平行四边形习题课

合集下载

人教版四年数学上册第五单元《平行四边形和梯形练习课》教案

人教版四年数学上册第五单元《平行四边形和梯形练习课》教案

人教版四年数学上册第五单元《平行四边形和梯形练习课》教案一. 教材分析人教版四年级数学上册第五单元《平行四边形和梯形练习课》的教材内容主要包括平行四边形和梯形的性质、判定以及运用。

通过本节课的学习,使学生掌握平行四边形和梯形的基本概念,了解它们的性质和判定方法,培养学生运用平行四边形和梯形的知识解决实际问题的能力。

二. 学情分析四年级的学生已经具备了一定的几何图形知识,对平行四边形和梯形有一定的了解。

但在运用知识解决实际问题时,还需要进一步引导和训练。

因此,在教学过程中,要注重培养学生运用知识的能力,激发学生的学习兴趣,提高学生的学习积极性。

三. 教学目标1.知识与技能:使学生掌握平行四边形和梯形的基本概念,了解它们的性质和判定方法;2.过程与方法:培养学生运用平行四边形和梯形的知识解决实际问题的能力;3.情感态度与价值观:激发学生的学习兴趣,培养学生的合作精神,使学生感受到数学与生活的密切联系。

四. 教学重难点1.重点:平行四边形和梯形的性质、判定方法以及运用;2.难点:如何运用平行四边形和梯形的知识解决实际问题。

五. 教学方法1.采用情境教学法,以生活实例引入课题,激发学生的学习兴趣;2.运用直观演示法,让学生通过观察、操作,加深对知识的理解;3.采用合作学习法,培养学生与他人合作、交流的能力;4.运用练习法,巩固所学知识,提高学生的应用能力。

六. 教学准备1.准备相关的生活实例和图片,用于导入和讲解;2.准备练习题,用于巩固和拓展所学知识;3.准备黑板、粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用生活实例引入平行四边形和梯形的概念,让学生观察实例中的图形,引导学生发现平行四边形和梯形的特征。

2.呈现(10分钟)讲解平行四边形和梯形的性质、判定方法,结合图片和实例进行讲解,让学生清晰地了解两个图形的特征。

3.操练(10分钟)让学生分组进行练习,运用所学知识判断给定的图形是否为平行四边形或梯形。

平行四边形习题课

平行四边形习题课

24、在四边形ABCD中,AB=CD,P、Q 分别 是AD、BC中点,M、N分别是对角线AC、BD 的中点,求证:PQMN。
_
A
_
P D
_
_ _
N
M
_ _5、如图,在菱形ABCD中,E为AD中点, EF⊥AC交CB的延长线于F. 求证:AB与EF互相平分。 A E D
H
G
F
B
C
26、如图,以△ABC三边为边在BC同侧作三个 等边△ABD、△BCE、△ACF (1)求证:四边形ADEF是平行四边形; (2)当△ABC满足什么条件时,四边形ADEF E 是矩形.
7、已知正方形ABCD,△BCE是正三角 形,则∠CDE= 。
8、如图,正方形ABCD的边长为6cm,正方 形EFGH边长为3cm,则图中阴影部分面 积为 。
9、如图,已知正方形纸片ABCD,M,N分别 是AD,BC的中点.把BC边向上翻折,使C点 恰好落在MN的点P处,BQ为折痕,则 ∠PBQ= 度.
22、如图,ABCD是矩形纸片,翻折∠B、 ∠D,使BC、AD恰好落在AC上,设FH分 别是B、D落在AC上的两点,E、G分别是 折痕CE、AG与AB、CD的交点。 (1)求证:四边形AECG是平行四边形。 (2)若AB=4cm,BC=3cm,求线段E F的长。
23、如图,在正方形ABCD中,点E在AC上. (1)求证:BE=DE; (2)你能用文字概括上面这个命题吗? (3)你能用这个命题证明下面这道题吗? 请你写出证明过程. 已知:如图,点P在正方形ABCD的对角线AC上, PE⊥AB, PF⊥BC, E,F为垂足.求证:EF=PD.
D F
A
B
C
平行四边形 习题课
1、已知ABCD中,∠ABC的平分线交 AD于点E,且AE=2,DE=1,则 ABCD的周长等于 。

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

边数
3
4
5
6…
多边形的内角和 180° 360° 540° 720°
正多边形内角的度数 60° 90° 108° 120°
知识技能
13. 过多边形某个顶点的所有对角线,将这个多边形分 成7个三角形,这个多边形是几边形? 解:过n边形某个顶点的对角线,将这个多边形分 成(n-2)个三角形,根据题意,得n-2=7,解得n=9. 所以这个多边形是九边形.
位线定理可知连接各边的中点得到的三角形的三边长
分别是 1 a, 1 b, 1 c,所以此三角形的周长为 1(a+b+c),
222
同理,再次得到的三角形的周长为
2A
1 (a+b+c).
4
B
C
知识技能
12. 分别确定一般三角形、四边形、五边形、六边 形……的内角和,以及正三角形、正四边形、正五 边形、正六边形……内角的度数,并填入下表:
于点E,∠BCD的平分线交AD于点F,交BE于点G.
求证:AF=DE.
AF
ED
证明:∵四边形ABCD是平行四边形, G
∴AB=DC,AD∥BC.
B
C
∴∠AEB=∠EBC,∠DFC=∠FCB.
∵BE平分∠ABC,CF平分∠BCD,
知识技能
∴∠ABE=∠EBC,∠DCF=∠FCB.
∴∠AEB=∠ABE,∠DFC=∠DCF.
A
F
∴AB=AE,DF=DC.
ED
∵AB=DC,
G
∴AE=DF.
B
C
∴AE-EF=DF-EF,即AF=DE.
知识技能
11. 如图,△ABC的三边长分别为a,b,c,以它的三边 中点为顶点组成一个新三角形,再以这个新三角形

(完整)平行四边形的性质练习题及答案-1

(完整)平行四边形的性质练习题及答案-1

(完整)平行四边形的性质练习题及答案-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)平行四边形的性质练习题及答案-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)平行四边形的性质练习题及答案-1的全部内容。

平行四边形的性质一、课中强化(10分钟训练)1。

如图3,在平行四边形ABCD中,下列各式不一定正确的是( ) A。

∠1+∠2=180° B.∠2+∠3=180° C。

∠3+∠4=180° D.∠2+∠4=180°图3 图4 图52。

如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DC E的周长为( )A。

4 cm B。

6 cm C.8 cm D.10 cm3。

如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________。

4。

如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm。

图6 图75。

如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF。

6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF的长。

图8二、课后巩固(30分钟训练)1。

ABCD中,∠A比∠B大20°,则∠C的度数为( )A。

60° B.80° C。

(完整版)平行四边形练习题及答案(DOC)

(完整版)平行四边形练习题及答案(DOC)

20.1平行四边形的判断一、选择题1 .四边形A BCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,此中能使四边形ABCD是平行四边形的选法有()A .3种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,此中 a,b 为一组对边边长, c,d?为另一组对边边长且知足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .随意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.以下说法正确的选项是()A.若一个四边形的一条对角线均分另一条对角线,则这个四边形是平行四边形B.对角线相互均分的四边形必定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 知足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增添一个条件_______,就能够推出BE=DF.图1图26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.以下图,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其他各边长用含有未知数 x 的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思虑题8.以下图,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参照答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:娴熟掌握平行四边形的判断定理是解答这种题目的重点.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确立.5 .AE=CF 点拨:此题答案不唯一,只需增添的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:依据对角线相互均分的四边形为平行四边形来进行鉴别.三、 7.解:以下图,四边形ABCD是平行四边形.原因以下:在 Rt△BCD中,依据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:此题主要告诉的是线段的长度,故只需说明AD=BC, AB=DC即可,此题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,以下图.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:此题若用三角形全等,也能够解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2矩形的判断一、选择题1.矩形拥有而一般平行四边形不拥有的性质是()A.对角相等 B .对边相等 C .对角线相等 D .对角线相互垂直2.以下表达中能判断四边形是矩形的个数是()①对角线相互均分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线相互均分且相等的四边形.A . 1B. 2C. 3D. 43.以下命题中,正确的选项是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相互垂直且相等的四边形是矩形 D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线订交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1图 25.若四边形 ABCD的对角线 AC, BD相等,且相互均分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.以下图,□ABCD的四个内角的均分线分别订交于E, F, G,H 两点,试说明四边形 EFGH是矩形.四、思虑题8.以下图,△ABC中, CE, CF分别均分∠ACB和它的邻补角∠ACD.AE⊥CE于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为何?参照答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判断定理;④中对角线相互均分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判断矩形,应选B.3. D 点拨:选项 D 是矩形的判断定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线相互均分来判断此四边形是平行四边形,再依据对角线相等来判断此平行四边形是矩形.由矩形的对角线相等且相互均分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.22所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:因为“两直线平行,同旁内角的均分线相互垂直”,所以很简单求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.原因:因为CE均分∠ ACB, ?CF?均分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.222又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?此题是经过证四边形中三个角为直角得出结论.还能够经过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判断一、选择题1.以下四边形中不必定为菱形的是()A .对角线相等的平行四边形B.每条对角线均分一组对角的四边形C.对角线相互垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A .1种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD订交于点O,?增添一个条件使平行四边形为菱形,增添的条件为 ________.(只写出切合要求的一个即可)图1图25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增添的条件是 ________.(只写出切合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直均分边AB,则 BD=_____,AC=_____.三、解答题8.以下图,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思虑题9.如图,矩形 ABCD的对角线订交于点 O,PD∥AC,PC∥BD, PD,PC订交于点 P,四边形 PCOD是菱形吗?试说明原因.参照答案一、 1. A点拨:此题用清除法作答.2. D 点拨:依据菱形的判断方法判断,注意不要漏解.3. C点拨:以下图,若∠ ABC=60°,则△ ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.42因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB=2222AB OA8 4 =43(cm ?),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可增添AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的均分线上(或 AE=AF)26. 12cm; 723 cm点拨:以下图,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在 Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3点拨:以下图,因为DE垂直均分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2222222?AE +DE=AD,即 2 +DE=4,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .22三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:依据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义能够鉴别该四边形为菱形.四、 9.解:四边形PCOD是菱形.原因以下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判断一、选择题1.以下命题正确的选项是()A.两条对角线相互均分且相等的四边形是菱形B.两条对角线相互均分且垂直的四边形是矩形C.两条对角线相互垂直,均分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角均分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要增添条件_______.4.如图 1 所示,直线L 过正方形ABCD的极点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图1图2图35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延伸线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点, AF=2,P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.以下图,在 Rt△ABC中, CF为∠ ACB的均分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思虑题8.已知以下图,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为何?(2) AF 与 DE能否垂直?说明你的原因.C D A AB,BC边上的点,且 AE=BF,?请问:参照答案一、 1. C点拨:对角线相互均分的四边形是平行四边形,?对角线相互垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形必定是正方形,应选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判断.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可增添△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:察看图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 2212=5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在 Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17点拨:以下图,作 F 对于AC的对称点G.连结EG交AC于P,则 PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在 Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?均分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:此题先说明四边形是矩形,再求出有一组邻边相等,?还能够先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.原因:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.原因:如图,设DE与 AF 订交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判断1 A C 一、选择题.以下结论中,正确的选项是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.以下图,等腰梯形ABCD的对角线 AC,BD订交于点O,则图中全等三角形有()A.2对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线相互垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和起码为()A. 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要增添的条件是__________ (填一个正确的条件即可).三、解答题7.以下图,AD是∠ BAC的均分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思虑题8.以下图,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为何?参照答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?所以在等腰梯形的性质和鉴别方法中一定重申同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),不然就会出现错误,所以A, B 选项都不正确,而 C 选项中遗漏了限制条件此外一组对边不平行,若平行该四边形就形成了平行四边形了,所以应选D.2. B点拨:因为△ ABC≌△ DCB,△ BAD≌△ CDA,△ AOB≌△ DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线相互垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和起码为2L=2× 30=60(cm).二、 4. 4:65点拨:以下图,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在 Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:以下图,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的均分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形尔后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.原因:延伸BA, CD,订交于点 E,以下图,由∠ B=∠C,可得EB=EC.又 AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又 AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只需推出AD∥BC,再由AD<BC便可知四边形ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延伸 BA,CD,即可获得等腰三角形,从而使 AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判断测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉稳应战!(每题 3 分,共 30 分)1. 正方形拥有菱形不必定拥有的性质是()(A )对角线相互垂直(B)对角线相互均分(C)对角线相等(D)对角线均分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么暗影部分的面积是矩形ABCD 的面积的()(A )A 111( D )3A5(B )( C)1043D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 能够等于()( A)4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A)87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A)3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,假如 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不可以确立7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2132( A )2(B)2(C)2(D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 ,BD均分ABC ,假如这个梯形的周长为30,则AB的长()( A)4( B)5(C)6( D)7A DA DERPB C( 5)B(4)Q C9.右图是一个利用四边形的不稳固性制作的菱形晾衣架.A B C 已知此中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A)90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动研究小组,在老师的指引下进一步研究了完整平方公式.联合实数的性质发现以下规律:对于随意正数a、 b,都有 a+b ≥ 2ab 建立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔认真细填,记录自信!( 每题 2 分,共20 分)11.一个四边形四条边按序是a、b、c、d,且a2 b 2 c 2 d 22ac 2bd,则这个四边形是 _______________ .12.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB CD ;(2) AB∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 均分 BAD 这六个条件中,选用三个推出四边形ABCD是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出切合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如图,已知直线l 把 Y ABCD 分红两部分,要使这两部分的面积相等,直线l 所在地点需知足的条件是____________________. (只需填上一个你以为适合的条件)lA DB C(第 13 题)(第 16 题)14.梯形的上底长为 6cm ,过上底的一极点引一腰的平行线,与下底订交,所构成的三角形周长为 21cm ,那么梯形的周长为_________ cm。

平行四边形的性质与判定习题课ppt课件

平行四边形的性质与判定习题课ppt课件
或者: 证法2:∵四边形ABCD是平行四边形,∴AD∥BC. ∵OE⊥AD,∴OE⊥BC.又OF⊥BC, ∴直线OE与OF重合,即E、O、F三点共线.∴∠1=∠2. 又∵OA=OC,∠AEO=∠CFO=90°, ∴△AOE≌△COF(AAS),∴OE=OF.
点评:平行四边形蕴含着很多特性,如:对边相等且平行,邻角互补、对 角线平分、是中心对称图形等.
求证: ⑴AB=AE;
A3
E2
D
⑵ ED+DC=BC;
⑶ AE=3,ED=2时,求
四边形ABCD的周长。
B
C
证明:
(2)∵DC=AB,AB=AE,
(1)∵四边形ABCD平行四边形 ∴AD=ED+AE=ED+AB=ED+DC
∴AD∥BC,DC=AB,BC=AD
∵BC=AD
∴∠2=∠3,
∴ED+DC=BC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
22.1~22.2习题课 (错解剖学与解题规范)
平行四边形的性质与判定
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
×2=23cm或[4.5+(4.5+3.5)]×2=25cm.
点评:本题涉及分类讨论思想,这是数学中重要思想.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

平行四边形教案(最新6篇)

平行四边形教案(最新6篇)

平行四边形教案(最新6篇)平行四边形篇一第二课时:平行四边形面积的计算练习课教学内容:练习二1 — 5题教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。

教学过程:练习二:第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15.所画平行四边形的底和高分别为5和3、3和5或15和1.第2题:学生在测量时一定要注意底和高必须是对应的一组。

第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。

这种近似的测量和计算在实际生活中经常用到。

第5题:可以让同桌两人分别准备一样大小的长方形框架。

操作时,一个长方形不动,另一个长方形拉成平行四边形。

通过观察、比较后要明确两点:1、把长方形拉成平行四边形后,周长没变,面积变了。

2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小平行四边形篇二七、教学步骤【复习提问】图11.什么叫平行四边形?我们已经学习了它的哪些性质?2.已知:如图1,,.求证:.3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。

如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。

【讲解新课】图2(1)平行四边形的性质定理3,平行四边形的对角线互相平分。

先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。

(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。

图3例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ △△,或△ △△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。

如这里可直接由定理3得出,而不再重复定理的推导过程证出。

8.2平行四边形性质和判定的四种常见题型

8.2平行四边形性质和判定的四种常见题型
(2)若 BE 平分∠ABC,求证: AB2=AE2+BE2.
证明:∵BE 平分∠ABC,∴∠CBE=∠EBA. ∵四边形 ABCD 是平行四边形,∴AD∥BC, ∴∠DAB+∠ABC=180°. ∵∠DAE=∠BAE,∴∠BAE+∠EBA=90°. ∴∠AEB=90°.∴AB2=AE2+BE2.
证明:∵四边形 ABCD 是平行四边形, ∴AD∥BC,AD=BC. ∴∠EAG=∠FCH,∠AEG=∠CBE. ∵E,F 分别为 AD,BC 的中点,
∴AE=DE=12AD,BF=CF=12BC. ∴AE=CF,DE=BF.又 DE∥BF, ∴四边形 DEBF 是平行四边形.∴BE∥FD. ∴∠CBE=∠CFH.∴∠AEG=∠CFH.
3.(中考·扬州)如图,将▱ ABCD 沿过点 A 的直线 l 折叠,使点 D 落到 AB 边上的点 D′处,折痕 l 交 CD 边于点 E,连接 BE.
(1)求证:四边形 BCED′是平行四边形; 证明:∵四边形 ABCD 是平行四边形, ∴AB∥DC,AB=DC. 根据折叠的性质,得∠DAE=∠D′AE,∠DEA=∠D′EA, ∠D=∠AD′E.
∠EAG=∠FCH, 在△AEG 和△CFH 中,AE=CF,
∠AEG=∠CFH, ∴△AEG≌△CFH(ASA).∴AG=CH.
2.(中考·毕节)如图,将▱ ABCD 的 AD 边延长至点 E,使 DE= 12AD,连接 CE,F 是 BC 边的中点,连接 FD.
(1)求证:四边形. 证明:∵D,E 移动的速度相同,时间也相同,∴BD=CE. ∵DG∥AE,∴∠DGB=∠ACB. ∵AB=AC,∴∠B=∠ACB.∴∠B=∠DGB. ∴BD=GD=CE. 又∵DG∥CE,∴四边形 CDGE 是平行四边形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
D
C
A
B
D
C
A
O
平行四边形习题课
命题:张传美审核:李芳班级学号
知识梳理
1.定义:两组对边的四边形是平行四边形.
2.平行的四边形的性质:(边,角,对角线)
因为四边形ABCD是平行四边形
(边)所以理由是
所以理由是
(角)所以理由是
(对角线)所以理由是
3.平行的四边形的判定:
(1)因为
所以四边形ABCD是平行四边形.理由是.
(2)因为
所以四边形ABCD是平行四边形. 理由是:两组对边分别相等的四边形是平行四边形(3)因为
所以四边形ABCD是平行四边形.
理由是:一组对边平行且相等的四边形是平行四边形.
(4)因为
所以四边形ABCD是平行四边形. 理由是:
(5)因为
所以四边形ABCD是平行四边形. 理由是:两组对角分别相等的四边形是平行四边形
4.平行四边形是对称图形,是它的对称中心.
5.平行四边形的面积
二、课前练习
1.下列哪些四边形是平行四边形?请说明理由。

B
A
D
C
4.8㎝
4.8㎝
7.6㎝
7.6㎝
A
D B
110° 70°
110°
j
O
D
C
B
A
2.平行四边形ABCD 中,AB=5cm,BC=4cm,则平行四边形ABCD 的周长为 cm 3.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的 面积是______。

另一边上的高是____
4.以不在同一直线上的三点为顶点作平行四边形,最多能作( )个
5. 在□ABCD 中,∠B=600
,AB=5cm,则下列结论正确的是( )
A ∠D=600
,BC=5cm B ∠C=1200
,CD=5cm C ∠A=600
,AD=5cm D ∠A=600
,AD=5cm 6. 如图,平行四边形ABCD 的对角线相交于点O,两条对角线长的和为24,CD 长为5, 求△AOB 的周长
7.如图,在□ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别是E 、F ,∠ABE=60°,BE=2cm ,
DF=3cm ,求∠EAF 的度数
三、例题精选
例1 已知某平行四边形的对角线长为x ,y ,一边长为12cm ,则x ,y 可能是下列各组数中的( )
A 8cm 和14cm
B 10cm 和14cm
C 18cm 和20cm
D 10cm 和38cm 例2 已知:如图,
E 、
F 是□ABCD 对角线AC 上的两点,并且AE=CF. 请说明:四边形BFDE 是平行四边形
A
B
C
D
O
5㎝
5㎝
4㎝
4㎝
F
E
D
C
B
A
F
E
D
C
B
A
F
E
D
C
B
A
D
C
B
F
E
A
解题思路:连结BD 交AC 于O ,∵BO =DO ,因此用“对角线互相平分的四边形是平行四边形”来证明四边形BFDE 是平行四边形最为恰当。

根据题意,只需证明OE =OF 。

变式一:如图,在□ABCD 中,E ,F 为AC 上两点,BE//DF .请说明:四边形BEDF 为平行四边形.
变式二:如图,在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F. 请说明:四边形BEDF 为平行四边形
例3 如图,已知等腰三角形的一腰AB=9cm,过底边上的任意一点D 作两腰的平行线分别交B 与E,交AC 与F ,求DE+DF 的值.
j
O
D
C
B
A F
E
D
C
B
A
D
C
B
F
E
A
课后练习:
1.一位饱经苍桑的老人,经一辈子的辛勤劳动,到晚年的时候,他已经拥有一块近似平行四边形的土地。

他决定把这块土地分给他的四个孩子,他是这样分的:(如下图)当四个孩子看到时,争论不休,都认为自己分的地少,同学们:老人这样分合理吗?说出你的理由。

2.如图,在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以说明四边形 BEDF 是平行四边形吗?
3.如图,□ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,若ABCD 的周长为48,DE=5,DF=10。

求□ABCD 的面积。

4.在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?
Q
C。

相关文档
最新文档