认识一元一次方程教案导学案
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
认识一元一次方程(导学案)

5.1.1认识一元一次方程导学案一、激趣引入:二、探究新知:(一)给一元一次方程下定义:在一个方程中,只含有 未知数,未知数的指数都是 ,而且方程中的代数式都是 ,这样的方程叫做一元一次方程例1、判断下列哪些是一元一次方程?(1)317x -= (2)0m = (3)8x y +=2(4)2510x x -+= (5)2(1)2y -= 2(6)10x += 2)1(757)7(-=+-+x x 2)(232)8(22-=+-+x x x23)9(-=-π(二)概念学习使方程左、右两边的值相等的未知数的值叫做一元一次方程的 或 例2、试判断2x =是下列方程的解吗?(1)3(10)20x x +-= (2) 2267x x +=三、随堂练习:1、已知2x =是方程312x x m -=+的解,则m 的值为2、请你写出一个解为2的一元一次方程3、提升练习(1)已知 05=-m x 是关于x 的一元一次方程,则m=_____(2)已知 05||=-m x 是关于x 的一元一次方程,则m=__ ___ (3)已知 01)1(=--m xm 是关于x 的一元一次方程,则m=__ _ (4)已知 01)1()1(22=--+-x m x m 是关于x 的一元一次方程,则m=__ _四、课时小结:我来说……(1)分小组谈谈今天自己学了哪些知识?(2)判断一元一次方程应注意哪些条件?五、课后延伸我来考考你:(要求,先拟定考点,再编题)如:考点:一元一次方程定义中之只含一个未知数110m x -+= 编题: 已知01)1(=++-x y a 是关于x 的一元一次方程,则a=如考点: 一元一次方程定义中之指数为1编题1: 已知011=+-m x 是关于x 的一元一次方程,则m=考点:编题2:考点:编题3:考点:编题4:。
一元一次方程全章导学案

⼀元⼀次⽅程全章导学案第⼀课时 3.1.1⼀元⼀次⽅程(1)学习⽬标1. 了解什么是⽅程,什么事⼀元⼀次⽅程。
2. 体会字母表⽰数的优越性。
重点:知道什么是⽅程,⼀元⼀次⽅程难点:找等关系列⽅程使⽤说明及学法指导:先⾃学课本78—81页内容,独⽴完成学案,然后⼩组讨论交流。
⼀. 导学1. 书中问题⽤算术⽅法解决应怎样列算式:2.含X 的式⼦表⽰关于路程的数量:王家庄距青⼭___千⽶,王家庄距秀⽔___千⽶。
从王家庄到青⼭⾏车__⼩时,王家庄到秀⽔__⼩时。
3车从王家庄到青⼭的速度为___千⽶/⼩时,从王家庄到秀⽔的速度为___千⽶/⼩时。
4.车匀速⾏驶,可列⽅程为:5.什么是⽅程?6.什么是⼀元⼀次⽅程?⼆、合作探究1.判断下列式⼦是否是⽅程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=112.下列式⼦哪些是⼀元⼀次⽅程?不是⼀元⼀次⽅程的,要说明理由. (1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5) x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是⼀元⼀次⽅程,求m 的值;(2)已知关于x 的⽅程mx n-1+2=5是⼀元⼀次⽅程,则m=__,n=__.4、根据下列条件列出⽅程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之⼆加6;(3)某数的8倍⽐该数的5倍⼤12;(4)某数的⼀半加上4,⽐该数的3倍⼩21.(5)某班有x名学⽣,要求平均每⼈展出4枚邮票,实际展出的邮票量⽐要求数多了15枚,问该班共展出多少枚邮票?三、学习⼩结四、作业习题3.1第1、5题。
第⼆课时 3.1.1 ⼀元⼀次⽅程(2)学习⽬标1.根据实际问题中的数量关系,设未知数,列出⼀元⼀次⽅程。
2.知道⽅程的解和解⽅程是两个不同的概念。
认识一元一次方程导学案

认识一元一次方程
【学习目标】
1.能说出方程、方程的解的定义,并会判断一个数是否为方程的解;
2.能根据简单实际问题中的等量关系,列出方程,体会方程是解决实际问题的一种有效数学模型;
3.在自主观察,合作交流基础上,归纳得出一元一次方程的定义.
【学习重点】
通过观察、交流归纳得出一元一次方程的定义.
【自主学习、交流反馈】
环节一:等式与方程
1.在小学我们学过方程,方程就是含有__________的等式.
2.观察下列式子:
(1)-2+5=3 (2) 3x-1=7 (3) 2a+b
(4) x>3 (5) x +y=8 (6) 2x 2-5x+1=0
其中等式有__________________,方程有______________________(只填序号).
3.思考:方程和等式有什么关系?
环节二:方程的解
1.方程的解是指使方程______________________的值相等的_______________的值.
2.将x=2分别代入方程2x+6=5x的左右两边,左边=_________,右边=_________.
因为左边____右边(填“=”或“≠”),所以x=2______(填“是”或“不是”)方程的解.
3.以x=2为解的方程是()
A. 2x=6 B. (x-3)(x+2) =0 C. x2=3 D. 3x-6=0
4.思考:怎样判断一个数是否为方程的解?
环节三:方程是应用广泛的数学工具,有了方程后,人们解决问题就更方便了.请根据下面的。
(完整word版)一元一次方程导学案(DOC)

一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
认识一元一次方程(第1课时)教学设计

1认识一元一次方程(第一课时)方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初中数学中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用,一方面是对已经学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为今后学习方程组、分式方程、函数等知识奠定基础。
1.在具体情景中,理解方程的意义和作用.2.理解一元一次方程的概念.1.通过一元一次方程的引入,培养学生的建模思想,归纳、分析问题及解决问题的能力.1.培养学生主动探究知识、自主学习和合作交流的意识.2.在分析实际问题情景的活动中体会数学与现实的密切联系.3.经历观察、归纳、应用等环节,形成良好的学习态度和学习方法.【重点】建立一元一次方程的概念,会根据具体问题中的数量关系列出一元一次方程,体会数学的应用价值.【难点】能根据具体问题中的等量关系列出一元一次方程.【教师准备】多媒体课件.【学生准备】预习教材.(出示投影)同学们请看大屏幕,小彬和小华在进行猜年龄游戏,我们来看一看,小华是怎样猜出小彬的年龄的?他是利用什么样的方法呢?法一:(21+5)÷2=13法二:【分析】如果设小彬的年龄为x岁,那么“乘2再减5”就是,因此可以得到方程:.生:我知道是怎么回事,如果设小彬的年龄为x岁,那么“乘2再减5”就是2x- 5,因此可以得到方程:2x - 5=21.师:这位同学非常聪明,能够利用小学的知识把它解出来很好,而且非常正确,同学们给他掌声鼓励.那我们是否也可以用列方程的方式来解决生活中的实际问题呢?这节课我们开始学习一元一次方程.(板书课题)【知识拓展】方程:含有未知数的等式。
等式:表示两个数或两个代数式相等关系的式子判断以下哪些是方程。
(1)-2+5=3;(2)3x-1=7;(3)m=0;(4)x>3;(5)x+y=8;(6)2x2-5x+1=0;(7) 2a +b.[设计意图]通过小彬和小华进行的猜年龄游戏,把现实生活中的问题转化为数学中的方程问题,从而认识一元一次方程的重要作用.情景1:如图所示,小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约15 cm,大约几周后树苗长高到1 m?提示思考问题:(1)原来高多少?40 cm.(2)x周后长高了多少?15x cm.(3)本题中的等量关系是什么?树苗开始的高度+长高的高度=树苗将达到的高度.(4)如何列方程表达等量关系?情景2:甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原计划每时行走多少千米?思路一若设张叔叔原计划每时行走x km,则实际每小时走km,由此,我们可以列出方程:.师生活动:设未知数,根据题意列出方程,老师点评并分析如何建立一元一次方程的数学模型,并整理.思路二小组活动,共同探究、思考:(1)题中的已知条件是什么?(2)题中的等量关系是什么?动手写出来.(3)如何设未知数,根据题中等量关系怎样列方程?[处理方式]教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.情景3:根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?思路一如果设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,那么可以得到方程:.思路二(1)想一想:题目中的已知条件是什么?题目中各个量之间有什么关系?(2)品一品:你能正确地找出题目中的等量关系吗?动手写一写.(3)考一考:看谁能正确地列出方程?学生活动,教师巡视发现问题,并及时解决.[设计意图]设置丰富的问题情景,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.探究活动2什么是一元一次方程1.问题导学观察下面所列的方程,哪些是你熟悉的?有何共同特点?2x - 5=2140+15x=100(1+147.30%)x=8930在学生共同分析总结的基础上,指出这些方程中含有未知数的个数有什么特点?未知数的指数有什么特点?上面方程中的第1,2,4个都具有以下特点:(1)都只含一个未知数x;(2)未知数的指数都是1;(3)方程两边都是整式.板书:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.[知识拓展]1.判定一个方程是不是一元一次方程需同时满足三个条件:(1)只含有一个未知数;(2)未知数的指数都是1(3)方程中的代数式都是整式.[设计意图]让学生通过观察、类比的方法得到定义,从而达到真正理解定义的目的,同判断以下哪些是一元一次方程.(1)x+y=8;(2)3x - 1=7;(3)m=0; (4)2x2 - 5x+1=0;[处理方式]以抢答的形式来完成此题,并让学生找出错误理由.教师应注意对学生给出的答案作出点评和归纳.[设计意图]进一步强化一元一次方程的概念满足的条件,采取抢答的形式,提高学生学习数学的兴趣和积极性.例:x=2是下列方程的解吗?(1)3x+(10-x)=7;(2)2x2+6=7x.1.一元一次方程:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.2.方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.1.在①2x- 1;②2x+1=3x;③|π - 3|=π - 3;④t+1=3中,等式有,方程有.(填序号)解析:一元一次方程必须满足三个条件:(1)未知数的指数是1;(2)是整式方程;(3)含有一个未知数.答案:②③④②④2.方程4x= - 4的解是x=.解析:由题意可知x= - 1.故填- 1.3.根据“x的2倍与5的和比x的小10”,可列方程为.解析:由题意可知2x+5= - 10.故填2x+5= - 10.4.若2x=6与3(x+a)= - 5x有相同的解,那么a - 1=.解析:由2x=6,得x=3,因为2x=6与3(x+a)= - 5x有相同的解,所以把x=3代入3(x+a)= - 5x,解得a= - 8,所以a - 1= - 9.故填- 9.5.若关于x的方程mx m - 2 - m+3=0是一元一次方程,则这个方程的解是.解析:由关于x的方程mx m - 2 - m+3=0是一元一次方程可知m - 2=1,解得m=3,所以把m=3代入mx m - 2 - m+3=0,得3x - 3+3=0,解得x=0.故填x=0.6.小明买了80分与2元的邮票共16枚,花了18元8角,求他买了80分的邮票和2元的邮票各多少枚.(只需列出方程)解:设他买了80分的邮票x枚,则2元的邮票(16 - x)枚,所以方程为0.8x+2(16 - x)=18.8.第1课时1.对实际问题通过列方程的形式表达2.什么是一元一次方程3.什么是方程的解一、教材作业【必做题】教材第132页习题5.1的1题.【选做题】教材第132页习题5.1的2题.二、课后作业本节优化设计。
认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念3、积累活动经验。
二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。
已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
认识一元一次方程导学案

《5.1认识一元一次方程》导学案小主人:班级:班编号:37 本周习惯养成:课型:预习+展示课时:1课时主备人:集备对子大比拼,组间大比拼【学习目标】1、通过观察,归纳一元一次方程的概念;2、知道方程解的概念,会检验一个数是否是某个方程的解;3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。
【学习流程】一、知识链接1、等式:我们以前学过1+2=3 x-6=0 3x+2=5 a+b=b+a 等这样的数学式子,这些数学式子都是用连接,表示关系,我们称这样的式子为等式。
2、代数式:像2a+3b,3x,2x2-5x-1,4+3(x-1),6,a3等式子,它们都是用运算符号把和连接而成的,像这样的式子叫做代数式。
3、方程:含有未知数的叫做方程。
如 2x-1=5,x-y=3,x2-2x-3=0二、知识探究1(一元一次方程的概念)1、如果设小彬的年龄为x岁,那么“乘6再减5”就是,可得到方程。
2、小颖种了一株树苗,开始时树苗高40cm,栽种后每周树苗长高约5cm,大约几周后树苗长高到1m?如果设x周后树苗长高到1m,那么可得到方程。
3、根据第六次全国人口普查统计数据,截止2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国普查相比增长了147.30℅.2000年第五次全国普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国普查时每10万人中约有x人具有大学文化程度, 那么可得到方程。
4、某长方形操场的面积是5850m2,长和宽之差为25m,这个操场的长和宽分别是多少米?如果设这个操场的宽为x米,那么长为(x+25)米,由此可以得方程为。
整理归纳:上述不同的数量关系都能够用方程这个模型表达!议一议(1)由以上的问题你得到了哪些方程?其中哪些是你熟悉的?(2)方程2x-5=21,40+5x=100, x(1+147.30℅) =8930有什么共同点?归纳总结:在一个方程中,只含有一个,且未知数的都是1,这样的整式方程叫做一元一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1认识一元一次方程导学案
油田中学:罗秋波
学习目标:
1、理解“方程”、“一元一次方程”及“方程的解”的概念。
2、会分析实际问题,找准等量关系,列一元一次方程。
.
学习重点:一元一次方程的概念
学习难点:会分析实际问题,找准等量关系,列一元一次方程
自主学习:
知识点一:方程的概念:
“2x-5=21”这个等式中含有未知数。
像这样叫做方程。
判断方程的条件:
①②
练习:选一选:判断下列各式是不是方程,是的打“√不是的打“x”
(1)-2+5=3 ( ) (2)3x-1=7 ( )
(3)m=0 ( ) (4)x﹥3 ( )
(5)x+y=8 ( ) (6) 2a +b ( )
(7)2x2+5x-1=0 ( )
知识点二:一元一次方程
1、试一试:思考下列情境中的问题,列出方程。
1)小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到100厘米?
如果设x周后树苗升高到100厘米,那么可以得到程:。
2)甲乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每时行走多少千米?
设张叔叔原计划每时行走 x km,可以得到方程:。
3)根据第五次全国人口普查统计数据:
截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查
时每10万人中约有多少人具有大学文化程度?
如果设 2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,
那么可以得到方程:。
4)某长方形操场的面积是5850 m2,长和宽之差为25m,这个操场的长和宽分别是多
少米?
如果设这个操场的宽为xm,那么长为(x+25)m。
由此可得到方程::、小组合组:议一议
1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?
2)方程2x-5=21,40+15x=10,x+147.30%x=8930或x(1+147.30%)=8930有什么
共同特点?
判断一元一次方程的条件:
①②
③
知识点三:方程的解:
使方程左右两边的相等的未知数的值
巩固练习
下列式子中,哪些是方程?哪些是一元一次方程?
(1) 315; (2)1y2; (3) 2a3b;(4) 34-5
23-1
(5) 10 ; (6)25; (7) 42;
2
(8) y30;(9)9-y2
x x
x
x x
x
y x
+=+=+=
+>+=+=
+==
当堂检测
一、填空题
1、在下列方程中:①2χ+1=3; ②y 2
-2y+1=0; ③2a+b=3; ④2-6y=1;⑤2χ2
+5=6;属于一元一次方程有 。
2、方程3x
m-2
+ 5=0是一元一次方程,则代数式 4m-5= 。
3、方程(a+6)x 2
+3x-8=7是关于x 的一元一次方程,则a= 。
4、根据条件列方程。
1)某数χ的相反数比它的3
4
大1。
2)某数a 的4倍等于某数的3倍与7的差.
3)把某数y 增加20%后比这数的80%大5.
拓展延伸
1,如果
5 m x =8是一元一次方程,那么m =
2,某数的2倍减去3的差等于6,若设此数为x ,则可列出方程:
3,从 正方形的铁皮上,截取宽为2的一个长方形,余下的面积是80平方厘米,那么原来的正方形铁皮的边长是多少?
若设正方形铁皮的边长为x ,则可列出方程 :
4,根据题意,列出方程:
(1)A 种饮料比B 种饮料便宜1元,小珊买了2瓶A 种饮料和3瓶B 种饮料共花13元,若设A 种饮料单价为m 元,求A 饮料的单价是多少元?
(2) 某商店一套夏装的进价为200元,按标价的八折销售,可获利72元,则该服装的标价为多少元?
(3)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题。
其中一个问题翻译过来是:“啊哈,它的全部,它的七分之一 ,其和等于19。
” 你能求出问题中的“它”吗?
总结反馈
1.像 2x -5 = 21这样含有未知数的等式叫方程 。
2.在一个方程中,只含有一个未知数x(元),并且未知数的指 数是1(次),这样的方程叫做一元一次方程
3.使方程左右两边的相等的未知数的值;方程的解。