电磁场实验3指导书

合集下载

《电磁场实验指导书》word版

《电磁场实验指导书》word版

电磁场实验指导书北京信息科技大学目录实验一球形载流线圈的场分布与自感 (1)实验二磁悬浮 (7)实验三静电除尘 (10)前 言结合电磁场课程教学的电磁场实验课是完善教学效果,增进学生对电磁场现象和过程的感性认识,拓展有关电磁场工程应用知识面的重要环节。

随着教学改革不断深化的进程, 电磁场教学实验在承接大学物理电磁学实验基础上的改进与提高势在必行。

根据高等学校电磁场课程教学的基本要求,以电磁场系列实验课开设的需求为依据,我电磁场课程组设计、编写了电磁场实验教学的新内容,并在浙江大学求是公司的共同规划下,由该公司制作完成了第一阶段的三个实验的基本装置和设备,以应当前我国电磁场实验教学的实际需要。

实验一:球形载流线圈的场分布与自感一、实验目的1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法;3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应高斯计的应用。

二、实验原理(1)球形载流线圈(磁通球)的磁场分析如图11所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。

显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R 上,应有图1-1球形载流线圈(磁通球) i 图1-2 呈轴对称性的计算场域()d d N W R θi=z i 2R ⎛⎫'⎪⎝⎭因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ==代入上式,可知对应于球面上线匝密度分布W ′,应有2sin d sin d 2N R R N W R Rθθθθ⋅'== 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。

电磁场与电磁波教学实验指导书.docx

电磁场与电磁波教学实验指导书.docx

电磁场与电磁波教学实验指导书“电磁场与电磁波”是理工科院校电子信息类专业一门重要的专业基础课。

由于该课程核心的基本概念、基本理论和分析方法都很重要,而且系统性、理论性很强,因此在学习木课程时,开设必要的实验课,使抽象的概念和理论能形象化、具体化,对学生加深理解和深刻地掌握基木理论和分析方法,培养学生分析问题和解决问题的能力都是十分有益的。

做好本课程的实验,是学好本课程的必要的教学辅助环节。

同学们在做每个实验之前,一定要仔细阅读教材和实验指导书。

了解和熟悉实验设备、弄懂实验原理和实验目的、明确实验方法和实验步骤、并牢记和关注意事项,以使各实验得以安全、顺利地完成。

实验过程中耍按实验步骤耍求进行操作,认真观察实验现象,详细、规范地记录实验数据。

实验完成后,要认真分析实验结果,详细地写出实验报告。

实验仪器JMX-JY-002电磁波综合实验仪一、概述电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。

它能使学生通过应用木发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第屯磁感应定律、屯偶极子、天线基木结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及和关特性的认识,培养学牛对电磁波分析和电磁波应用的创新能力。

UMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。

二、特点1、理论与实践结合性强2、直接面向《屯磁场与波》的课程建设与改革需耍,紧密配合教学大纲,使课堂环节与实验坏节紧密结合。

3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。

电磁场与电磁波实验指导书(参考)

电磁场与电磁波实验指导书(参考)

电磁场与电磁波实验指导书目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。

二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。

2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。

3、理解电磁波辐射原理。

三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。

电场和磁场构成了统一的电磁场的两个不可分割的部分。

能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。

图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。

如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。

接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。

电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。

电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。

图2 接收天线本实验重点介绍其中的一种─—半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为/4λ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。

电磁场与电磁波试验指导书Word版

电磁场与电磁波试验指导书Word版

《电磁场与电磁波》实验指导书中国农业大学信息与电气工程学院2010年 12月“电磁场与电磁波”是工科电子类专业一门重要的专业基础课。

由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,使抽象的概念和理论形象化、具体化,增强学生学习本门课程的兴趣,对学生加深理解和深入掌握基本理论和分析方法,培养学生分析问题和解决问题、设计实验方案的能力等方面,具有极大的好处。

做好本课程的实验,是学好本课程的重要教学辅助环节。

在做每个实验前,请务必阅读实验指导书和教材,弄懂实验原理,认真完成实验预习报告;做完实验后,请务必写出详细的实验报告,包括实验方法、实验过程和结果、心得和体会等。

传播优秀Word版文档,希望对您有帮助,可双击去除!目录实验一静电场仿真实验二恒定电场的仿真实验三恒定磁场的仿真实验四电磁波反射与折射实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。

2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。

点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204q E r rπε=(r 是单位向量) (1-1)真空中点电荷产生的电位为04q rϕπε=(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014nin i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为121014nin i i q r ϕϕϕϕπε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。

4.实验内容及步骤 (1) 点电荷静电场仿真题目:真空中有一个点电荷-q ,求其电场分布图。

分析:真空中负点电荷的电位是:04q rϕπε=-场强是:204q E r rπε=-假设其在坐标原点,则半径为r ,用x ,y 的坐标求出r 进而求出x ,y 与电位ϕ之间的关系,则可以做出图形。

电磁波实验指导书

电磁波实验指导书

《电磁场与波》实验指导书实验一电磁波的反射与折射(验证实验2学时)1实验目的1.1研究电磁波在良导体表而上的反射立律。

1.2研究电磁波在理想介质表而的反射和折射。

1. 3研究电磁波产生全反射和无反射的条件。

2实验原理2・1当均匀平面电磁波入射到两种不同媒质分界而上斜入射时,一般要产生反射和折射。

在分界而上,入射波与反射波、折射波之间服从以下规律:&严% ..................... 1・1图1-1电磁波的反射与折射其中八、'分别为入射角、反射角和折射角。

且令卢二,产:,応、k、厶分别为入射波、反射波、折射波的波矢量,其大小分别为加叹弘、 g.2・2以上规律只反映了反射波、折射波与入射波之间的方向关系.而电场强度之间的大小和相位关系,可用反射系数和折射系数来表示。

对平行极化波来说,在两种媒质分界而上的反射系数和透(折)射系数几如下:R J严e厂”严仏]再"〃|COS& + 7COS027;严讥网,............................... X.47、“2分别为第一媒质和第二媒质的特性阻抗。

现在我们来讨论最常见的两种情况:2・2.1当波斜入射到良导体表而上时.由于而良导体的b—故% 0,所以/?|] = 1, 7^| = 0 o这说明电磁波将发生全反射。

2. 2. 2平行极化电磁波斜入射到两种理想电介质分界面上产生无反射即全折射的条件是/?H=0o因为一般媒质卢卢,故可得到平行极化波以F 二型PS力I 81入射的,将满足站+ $2R n=0的条件。

该结论对电磁波从波疏媒质向波密媒质(t< :)投射,或者从波密媒质向波疏媒质(x> J投射都能满足。

图I. 2半冇拔化波在介強鹹上的全折射71理论分析证明,此时折射角与布儒斯特角口之间关系为:产F—2如图1・2示,只要F ”则在介质板的另一侧就可直接收到全部信号。

2・3由于一般媒质均有x= - o,故对垂直极化不存在无反射现象现象。

电磁场与电磁波实验指导书(新)

电磁场与电磁波实验指导书(新)

电磁场与电磁波实验指导书山东理工大学电气与电子工程学院电磁场与电磁波实验室电磁场与电磁波实验守则1、学生必须按时到指定实验室做实验,不迟到、不早退,不喧哗,不乱扔杂物;爱护公物,严禁在实验桌面上乱刻、乱画。

保持实验室良好的实验环境。

2、实验前学生必须对所做的实验进行充分预习,并写出预习报告。

实验前应认真了解所用仪器、设备、仪表的使用方法与注意事项。

在启动设备之前,需经指导教师检查认可。

3、实验时,要严肃认真,正确操作,仔细观察,真实记录实验数据的结果。

实验中严禁违章操作,遇到仪器设备故障要及时报告,不得自行拆卸。

不得做与实验无关的事情,不得动与实验无关的设备,不得进入与实验无关的场所。

4、实验中,如发现仪器设备损坏或丢失,应及时报告,查明原因。

凡属违反操作规程导致设备损坏或自行丢失仪表工具的,要追究责任,照章赔偿。

5、若发生事故,不要惊慌,必须立即切断电源,要保持现场并报告老师,以便查明情况,酌情处理。

6、实验完毕后,要按要求整理好试验设备、器材和工具等,关断电源。

经指导教师检查数据并签字后,方可离开实验室。

7、学生需做开放性实验时,应事先与有关实验室(中心)联系,报告自己的实验目的、内容。

实验结束后应整理好实验现场。

8、学生必须认真做好实验报告,在规定时间内交给指导教师批阅。

目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。

二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。

2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。

3、理解电磁波辐射原理。

三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。

电场和磁场构成了统一的电磁场的两个不可分割的部分。

能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。

电磁学实验教学指导书

电磁学实验教学指导书

电磁学实验目的电磁学实验主要目的是:使学生在物理实验的基本知识、基本方法、基本技能等方面受到较系统训练的同时,加深对电磁学基本概念的理解和掌握,学会使用基本电磁学测量仪器,掌握基本电磁学量的测量方法、电路分析及实验误差分析方法。

培养良好的科学素质、初步的实验能力及创新精神,同时又为后续的实验课程以及走向社会的工作打下基础。

通过《电磁学实验》,学生应达到以下基本要求:1、学习掌握电磁学中基本物理量的测量方法;2、掌握常用电磁学仪器的原理、性能和使用方法;3、学会分析电磁学实验中的基本电路,具备初步的分析、排除电路故障的能力,能熟练的连结实验电路;4、学习进行电磁学实验的误差分析和不确定度评定的基本方法,提高数据处理的能力;5、养成良好的实验习惯和严谨的科学作风,实事求是的科学态度。

提高初步的实验能力,操作技能。

电磁学实验教学要求实验教学主要包括实验前预习、实验操作、实验总结(写实验报告)三个教学环节。

一预习学生在实验前须认真阅读实验教材,明确实验目的要求、实验原理,要测量的物理量及实验方法、步骤等。

预习实验中涉及的仪器、仪表、元件等,弄清主要仪器的构造、原理、操作方法特别是注意事项,根据实验内容及步骤列好数据记录表格,最后写出简明扼要的预习报告,进实验室前不交预习报告的学生教师有权制止其进行操作。

二电磁学实验操作规程在电学测量实验中,很重要的一项工作就是正确而迅速地连接线路,特别是遇到比较复杂的线路时,必须掌握一定的连接方法,才不致造成混乱,同时可以节省时间,容易检查故障和避免仪器的损坏,减少测量误差等。

1、根据使用方便、安全和缩短线路的原则,将仪器按线路图先排好,一般将常用的开关放在最方便的地方,安培表、伏特表放在近前正对自己。

2、将有电源的回路作为基本回路,连线时从电源正极出发,最后回到电源负极。

以基本回路为基础进行扩展,再将其它回路一一连上。

3、使用仪表要注意正负极,正极接到电源正极或电势较高的一端,负极接到电源负极或电势较低的一端。

电磁场实验指导书

电磁场实验指导书

实验一:驻波比的测量一、实验原理驻波产生的原因是由于负载阻抗与波导特性阻抗不匹配。

因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。

在测量时,通常测量电压驻波系数,即波导中电场最大值和最小值之比。

对于平方检波,有:错误!未找到引用源。

二、实验器件微波信号源、隔离器、波长表、可变衰减器、波导测量、被测件(电容膜片、电感膜片)、匹配负载、选频放大器1、微波信号源:可产生微波振荡,频率范围可以微调,信号源工作在方波状态。

在微波信号源上我们可以读出频率、电压、电流的数值。

信号源上的频率旋钮用来调整我们所需要的频率值(8.6GHz—9.6GHz);点频和扫频按键用以选择点频状态或扫频状态,当工作在扫频状态时可以用扫频宽度旋钮来调节扫频的宽度;功率旋钮用来调节功率;信号源的右边有五个按键:等幅、方波、外调制+、外调制-和教学按键,本次实验用的是方波状态;下面有两个输出和一个输入,即RF输出,电压输出和外调制输入。

2、隔离器:抑制干扰。

3、波长表:读取信号发生器上的频率读数,根据频率-测微器刻度对照表来调节波长表的刻度。

4、可变衰减器:相当于可调电位器,旋动有刻度标示的旋钮,可以改变吸收片插入波导的深度,进而达到改变衰减量的问题。

5、波导测量:连接选频放大器,主要部件是测量线,通过旋动测量线上的旋钮,可以在选频放大器上读出相邻波腹和波节点的最大值和最小值。

6、被测件:包括断路器和开路器。

7、选频放大器a仪器面板的配置和功能如下:输入电压细调:此旋钮用于调整输入信号衰减量,左旋到底,衰减最大;右旋到底,衰减最小。

衰减量调节范围约为1—10倍。

输入电压步进开关: 用于衰减输入电压信号。

分为四档,即x1,x10,x100和x1000。

在x1档时灵敏度最高,对输入信号无衰减;x10, x100 和x1000档时,衰减量分别为10,100和1000倍。

频率选择开关:分为四档:1:宽带(400Hz—10KHz)2:1KHz (500Hz—1100Hz)3:2KHz (900Hz—2.2 KHz)4:5KHz (1.8KHz—5.2 KHz)开关在2,3,4档时为窄带,在1档时为宽带。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场理论实验三
1、 利用Matlab 模拟亥姆霍兹线圈磁场分布;
2、 利用Matlab 模拟匝线圈产生的磁场;
3、 利用Matlab 模拟直流环等效磁偶极子。

以上实验在内容上相差不多,每位同学自选其中一个实验。

三个实验的内容都是与毕奥-萨伐尔定律相关,这次实验只要是为了加深大家对毕奥-萨伐尔定律的认识。

实验相关内容都可以在网上找得到。

一、 利用Matlab 模拟亥姆霍兹线圈磁场分布
1、 理论基础
亥姆霍兹线圈(如图1)是一对彼此平行且连通的共轴圆形线圈。

两线圈内的电流方
向一致,大小相同。

线圈之间距离d 正好等于圆形线圈的半径R 。

亥姆霍兹线圈轴线附近的磁场大小分布十分均匀,而且都沿x 方向。

基于Matlab 软件对亥姆霍兹线圈轴线磁场均匀分布的现象进行验证和动态仿真,以便于更形象地体现出来。

图1亥姆霍兹线圈结构
根据毕奥-萨伐尔定律,一个通电圆圈的磁场分布可以积分得到。

在通过圆心而且垂直于线圈平面的轴线上,距离圆心X 处,磁场大小为2
/322
2
0)
(2/X R NI R B +=μ。


中I 为电流大小,R 为圆圈半径,0μ为一个常数。

从上面已知亥姆霍兹线圈是两个彼此平行且连通的共轴圆形线圈,它的磁场分布是两个通电圆圈磁场的叠加。

假设两个线圈的半径为R ,各有N 匝,每匝中的电流均为I ,且流向相同(如图1)。

两线圈在轴线上各点的场强方向均沿轴线向右,在圆心1O 、2O 处磁感应强度相等,大小都是:
R
NI
R
NI
NIR R
NI
B 003/2
22
2
000667
.0)2
211(2)
R (R 22μμμμ=+
=
++
=
两线圈间轴线上中点P 处,磁感应强度大小为:
R
NI
R
NI R NIR B p 002
/3222
0716
.0)2
211(558])2
([22
μμμ=+
=
+=
此外,在P 点两侧各4R 处的1Q 、2Q 两点处磁感应强度都等于:
R NI R NI
R NIR R NIR B Q 033
3/2302
/3222
02
/3222
00.712)54174(2])4
3R (
[2])4
R
([2μμμμ=+=++
+=
在图1假设左边线圈为A ,右边的线圈为B ,把观测区域聚在两线圈之间的小范围内。

B 生成的线圈左边的磁场就等于A 线圈的右边磁场,因此,A ,B 两线圈在中间部分合成磁场等于A 线圈的右磁场与左磁场平衡Rh 后的和。

因此,只要观测A 线圈的左右区间x=[-Rh,Rh]内的磁场就可以。

在建立了亥姆霍兹线圈产生的磁场数学模型后,依据上面的分析与所建立的数学模型可以在Matlab 环境下编制可仿真,可执行的仿真程序。

二、 利用Matlab 模拟匝线圈产生的磁场
基本原理
截流导线产生磁场的基本规律为:任一电流元→
dl I 在空间任一点P 处产生的磁感应强度

B d 是下列向量叉乘积:
3
04r r
l Id B d →
→→
⨯∙
=πμ(1)
式中→
r 为电流元到P 点的矢径,l d →
为导线元的长度矢量。

P 点的总磁场可沿截流导体全长积分产生的磁场来求得。

若将→
B d 视为一小段电流l d →
在→
r 处产生的磁场,则上式可写为
→→→→→→→++=⎥⎥
⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=k B j B i B r r r l l l k j i r I
B z y X z y x x y x 3
04πμ(2) 若要求n 小段电流在→
r 产生磁感应强度,则有
∑∑∑=→→→→→→==→++=⎥⎥⎥⎥⎦
⎤⎢⎢
⎢⎢⎣⎡=n i zi yi xi z y x zi yi xi n i n i k B j B i B r r r l l l k j i r I
B 13
101)(4πμ(3) 此式可以应用于任意形状电流在空间中任意地点产生的磁感应强度。

式中xi l 、yi l 、zi l 表示电流元在笛卡尔直角坐标系中沿坐标轴的分量。

三、 利用Matlab 模拟直流环等效磁偶极子
基本原理
设圆线圈的中心为O ,半径为R ,放置于y-z 平面,线圈通过的电流为0I ,如图2所示。

用毕奥-萨伐尔定律计算载流圆线圈在z=0处x-y 平面上的磁场分布。

根据毕奥-萨伐尔定律:
⎰⨯=
L r r Idl dB 3

μ
线圈上任一点处的电流元在x-y 平面上一点P 产生的元磁场为dB 。

可以将电流环分为N 段,每一上段视为一电流元,然后求出每一电流元在观察点处的磁场分量,求出总磁场,最后叠加。

相关文档
最新文档