一元一次方程的复习课导学案(一)

合集下载

SX-7-061、第三章一元一次方程单元复习(1)导学案

SX-7-061、第三章一元一次方程单元复习(1)导学案
编号: 第三章一元一次方程单元复习(1) 方法
SH-7-061 组 内 交 流 展示; 4.组 长 根 据 组 员 完 成 的 情 况 进 行 等 级 评定。



课时


1 数学
第三章一元一次方程单元复习(1) 星火 一中 教 者 刘占国 年 级 七年
编号: 说明: 1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并 不是说解每一个方程都必须经过五个步骤; 2、 解方程时, 一定要先认真观察方程的形式, 再选择步骤和方法; 3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变 形成我们常见的形式,再依照一般方法解。 2.练一练: 1 (1)若 2x-3 与- 互为倒数,则 x=_______ ; 3 |m| —2 2 6 是一元一次方程,则 (2)已知关于 x 的方程 (m 3) x m=_______ ;
学 习 过 程
2、分数的基本的性质 分数的分子、 分母同时乘以或除以同一个不为 0 的数, 分数的值不变。 a am a m 即: = = (其中 m≠0) b bm b m 分数的基本的性质主要是用于将方程中的小数系数 (特别是分 母中的小数)化为整数,如下面的方程: x3 x4 - =1.6 0 .2 0 .5 将上方程化为下面的形式后,更可用习惯的方法解了。 10 x 30 10 x 40 - =1.6 5 2 (三) 、解一元一次方程的一般步骤 步 依 名 称 方 法 注 意 事 项 骤 据 在方程两边同时乘以 1、不含分母的项也 所有分母的最小公倍数 要乘以最小公倍数; 去分 (即把每个含分母的部 1 . 2、分子是多项式的 母 分和不含分母的部分都 一定要先用括号括 乘以所有分母的最小公 起来。 倍数) 去括 去括号法则(可先分配 注意正确的去掉括 2 . 号 再去括号) 号前带负数的括号 把未知项移到议程的 移项一定要改变符 3 移项 一边(左边) ,常数项移 号 到另一边(右边) 合并 分别将未知项的系数 单独的一个未知数 4 同类 相加、常数项相加 的系数为“±1” 项 在方程两边同时除以 系数 不要颠倒了被除数 未知数的系数(方程两 5 化为 和除数 (未知数的系 边同时乘以未知数系数 “1” 数作除数——分母) 的倒数) 方法:把 x=a 分别代入原方程的两边,分别计算出结 果。 检根 *6 ① 若 左边=右边,则 x=a 是方程的解; x=a ② 若 左边≠右边,则 x=a 不是方程的解。 注:当题目要求时,此步骤必须表达出来。

一元一次方程导学案

一元一次方程导学案

课题《一元一次方程1》设计人:赵攀审核人: 赵攀班级:小组:姓名:组内评价:________教师评价:_______【学习目标】1、分析简单问题中的数量关系,建立方程解决问题;2、通过具体问题的解决体会方程解决问题的关键是寻找等量关系。

【学习重点】寻找等量关系,列方程【学习难点】寻找等量关系,列方程【学习过程】(教师寄语:最淡的墨水,也胜过最强的记性。

)一、课前预习:学习任务一:问题探究:今年小亮11岁,小亮的爸爸39岁。

多少年后爸爸的年龄是小亮年龄的3倍?1)想一想:这个问题中的已知数是_________________,未知数是_____________________2)填一填:设x年后爸爸的年龄是小亮年龄的3倍,你能用含x的代数式表示其他的量吗?试填写下表小亮的年龄爸爸的年龄今年X年后3)议一议:在这个问题中有怎样的等量关系?你能利用问题中的等量关系列出方程吗?4)看一看:下面是小颖和小明的做法,他们所列的方程正确吗?他们分别根据什么等量关系列的方程?小颖:小亮的年龄爸爸的年龄今年11 39X年后11+x 39+x列方程,得39+x=3(11+x)小明:小亮的年龄爸爸的年龄今年11 39X年后11+x 3(11+x)列方程,得3(11+x)-39=x(二)总结思路,归纳步骤:理解题意,寻找等量关系,设未知数,列方程,解方程,作答。

【我的疑惑】____________________________________________________ 二、合作探究:探究一:1)在上面的问题中,多少年前,小亮的年龄是爸爸的51?2)经过若干年后,小亮的年龄能等于爸爸年龄的54吗?3)小川今年6岁,他的祖父72岁,几年后小川的年龄是他祖父年龄的414)某造纸厂为节约木材,大力扩大再生纸的生产,这家工厂前年和去年共生产再生纸3000吨,去年比前年生产量的2倍还多150吨,它去年生产再生纸多少吨?三、拓展提升(教师寄语::读一书,增一智。

人教版数学七年级一元一次方程复习导学案

人教版数学七年级一元一次方程复习导学案

一元一次方程复习导学案一、教学目标:1、理解一元一次方程概念,掌握等式性质及一元一次方程的解法。

2、能列出一元一次方程解应用题,提高分析问题、解决问题的能力。

二、教学重点:等式性质及一元一次方程的解法.三、教学难点:用一元一次方程解决实际问题。

四、教学过程:<考点一> 一元一次方程的定义与等式性质1、下列方程中,是一元一次方程的是( )A 、()232x x x x +-=+B 、()40x x +-=C 、1x y +=D 、10x y+= 2、如果21m x -+8=0是一元一次方程,则m=3、下列变形正确的是( )A 4x -5=3x +2变形得4x -3x =-2+5B 6x =2变形得x =3C 3(x -1)=2(x +3)变形得3x -1=2x +6D 23 x -1=12x+3变形得4x -6=3x +18 4、下列等式变形中,正确的是( )<考点二> 解一元一次方程()()()y y y -=---161432 ()[]()x x x -=--121231411012=---x x 421312+-=-x x21132x x +--= 52221+-=--y y y4131312--=--n n nm m m 3213123+-=--1359232+-=-+x x x257352+-=--y y y3.07416.015x x --=- x x 23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-<考点三> 一元一次方程变式训练1、若()01222=++-y x ,则y x += 。

2、单项式4124192b a b a x x -+-与是同类项,则x =3、对于非零的两个实数a 、b ,规定a ⊗b =3a -b ,若1)1(1=+⊗x ,则x 的值为 。

4、若y=1是方程12()23m y y --=的解,则关于x 的方程(4)2(3)m x mx +=+的解是 。

(完整word版)一元一次方程导学案(DOC)

(完整word版)一元一次方程导学案(DOC)

一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。

【学习重点】一元一次方程的含义。

【学习难点】根据简单的实际问题列一元一次方程。

课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。

考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。

考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。

最新北师版七年级数学上册5.2.1求解一元一次方程(一)导学案

最新北师版七年级数学上册5.2.1求解一元一次方程(一)导学案

5.2 .1求解一元一次方程(一)一、教学目标1.知识与能力:通过学生观察、独立思考等过程,培养学生归纳、概括的能力;2.过程与方法:熟悉利用等式的基本性质解一元一次方程的过程,通过具体的例子,归纳移项法则,会用移项法则解方程;3.情感态度价值观:进一步让学生感受并尝试寻找不同的解决问题的方法,激发学生的学习兴趣.二、教学重点和难点重点:移项法则及其应用.难点:移项的同时必须变号.三、教学过程(一)温故知新1.基本知识复习等式的性质1:_______________________________________________。

等式的性质2:___________ _______________。

2.合并同类项:⑴3x-5x=___________ ⑵-3x+7x=__________ ⑶x+5x-2x=_________(二)自主探究新知探究一:阅读教材135页到136页,完成下列问题:1.把原方程中的一项___________后,从方程的一边移动到另一边,这种变形叫做__________。

2.移项的依据是什么?3.解一元一次方程中移项起了什么作用4.移项的过程中,一定要注意___________。

随堂检测1.下列方程的移项是否正确?为什么?(1)由3+x=5,得x=5+3; (2)由23-=x ,得23--=x ;(3)从x +5=7,得到x =7+5 ;(4)从5x =2x -4,得到5x -2x =-4 .2.下列变形中,属于移项变形的是:( )A 、由5x=3,得x=53. B 、由2x+3y-4x,得:2x-4x+3y.C 、由23=x,得x=6. D 、由4x-4=5-x ,得4x+x=5+4.新知探究二:阅读教材135页例1和例2可知,本节课涉及的解一元一次方程的基本步骤:①_________,②__________,③把未知数的系数化为1,最后把方程变成x=a 的形式。

例:解下列方程:(1)5278x x -=+ (2)351322x x -=+ (3)x x 23273-=+ (4)x x 385-=- (5)3 3.5 4.51x x -=- (6)x x x 58.42.13-=--(三)巩固提升1、方程4x-2x =6的解是()A 、5B 、-2C 、3D 、42、解方程1143x =,正确的是()A 、1143x =,43x =B 、1143x =,112x =C 、1143x =,43x =D 、1143x =,34x = 3、解下列方程:(1) x x 237+=; (2) 13624x x -=;(3)x x 21-=-; (4)x x 355-=- (四)课堂小结:通过这节课的学习你有什么收获?(五)作业布置已知5是关于x 的方程3x-2a=7的解,则a 的值为 。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。

(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。

(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。

(2)培养学生运用一元一次方程解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。

二、教学内容1. 一元一次方程的概念及基本性质。

2. 一元一次方程的解法:代入法、加减法、乘除法。

3. 应用一元一次方程解决实际问题。

三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。

(2)一元一次方程的解法。

(3)应用一元一次方程解决实际问题。

2. 教学难点:(1)一元一次方程的解法。

(2)运用一元一次方程解决实际问题。

四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。

(2)引导学生回忆一元一次方程的解法。

2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。

(2)举例演示解题过程,引导学生跟随步骤进行解题。

3. 课堂练习:(1)布置练习题,让学生独立完成。

(2)选取部分学生的作业进行点评,纠正错误,解答疑问。

4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。

(2)分小组讨论,分享解题思路和方法。

五、课后作业1. 复习一元一次方程的概念及其基本性质。

2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。

3. 运用一元一次方程解决实际问题。

4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。

六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。

2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。

3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。

第三章 一元一次方程复习导学案

第三章 一元一次方程复习导学案

《一元一次方程》复习学案【知识链接】姓名★知识点一:方程(一元一次方程)的概念1、什么是方程?方程和等式的区别是什么?方程:方程是含有的等式,方程等式,但等式方程。

2.什么是一元一次方程?它的标准形式和最简形式是什么?(1)一元一次方程:只含有个未知数(),且未知数的次数都是,等号两边都是,这样的方程叫做一元一次方程。

(2)一元一次方程的标准(一般)形式是:ax+b=0 (其中,a、b都是常数,且a≠0)(3)一元一次方程的最简形式是:ax=b (其中,a、b都是常数,且a≠0)★知识点二:方程的解与解方程1. 什么是方程的解,什么是解方程?方程的解:是指能使方程左右两边都相等的未知数的.解方程:是指求方程解的。

★知识点三:等式的基本性质等式的性质1:等式的两边同时加(或减)(),结果仍相等。

即:如果a=b,那么a±c=b ;等式的性质2:等式的两边同时乘,或除以数,结果仍相等。

即:如果a=b,那么ac=bc;或如果a=b,那么a bc c(c≠)等式的对称性:如果a=b,那么b=a;等式的传递性:如果a=b,b=c,那么a= ;等式的基本性质的作用:是等式恒等变形的理论依据.列一元一次方程解应用题的一般步骤:1. 审题:通过读题,弄清题意(提取已知量和未知量等信息);2. 找等量关系:用文字表示出包含题目相关数量关系的等量关系;(关键) (1) 条件等量关系(认真分析,积累经验,仔细感悟) (2) 固有等量关系(如s=vt 等)(识记);3. 设未知数:选设一个未知量(可以是直接或间接未知量,还可以是辅助元)4. 列方程:用代数式表示出等量关系中的相关量;5. 解方程: 仔细解出方程;6. 检验:看是否是原方程的解,再看是否符合实际意义;7. 回答:完整回答题目中的问题.【考点解析】考点一 考查一元一次方程的概念例1 下列是一元一次方程的是( )A .0127=+yB.082=+y x C .03=z D.3232x x -=+ 例2. 已知关于x 的方程021)1(||=+-k x k 是一元一次方程,则k 的值为( )A.1B.-1C.±1D. 0 变式练习: 1. 如果2345m x-=-是关于x 的一元一次方程,那么m= ; 2. 021)2(2=+++kx x k 是一元一次方程,则k = ;3. 如果234x kx -=+是关于x 的一元一次方程,那么k ;考点二 考查一元一次方程解的概念例3 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是 变式练习:4. 若方程234k x -=与24x =的解相同,则k= 5. 下列是关于x 的方程ax b =的解的说法,错误的是( )A.方程ax b =有唯一解B.当0a ≠时,方程ax b =有唯一解C.当0,0a b =≠时,方程ax b =无解D.当0,0a b ==时,方程ax b =有无数个解 6. 小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是-=-y y 21212 ,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是35-=y .很快补好了这个常数,这个常数应是( )A .1B .2C .3D .4思考:关于x 的方程6kx x =-的解是正整数,且k 为自然数,则k 的值为 . 考点三 考查等式的基本性质例4 下列运用等式的性质对等式进行的变形中,正确的是 ( ) A.若x y =,则33x y -=- B. 若x y =,则kx ky =C. 若x y =,则x y a a = D. 若x ym m=,则23x y = 变式练习:7. 把方程762+=-y y 变形为672+=-y y ,这种变形叫 ,根据是 。

《3.1.1 一元一次方程》教案、同步练习、导学案(3篇)

《3.1.1 一元一次方程》教案、同步练习、导学案(3篇)

3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 2a -1 = 3 C -1 -2a = 3
B 2a + 1 = 3 D -2a +1= 3 ) 增强对一元 -2 和-4 。 一 次 定 义 中 条件的理解
3、方程 a 2 x 2 5 x m 3 2 3 是一元一次方程,则 a 和 m 分别为( A 2 和 4 ,B -2 和 4 , C 2 和 -4 , D
(元) ,未知数的最高次数是

把含有未知数的项都移到方程的一边,不含
方程叫做一元一次方程。
__________ 未知数的项都移到方程的另一边(注意移项 要___号) 合并同类项 把方程化成 ax b ( a 0 ) 的形式 在方程两边都除以未知数的系数 _________ _____________ 等式性质 1
学生思考, 交 流,得出共 识,先去括 号, 然后按已 学方程变, 化 简成 x=a 的 形式
a ( a 0 ) 得到方程的解 x
b a
等式性质 2
【环节 2】应用、演练: 1.小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改 正。(1)方程
x 2 x 1 4 x 1 3 0 去分母,得 2 x x 1 4 ; x 6
( ( (
) ) ) )
(3) 1+2x=4 ( (5) x+1-3 (
重 点、难 点
2、“a 的两倍与-1 的差是 3”用等式表示正确的是(
导学流程设计 课前自我学习、链接 【学习整理】知识点 1:
(一)方程的概念 1. 方程:含 的等式叫做方程 。 ,就是方程的解。
设计意图
复习、 整理前 面相关知识, 进一步强化 一元一次方 程知识的理 解
2
设计意图
学科 课型
数 学 复习课
编制人 课 题
胡大巍 审核人 张金利 学案编号 一元一次方程的复习课(一)
703.(1)
会判断方程、 会区分一元 一次方程
学 习 目 标
1.对本章所学知识及其间的关系有一个总体认识,对数学建模思想和解方程 中的化归思想有较深刻的认识; 2. 熟练掌握一元一次方程的解法,能列方程解应用题。 重点:一元一次方程的解法、列方程解应用题 难点:分母为非整数的一元一次方程的解法

如果 a=b,那么
; (

(2)方程 1

去分母,得 1 2 x 2 x ;
导学流程设计
【环节 3】再演练:解下列方程 (1) 2 ( x 2 ) 3 ( 4 x 1) 5 (1 x ) (2)3x-7(x-1)=3-2(x+3);
设计意图
整理格式, 理 清分析的思 路, 规范书写
知识点:回顾解一元一次方程的步骤,做法及依据
变形名称 去分母 具体做法 在方程两边同乘各分母的最小公倍数 先去 ,再去 ,最后去
变形依据 ____________ 去括号法则,分配律
2. 方程的解:使方程的等号左右两边相等的 3.解方程:求 的过程叫做解方程。
去括号
4. 一元一次方程:只含有一个 且
x 1 x2
【课后巩固、提高】
1 . 2 变形正确的是( ) 0 .3 0 .5 10 x 10 10 x 20 10 x 10 10 x 20 1 .2 12 A. B. 3 5 3 5 x 1 x 2 10 x 1 10 x 2 1 .2 1 .2 C. D. 3 5 3 5 x 2 2x a 1 的解是 0. 2、当 a _____时,关于 x 的方程 4 6
3、 已知关于 x 的方程 求 a 的值
2x a 3

xa 2
x 1 与方程 3 ( x 2 ) 4 x 5 有相同的解,
反思: (本节导学案的学习情况的自我反馈。像“哪些知识解决了;哪些未解决” ,什么原因?)
寄语:
班级 姓名
态度+努力+思考=成功!
初 中 数 学 导 学 案
小组成员 上课日期 【环节 1】巩固、熟练:
课堂回顾巩固
练习:判断下列式子是不是方程,是方程打“√”,不是方程打“ ”.是一元一次方 程打“○” (1) x=3 ( ) ) ) (2) (4) (6) 5+6=2+9 x+y=2
x -1=0
设计意图
围绕当堂学 习内容设计 相应习题训 练,巩固知 识, 并且相应 做以习题 x 5 3 x
6 4
(4) x x 1 2 x 2
2 3
3、解方程 (5) 0 . 01 0 . 02 x 1 0 . 3 x 1
0 . 03 0 .2
(6) x 1 x 2 1 . 2
0 .3 0 .5
注意格式的 规范组织、 去 分去分母和 分数性质本 质的区别
(1) x
x 1 2
2
x2 3
x4
2 .5
x3 0 .0 5
(2) 0 .2
【一元一次方程的应用】 1、元旦某公园的成人的门票每张 8 元,儿童门票半价(即每张 4 元) ,全天共售出 门票 3000 张,收入 15600 元。问这天售出儿童门票多少张?
(二)方程变形——解方程的重要依据 1、等式的基本性质 等式的性质 1:等式的两边同时加(或减) 即:如果 a=b,那么 a±c=b 2、等式的性质 2:等式的两边同时乘 果仍相等。 即:如果 a=b,那么 ; ; ,或除以 (
通过简单的 填空使学生 对于等式性 ) ,结果仍相等。 质 进 行 一 下 复习 数,结
相关文档
最新文档