4e-010Stop Radius : 2.446367Paraxial Image Height : 2.92315Paraxial Magnification : 0Entrance Pupil Diameter : 8Entrance Pupil Position : 17.94124Exit Pupil Diameter : 9.552524Exit Pupil Position : -33.42397Field Type : Angle in degrees Maximum Field : 5.96 Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : 0.837475Fields: 4Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 3.440000 1.0000003 0.000000 4.860000 1.0000004 0.000000 5.960000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.0000004 0.000000 0.000000 0.000000 0.000000 0.000000 Wavelengths: 3Units: Microns# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000 Surface 6 Data Summary Title:Date : WED JAN 9 2012 Lens units: 毫米Thickness : 3.71 Diameter : 4.93475 Edge Thickness:Y Edge Thick: 3.0744 X Edge Thick: 3.0744 Index of Refraction: Glass:# Wavelength Index1 0.48613 1.00000000002 0.58756 1.00000000003 0.65627 1.0000000000Surface Powers (as situated):Surf 5 : -0.096255Surf 6 : 0Power 5 6 : -0.096255EFL 5 6 : -10.389F/# 5 6 : -1.6343Surface Powers (in air):Surf 5: 0Surf 6: 0Power 5 6 : 0EFL 5 6 : 0Shape Factor: 1SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic OBJ STANDARD 无限远无限远 0 01 STANDARD 17.412 2.21 SSK4A 11.54063 02 STANDARD 44.806 0.54 10.92813 03 STANDARD 10.871 5.05 N-SK16 10.21084 04 STANDARD 无限远 0.87 F14 7.583943 05 STANDARD 6.248 4.05 6.356952 0 STO STANDARD 无限远 3.71 4.9347557 STANDARD -6.576 0.84 F14 5.641057 08 STANDARD 无限远 2.78 N-SK16 6.386702 09 STANDARD -8.484 0.54 7.365621 010 STANDARD 40.196 2.18 N-SK16 7.733431 011 STANDARD -22.428 17.49 7.845499 0 IMA STANDARD 无限远 5.836295 0EDGE THICKNESS DATA:Surf Edge1 1.5604792 1.4790143 3.7765684 1.7388935 3.181107STO 3.0744047 1.4755968 1.9389819 1.56743310 1.64786811 17.835717IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.587562 0.6562730 20.00 1.00 1.00000000 1.00000000 1.000000001 SSK4A 20.00 1.00 1.62546752 1.61764975 1.614266422 20.00 1.00 1.00000000 1.00000000 1.000000003 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271664 F14 20.00 1.00 1.61249349 1.60140055 1.596763175 20.00 1.00 1.00000000 1.00000000 1.000000006 20.00 1.00 1.00000000 1.00000000 1.000000007 F14 20.00 1.00 1.61249349 1.60140055 1.596763178 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271669 20.00 1.00 1.00000000 1.00000000 1.0000000010 N-SK16 20.00 1.00 1.62755635 1.62040997 1.6172716611 20.00 1.00 1.00000000 1.00000000 1.0000000012 20.00 1.00 1.00000000 1.00000000 1.00000000 THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 SSK4A 6.100000002 0.000000003 N-SK16 6.300000004 F14 7.900000005 0.000000006 0.000000007 F14 7.900000008 N-SK16 6.300000009 0.0000000010 N-SK16 6.3000000011 0.0000000012 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.587562 0.656273 # Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 3.4999 3.4999 3.4987 3.4987 3.5003 3.50032 3.4400 deg: 3.5059 3.5034 3.5047 3.5022 3.5063 3.50383 4.8600 deg: 3.5115 3.5068 3.5105 3.5056 3.5121 3.50714 5.9600 deg: 3.5169 3.5102 3.5160 3.5090 3.5176 3.5105 CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length: -28.009159 28.009159Focal Planes: -5.396361 0.018674Principal Planes: 22.612798 -27.990486Anti-Principal Planes : -33.405520 28.027833Nodal Planes: 22.612798 -27.990486Anti-Nodal Planes: -33.405520 28.027833W = 0.587562 (Primary)Focal Length: -28.000842 28.000876Focal Planes: -5.508010 0.009789Principal Planes: 22.491928 -27.990148Anti-Principal Planes : -33.507947 28.009727Nodal Planes: 22.491928 -27.990148Anti-Nodal Planes: -33.507947 28.009727W = 0.656273Focal Length: -28.011708 28.011708Focal Planes: -5.572853 0.025235Principal Planes: 22.438855 -27.986473Anti-Principal Planes : -33.584560 28.036943Nodal Planes: 22.438855 -27.986473Anti-Nodal Planes: -33.584560 28.0369432.像质指标实际值目标值'= 28f mm28.0008畸变:0.28% ﹤3.5% MTF:100lp/mm 70.29% >30%(轴上) 100lp/mm 66.4% >15%(轴外)3.公差数据分析结果:Analysis of TolerancesUnits are 毫米.Paraxial Focus compensation is on. In this mode, allcompensators are ignored, except paraxial back focus change.WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. WARNING: Boundary constraints on compensators are ignored whenusing fast mode or user-defined merit functions.Criteria : RMS Spot Radius in 毫米Mode : SensitivitiesSampling : 3Nominal Criteria : 0.00090019Test Wavelength : 0.6328Fields: Y Symmetric Angle in degrees# X-Field Y-Field Weight VDX VDY VCX VCY1 0.000E+000 0.000E+000 2.000E+000 0.000 0.000 0.000 0.0002 0.000E+000 4.172E+000 1.000E+000 0.000 0.000 0.000 0.0003 0.000E+000 -4.172E+000 1.000E+000 0.000 0.000 0.000 0.0004 0.000E+000 5.960E+000 1.000E+000 0.000 0.000 0.000 0.0005 0.000E+000 -5.960E+000 1.000E+000 0.000 0.000 0.000 0.000 Worst offenders:Type Value Criteria ChangeTIRY 7 -0.200000000 0.020355900 0.019455709TIRY 7 0.200000000 0.020355900 0.019455709TSDY 7 -0.200000000 0.017442564 0.016542373TSDY 7 0.200000000 0.017442564 0.016542373TIRX 7 -0.200000000 0.017321649 0.016421459TIRX 7 0.200000000 0.017321649 0.016421459TIRY 9 -0.200000000 0.016494937 0.015594747TIRY 9 0.200000000 0.016494937 0.015594747TIRX 9 -0.200000000 0.015405686 0.014505496TIRX 9 0.200000000 0.015405686 0.014505496Estimated Performance Changes based upon Root-Sum-Square method: Nominal RMS Spot Radius : 0.000900Estimated change : 0.055470Estimated RMS Spot Radius: 0.056370Compensator Statistics:Change in back focus:Minimum : -1.006356 Maximum : 1.112564 Mean : 0.000982 Standard Deviation : 0.183198Monte Carlo Analysis:Number of trials: 20Initial Statistics: Normal DistributionTrial Criteria Change1 0.010973013 0.0100728222 0.055717068 0.0548168783 0.018735173 0.0178349824 0.014194669 0.0132944785 0.037745158 0.0368449676 0.019405575 0.0185053847 0.032397994 0.0314978048 0.007928807 0.0070286179 0.035414796 0.03451460610 0.028473194 0.02757300411 0.016118938 0.01521874812 0.013851098 0.01295090713 0.043797393 0.04289720314 0.018751552 0.01785136215 0.027123362 0.02622317216 0.026825230 0.02592504017 0.028410049 0.02750985818 0.024295827 0.02339563719 0.022359906 0.02145971520 0.024840539 0.023940348Nominal 0.000900191Best 0.007928807 Trial 8 Worst 0.055717068 Trial 2 Mean 0.025367967 Std Dev 0.011350176Compensator Statistics:Change in back focus:Minimum : -1.962392Maximum : 1.332779Mean : -0.175784Standard Deviation : 0.90742990% <= 0.03774515850% <= 0.02429582710% <= 0.010973013End of Run.Tolerance Data SummaryRadius and Thickness data are in 毫米.Power and Irregularity are in double pass fringes at 0.6328 祄Only spherical and astigmatism irregularity tolerances are listedin the "SURFACE CENTERED TOLERANCES";Zernike irregularity tolerances are listed under "OTHER TOLERANCES".Surface Total Indicator Runout (TIR) are in 毫米.Index and Abbe tolerances are dimensionlessSurface and Element Decenters are in 毫米.Surface and Element Tilts are in degrees.SURFACE CENTERED TOLERANCES:Surf Radius Tol Min Tol Max Power Irreg Thickness Tol Min Tol Max1 17.412 -0.2 0.2 - 0.2 2.21 -0.2 0.22 44.806 -0.2 0.2 - 0.2 0.54 -0.2 0.23 10.871 -0.2 0.2 - 0.2 5.05 -0.2 0.24 Infinity - - 1 0.2 0.87 -0.2 0.25 6.248 -0.2 0.2 - 0.2 4.05 -0.2 0.26 Infinity - - - - 3.71 -0.2 0.27 -6.576 -0.2 0.2 - 0.2 0.84 -0.2 0.28 Infinity - - 1 0.2 2.78 -0.2 0.29 -8.484 -0.2 0.2 - 0.2 0.54 -0.2 0.210 40.196 -0.2 0.2 - 0.2 2.18 -0.2 0.211-22.428 -0.2 0.2 - 0.2 17.49 - -12Infinity - - - - 0 - -SURFACE DECENTER/TILT TOLERANCES:Surf Decenter X Decenter Y Tilt X Tilt Y TIR X TIR Y1 0.2 0.2 - - 0.2 0.22 0.2 0.2 - - 0.2 0.23 0.2 0.2 - - 0.2 0.24 0.2 0.2 - - 0.2 0.25 0.2 0.2 - - 0.2 0.26 - - - - - -7 0.2 0.2 - - 0.2 0.28 0.2 0.2 - - 0.2 0.29 0.2 0.2 - - 0.2 0.210 0.2 0.2 - - 0.2 0.211 0.2 0.2 - - 0.2 0.212 - - - - - - GLASS TOLERANCES:Surf Glass Index Tol Abbe Tol1 SSK4A 0.001 0.551423 N-SK16 0.001 0.603244 F14 0.001 0.382327 F14 0.001 0.382328 N-SK16 0.001 0.6032410 N-SK16 0.001 0.60324ELEMENT TOLERANCES:Ele# Srf1 Srf2 Decenter X Decenter Y Tilt X Tilt Y1 12 0.2 0.2 0.2 0.22 3 5 0.2 0.2 0.2 0.23 7 9 0.2 0.2 0.2 0.24 10 11 0.2 0.2 0.2 0.2二.简易望远镜的组装1.原理图2零件清单零件清单物镜零件名称数量名称数量物镜 2 物镜推杆 2 物镜座 2 卡环 2 物镜压圈 2 物镜盖2目镜零件右目镜座 1 左目镜座 1 右目镜内筒 1 左目镜内筒 1 目镜盖 2 场栏 2 隔圈 2 挡圈 2 视度调节圈 1 目镜套 1 目镜 2棱镜零件上棱镜 2 下棱镜 2 棱镜座 2 压盖 2 隔片 2整体零件镜筒 2 滚珠 4 导向杆 2 小拖板 1 大拖板 1 调焦螺钉 1 调焦螺母 1 铰链螺钉 23.装配3.1目镜的组装(1)装配目镜1.将胶合目镜放在下面,凸面朝上,再放隔圈,将单片目镜放在隔圈上,凸面向下,保证凸面对凸面。
基于zemax 应光望远镜物镜课件
然后回到几何bmp像分析窗口。点右键,出现下面窗口,按照窗口中的数据 设置。
其中“光线倍乘1000”这一项决定了图像的清晰程度,越大则图像 越清晰(在透镜已经可以清晰成像的前提下),但是越大则计算时 间越长。点击确定后出现下面图像。
若要查看原图,则点击右键,弹出设置菜单,如下图,将“查看”这一项 由Image改为Object.
其中横向的像差包括: 横向球差(TSPH),横向弧矢彗差(TSCO),横向子午彗差(TTCO), 横向弧矢场曲(TSFC),横向子午场曲(TTFC),横向畸变(TDIS)和横 向轴上色差(TLAC)。 纵向像差包括: 纵向球差(LSPH),纵向像散(LAST),纵向匹兹凡场曲(LFCP),纵向 弧矢场曲(LFCS),纵向子午场曲(LFCT),和纵向轴上色差(LAXC)。 其他像差: 球差(W040),彗差(W131),像散(W222),匹兹凡场曲 (W220P),畸变(W311),轴向色离焦项(W020),轴向色倾斜 (W111),弧矢场曲(W220S),平均场曲(W220M),子午场曲 (W220T)。 球差(SPHA,SI),彗差(COMA,S2),像散(ASTI,S3),场曲 (FCUR,S4),畸变(DIST,S5),轴向色差(CLA,CL),横向色差 (CTR,CT) 图表中计算出来每一个面的上述像差。
在这里选择优化数据的依据是前边的塞得尔系数表格,如下图:
从图中可以看出第1面,第2面,第3面产生的像差最大,因而可被调节的 潜力最大,故选择这三个面的曲率半径作为优化对象。同时也保证焦距在 119毫米左右。 设置好以后点击按钮 ,弹出下面的窗口:
这时,可以点击按钮“自动”,就可以得到优化后的数据,如 下面的镜头数据表格:
• 输入的数据如下图:
照相物镜基于ZEMA课程设计报告实例
应用光学课程设计课题名称:照相物镜镜头设计与像差分析专业班级:2009级光通信技术学生学号:学生姓名:学生成绩:指导教师:课题工作时间:至武汉工程大学教务处课程设计摘要(中文)在光学工程软件ZEMAX 的辅助下, 配套采用大小为1/英寸的CCD 图像传感器,设计了一组焦距 f '= 12mm的照相物镜, 镜头视场角°, 相对孔径D/f’=2. 8, 半像高mm ,后工作距,镜头总长为。
使用后置光阑三片物镜结构,其中第六面采用非球面塑料,其余面采用标准球面玻璃。
该组透镜在可见光波段设计,在Y-field上的真值高度选取0、、、,总畸变不超过%,在所选视场内MTF轴上超过60%@100lp/mm,轴外超过48%@100lp/mm,整个系统球差,慧差,像散。
完全满足设计要求。
关键词:ZEMAX;物镜;调制传递函数ABSTRACTBy the aid of optical engineering software ZEMAX,A focal length f '= 12mm camera lens matched with one CCD of 1/ inch was designed。
Whose FOV is °, Aperture is 2. 8,half image height is mm,back working distance and total length is mm. Using the rear aperture three-lens structure,a aspherical plastic was used for the sixth lens while standard Sphere glasses were used for the rest lenses。
The group Objective lenses Designed for the visible light,Heights in the true value as Y-field Defined as 0、、、,total distortion is less than %,Modulation transfer function of shade in the selected field of view to meet the axis is greater than 60% @ 100 lp / mm, outer axis than 48% @ 100 lp / mm,The sum of the whole system spherical aberration ,Coma is ,Astigmatism is 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zemax光学设计:Petzval物镜的设计实例
引言:
Petzval物镜,它是由两个被空气分离的正透镜组构成。
1839年Joseph Petzval 设计了这个著名的“照相物镜”。
其前组是一个双胶合,后组是一个双分离,两者之间有一个光圈。
前组可以很好地校正球差,但会引入彗差。
彗差由后组校正,光阑位置校正了大部分像散。
然而,这会导致额外的场曲和晕影。
因此,FOV限制在30度以内。
f/3.6的f值是可以实现的,这比当时的其他镜头要快得多。
Petzval首次根据光学定律计算透镜的组成,而之前的光学系统则是根据经验进行磨制和抛光的。
为了计算,奥地利大公路易(炮兵司令)向匹兹瓦提供了8名炮兵和3名下士,因为火炮是进行数学计算的少数职业之一。
1.Seidel分析双片式物镜的局限性在于单组元件无法校正像散,这大大限制了它的视场角范围。
在光阑上的薄透镜组的像散为:
即其总是不为零。
因此,只有一些透镜组不在光阑上,才能校正像散。
因此,两个分离的透镜组可以用于产生等量反向的像散。
这两个透镜组不一定是单透镜,也可以是消色差双片式或者更复杂的透镜组。
若我们假设光阑在第一个透镜组上,第二个透镜组和它相距一段距离,那么会有光阑平移效应。
只要第二个透镜组没有完全校
正球差和彗差,那么平移第二个透镜组远离光阑一定距离,就可以产生足够的像散来校正第一个透镜组的像散。
我们可以得到任意的一个像散值S3,但是两个正透镜组都会对场曲产生贡献,即Petzval 物镜的 Petzval 和总是正值。
这意味着像面总是朝向镜头弯曲。
通常,我们想要零像散,则让总的S3为零,场曲会使子午和弧矢像重合于弯曲的像面上。
但是,还有其他选择,由弧矢像差,只要S3=-S4,我们就可以使弧矢像面为平面。
而且,若让S3=-S4/3,则就可以使子午像面为平面。
在设计 Petzval 镜头中有一个很好的准则,那就是让前组(A)的光焦度为K /2,后组(B)的光焦度为K,为保证总光焦度为K,让它们之间的距离为1/K。
可以证明,这个准则等价于使两个透镜组的轴上边际线的偏差相等,即每个透镜组的球差、彗差和像散的贡献都最小。
在此必须校正色差。
一个很好的方法是,使每一个镜组独立校正色差,即让每一个镜组都是消色差双胶合透镜。
设每一个元件的S1都为零,则总彗差为:
若光阑在第一个镜组上,则利用光阑位移方程,总像散为:
若现在想要ΣS3为零,则有:
因为我们也想要让ΣS2为零,所以
即我们需要两个不同的双片式,每一个的S1都为零,但是具有等量反向的S2。
一旦我们达到S1和S2都为零的设计,那么光阑就不一
定在前组。
但是,实际上通常把光阑放在前组上,因为第一个镜组直接与外界环境相接触,所以前组口径的最小化通常是设计的要求。
只要有足够的设计参数,Petzval 系统的优化就很简单。
通常,所有的半径都是可以改变的;中间空气厚度的变化也很有用。
注意,前组越远离光阑,则其口径越大。
通常透镜的厚度只要保证机械装配就可以了,无需改变。
设计者必须在一个具有一些像散的平面像和一个消像散的弯曲像面之间做选择。
若选择后者,即消像散的,则可以把像面弯曲设置为一个非零值,或者在优化时把它作为一个设计变量。
2.由两个双片式组成的简单 Petzval 物镜首先输入系统特性参数,如下:在系统通用对话框中设置孔径。
在孔径类型中选择“Paraxial Working F/#”,并输入“2.3”;
在视场设定对话框中设置3个视场,要选择“Angle”,如下图:
在波长设定对话框中,选择F.d.C,如下图:
LDE的结构参数,如下图:
查看2D Layout:
查看Ray Fan:
虽然孔径很大f/2.3,高级像差在起一定作用,但是 Seidel 像差还是相当精确地描述实际镜头性能。
所有的曲线都是S形,说明还有球差,但是彗差和高级像差很小。
随着视场的增加,曲线变短了,表明存在渐晕,渐晕是视场角的函数。
渐晕是由两个镜组被光阑隔离产生的,对于大的视场角,通过前组的一些光线被后组的口径拦截。
考察子午光线像差曲线,显然渐晕非常有好处;若是没有渐晕,在子午截面上的光阑顶部和底部的光线具有很大的像差,使像的边缘非常模糊。
但代价是视场边缘的像的亮度比轴上小。
子午和弧矢曲线中心的斜率不同,说明了存在比较大的像散。
因为从轴上视场到离轴10 度视场,子午曲线的斜率几乎不变,即场曲比较小。
三种颜色的光线曲线非常紧凑,说明色差的校正比较好。
查看点列图:
查看MTF:
可以看出,这个Petzval物镜的性能还需优化。
有很多方法可以提高这个Petzval物镜的性能,比如把双胶合拆开,产生一个空气间隙。
这种做法对场曲S4没有影响,即只能减小像散S3。
另一种做法是,尝试不同的玻璃以减小S4。
3.弯曲像面的 Petzval 物镜解决 Petzval物镜场曲的一种方法是直接成像在弯曲面上。
例如,有两个双片式,它们的焦距分别是 200mm 和100mm。
假设平均折射率为 1.6,则在薄透镜近似下的 Petzval和为:
即 Petzval 面的半径为-100mm。
首先输入系统特性参数,如下:在孔径类型中选择“Paraxial Working F/#”,并输入“2.3”;
在视场设定对话框中设置3个视场,要选择“Angle”,如下图:
在波长设定对话框中,选择F.d.C,如下图:
LDE的结构参数,如下图:
可以看出最优像面(即表面 8 的半径)半径为-93.9955mm,其中负号表示弯向镜头。
查看2D Layout:
查看Ray Fan:
查看点列图:查看MTF:
可以看出,这个Petzval物镜的性能有所提高。
4.具有平场镜的 Petzval 物镜解决 Petzval 镜头场曲的第二种方法,是在像面附近添加一个负透镜。
这个负透镜有负的Petzval 和,因为边际线的高度很小,所以该透镜上的其他像差很小。
注意,若这个平场镜处在像面上,那么玻璃上的任何瑕疵都会被聚焦,因此平场镜通常放在离像面一定距离。
这种设计通常用于孔径约为 /2 f 以及半视场角小于等于 10 度左右的物镜。
平场Petzval 镜头的视场角,受到边缘视场的斜光线在平场镜两个面上的入射角度的影响。
一般而言,大角度的光线入射到陡峭的表面时,会产生大的像差以及需要严格的公差。
.首先输入系统特性参数,如下:在孔径类型中选择“Paraxial Working F/#”,并输入“2.3”;
在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,选择F.d.C,如下图:
LDE的结构参数,如下图:
查看2D Layout:
查看Ray Fan:
查看点列图:
查看MTF:
可以看出,这个Petzval物镜的性能也有所提高。