网络冗余
网络设备冗余部署的常见问题和解决方案(九)

网络设备冗余部署的常见问题和解决方案在当今数字化时代,网络已经成为了人们沟通和信息交流的重要工具。
无论是家庭网络还是企业网络,都需要依赖网络设备来实现稳定的网络连接。
然而,网络设备也存在一些常见问题,特别是在冗余部署方面。
本文将探讨网络设备冗余部署的常见问题,并提出相应的解决方案。
首先,一个常见的问题是设备过度冗余。
有些企业会过分依赖冗余设备,以应对网络故障的情况。
然而,过度冗余可能会造成无谓的浪费和复杂性增加,从而增加了其他问题的风险。
解决这个问题的方法是合理评估冗余需求,不需要过度冗余,并通过提供备用设备而不是完全备份的方式来实现冗余。
其次,设备配置不一致也是一个常见的问题。
在网络设备冗余部署过程中,设备的配置应该一致,以确保冗余设备可以无缝切换并维持网络稳定性。
然而,由于人为疏忽或管理混乱,设备配置不一致可能会导致冗余设备无法顺利接管网络功能。
为了解决这个问题,一种解决方案是使用自动化配置管理工具,确保设备配置的一致性,避免配置不一致问题的发生。
另一个问题是冗余设备的未及时更新。
网络设备通常会有固件更新和软件更新,这些更新可能包含新的功能和修复已知的漏洞。
然而,由于人为疏忽或管理流程不完善,冗余设备可能会长时间未进行更新,导致设备的性能下降和安全风险增加。
解决这个问题的方法是建立一个定期的设备更新计划,并确保所有冗余设备都按时进行更新,以保持网络设备的良好状态。
此外,监控和警报系统的缺失也是一个常见的问题。
网络设备冗余部署首先需要实时监控网络设备的状态和性能,以及及时发出警报,以防止网络故障的发生。
然而,有些网络设备可能缺乏监控和警报功能,或者监控系统不完善,无法及时检测设备故障并采取相应的措施。
为了解决这个问题,建议使用一套完善的监控和警报系统,对网络设备进行实时监控,并设置相应的警报规则,及时发现和处理设备故障。
最后,数据同步和一致性也是网络设备冗余部署中需要关注的问题。
在冗余部署的网络中,数据的同步和一致性对于保持网络的稳定性和可靠性至关重要。
网络冗余与容错的重要性

网络冗余与容错的重要性在科技的世界里,网络冗余与容错就像一位拥有神奇魔法的巫师,它以超乎寻常的力量,保证了我们的网络稳定和安全。
当我们谈论网络冗余与容错时,我们仿佛在探索一个充满奇迹的新世界,每一个数据都拥有了无限的可能和潜力。
网络冗余与容错技术就像一把神秘的钥匙,打开了网络稳定和安全的新大门,让我们的生活变得更加便捷和智能。
首先,网络冗余与容错的核心特点就是备份和恢复。
想象一下,在一个庞大的舞台上,无数的演员都在表演,而网络冗余与容错就像一位导演,能够实时地掌握舞台的情况,迅速地做出决策。
在网络冗余与容错的世界里,数据和信息的传输路径得到了有效的规划和管理,就像一条条清晰的道路,让我们的通信更加顺畅和高效。
同时,网络冗余与容错技术利用备份和恢复机制,确保了数据和信息的完整性和可用性,就像一位忠诚的守卫,时刻守护着我们的宝藏。
其次,网络冗余与容错的另一个重要特点就是自我修复和自适应。
在网络冗余与容错的世界里,网络系统能够自动检测和修复故障,就像一个智能的管家,能够根据主人的需求自动调整家庭设备。
网络冗余与容错技术让我们的网络系统拥有了更高的自修复和自适应能力,能够适应不断变化的需求和挑战。
然而,网络冗余与容错的应用并非一片光明。
首先,网络冗余与容错的实施和维护成本成为一个巨大的挑战。
在网络冗余与容错的世界里,虽然我们可以享受到备份和恢复的优势,但随之而来的是高昂的实施和维护成本。
当我们试图在网络系统中广泛应用网络冗余与容错技术时,成本效益成为了不可避免的问题。
这就像是一座高山,无论我们如何努力攀登,都无法轻易到达顶峰。
此外,网络冗余与容错的技术和标准也是一个不容忽视的问题。
在网络冗余与容错的世界里,存在多种不同的技术和标准,如多路径路由、冗余交换机等,每种技术和标准都有其独特的特性和应用场景。
我们需要深入了解各种技术和标准的特点和优势,才能在实际应用中做出明智的选择。
那么,我们应该如何应对网络冗余与容错的挑战呢?首先,我们需要加强对网络冗余与容错技术的研究和开发,寻找更有效的实施和维护方法。
网络冗余 双链路方案

引言随着现代企业对网络连接的需求日益增长,网络冗余成为了确保网络稳定性和可靠性的重要措施之一。
网络冗余是指在网络架构中使用多条路径或多个设备作为备份,以确保在主路径或主设备发生故障时,网络连接的持续性和可用性。
本文将介绍一种常见的网络冗余方案——双链路方案。
双链路方案的原理双链路方案是指在企业网络中使用两条独立的物理链路,将其连接到不同的网络设备上,以实现冗余和负载均衡。
这样,在主链路发生故障时,备用链路可以自动接管。
双链路方案的原理基于以下几个关键概念:1.冗余路径:双链路方案通过提供冗余路径,即在主链路故障时,备用链路可以继续提供网络连接。
这大大提高了网络的可用性和可靠性。
2.负载均衡:双链路方案还可以实现负载均衡,即在主链路正常运行时,可以根据负载情况将流量分散到备用链路上,从而最大化利用网络资源,提高网络性能。
3.自动切换:双链路方案通常具备自动切换功能,即在主链路故障后,备用链路可以自动接管网络流量,无需人工干预。
这样可以大大减少故障发生时的停机时间,提高业务连续性。
双链路方案的实施步骤步骤一:选择合适的网络设备和链路在实施双链路方案前,首先需要选择合适的网络设备和链路。
网络设备应具备冗余和负载均衡功能,并且能够支持多路径转发。
选择的链路应具备良好的线路质量和稳定性。
最好选择不同的网络运营商提供的链路,以减少单点故障的风险。
步骤二:进行网络拓扑规划根据实际需求和网络拓扑结构,进行网络拓扑规划。
确定主链路和备用链路的连接方式和路径,保证其物理分隔度和逻辑分隔度,从而提高网络冗余性。
步骤三:配置网络设备根据网络拓扑规划,对网络设备进行配置。
主要包括以下几个方面:•配置主链路和备用链路的接口•配置链路的IP地址和子网掩码•配置链路的路由协议•配置冗余和负载均衡功能步骤四:测试和验证在完成网络设备的配置后,进行测试和验证。
主要包括以下几个方面:•模拟主链路故障,验证备用链路的自动切换功能是否正常工作•测试网络的冗余性和负载均衡性,验证网络连接是否稳定和可靠•测试网络性能,评估双链路方案的效果是否满足实际需求步骤五:监控和维护实施双链路方案后,需要进行持续的监控和维护。
局域网组建的网络容错和冗余配置

局域网组建的网络容错和冗余配置现代社会中,计算机网络的重要性不言而喻。
无论是企业、学校还是家庭,都离不开一个稳定、安全的局域网。
然而,网络故障或中断可能导致数据丢失、业务中断等问题,因此,局域网的网络容错和冗余配置显得尤为重要。
本文将探讨局域网组建中的网络容错和冗余配置,以确保网络运行的稳定性和可靠性。
一、网络容错技术概述网络容错是指在网络设备或连接出现故障时,能够自动检测并转移数据流量,从而在不影响业务的前提下保证网络的可靠运行。
常见的网络容错技术包括冗余设备、链路故障切换和负载均衡等。
1. 冗余设备冗余设备是指在一个网络节点出现故障时,能够自动切换到备用设备,以保证网络的正常运行。
例如,通过配置冗余路由器和交换机,当主设备损坏时,备用设备能够立即接管主设备的功能,从而避免网络中断。
2. 链路故障切换链路故障切换是指当一个网络链路出现故障时,能够自动转移数据流量到备用链路,以确保网络的可用性。
通过配置链路故障检测机制和备用链路,可以在主链路故障时快速切换到备用链路,避免数据丢失和业务中断。
3. 负载均衡负载均衡是指将网络流量均匀分配到多个网络设备上,以避免某个设备负载过重而导致性能下降或故障。
通过配置负载均衡算法,可以根据网络设备的负载情况智能地将流量分担到各个设备上,提高网络的可用性和性能。
二、网络容错和冗余的部署实践在局域网组建过程中,如何合理地配置网络容错和冗余设备,以达到最佳的网络可用性是关键。
下面将介绍一些常见的网络容错和冗余配置实践。
1. 设备冗余部署在局域网中,可以通过配置双机热备、主备模式等方式来实现设备的冗余部署。
双机热备是指在局域网中设置两台主机,一台作为主机提供服务,一台作为备机,当主机故障时,备机会自动接管主机的功能。
主备模式则是在局域网中设置一台主设备和一台备设备,当主设备故障时,备设备会自动切换为主设备。
通过这种方式,可以保证在设备故障时网络的正常运行。
2. 多链路冗余备份在局域网中,可以通过配置多个链路和链路故障检测机制来实现链路的冗余备份。
配置网络冗余确保网络的高可用性和容错性

配置网络冗余确保网络的高可用性和容错性在当今数字化时代,网络已成为人们生活和工作中不可或缺的一部分。
无论是个人用户还是企事业单位,对网络的高可用性和容错性要求越来越高。
为了确保网络的稳定运行,配置网络冗余成为一项重要的技术手段。
本文将探讨如何配置网络冗余,以实现网络的高可用性和容错性。
一、冗余网络拓扑冗余网络拓扑是配置网络冗余的基础。
常见的冗余拓扑包括星型、环形、以及树型拓扑。
其中,树型拓扑是最常用的一种。
树型拓扑是通过交换机和路由器之间的连接建立起来的。
在树型拓扑中,交换机和路由器通过冗余路径相互连接,即使其中某个节点发生故障,数据仍然能够正常传输。
此外,树型拓扑还可以根据网络规模的不同进行扩展,从而满足网络的需求。
二、物理链路冗余物理链路冗余是配置网络冗余的一种常见方式。
它通过增加冗余物理链路来保障网络的高可用性和容错性。
在物理链路冗余中,可以使用两种具体的实现方式:链路聚合和链路备份。
链路聚合是将多个物理链路绑定成一个逻辑链路的技术。
通过链路聚合,可以提高整个链路的容量和可靠性。
当其中某个物理链路发生故障时,数据会自动切换到其他正常的链路上,保证数据的传输不受影响。
链路备份是通过配置备用链路来实现冗余。
当主要链路故障时,备用链路会自动接管数据的传输。
链路备份方式通常使用虚拟路由冗余协议(VRRP)或热备份路由协议(HSRP)等技术来实现,确保数据的连续传输。
三、设备冗余设备冗余是配置网络冗余的另一种常见方式。
它通过增加冗余设备来保障网络的高可用性和容错性。
在设备冗余中,可以使用两种具体的实现方式:主备设备和设备集群。
主备设备是指将主设备和备用设备配置在一起,主设备负责正常的数据传输,备用设备处于待命状态。
当主设备发生故障时,备用设备会自动接管数据的传输。
主备设备方式通常使用虚拟IP或心跳检测等技术来实现。
设备集群则是通过配置多个设备组成一个集群,共同处理网络请求。
在设备集群中,各个设备之间共享负载,并且实时监控其它设备的状态。
18企业网络冗余设计与部署

18企业网络冗余设计与部署
一、企业网络冗余设计理念
1、建立健壮的网络基础设施,应用冗余设计的原则,保证网络的稳定、可靠性和安全性。
2、将网络组件拆分、冗余化,提高单点失效冗余,实现支持热备份、容错功能,改善服务可靠性,确保服务质量和可用性。
3、采用安全性很高的连接技术、监控技术,很好地保护网络数据,
防止意外、恶意干扰等安全性威胁对企业网络的影响。
二、企业网络冗余设计部署
1、冗余的网络设计如下:
(1)将网络组件冗余:将企业网络组件拆分到不同的子网中,实现路
由功能,避免出现单点故障,保证数据能够安全、及时地在不同网络之间
传输。
(2)设计高可靠的拓扑架构:将网络组件冗余到不同的子网中,采用
环型拓扑架构,保证网络的可靠性。
(3)采用安全的连接技术:使用VLAN或VPN技术,网络可以有效保护,实现内部网络之间的安全隔离;
(4)提高网络可用性:采用冗余机制,能够快速恢复网络连接性,在
网络失效的情况下,短暂暂停业务不受影响,保证服务质量和可用性。
2、冗余体系设计部署详述:
(1)设置冗余系统:包括路由器、服务器、存储、安全设备及接入设备等。
网络设备冗余部署的常见问题和解决方案(三)

网络设备冗余部署的常见问题和解决方案一、简介随着互联网的迅猛发展,网络设备的冗余部署变得越来越重要。
网络冗余方案可以确保网络的高可用性,并减少网络中断的可能性。
然而,网络冗余部署也面临许多常见的问题。
本文将讨论这些问题,并提供一些解决方案。
二、设备故障网络设备故障是导致网络中断的常见问题之一。
当一个设备发生故障时,如果没有冗余设备替代,网络服务将停止。
为了解决这个问题,可以将备用设备配置为主设备的冗余,即使用热备份技术。
这意味着备用设备会自动接管主设备的功能,确保网络服务的连续性。
三、电源故障电源故障是另一个常见的导致网络中断的问题。
如果网络设备的电源失效,网络服务将无法正常运行。
为了解决这个问题,可以使用冗余电源模块。
冗余电源模块可以在主电源故障时自动切换到备用电源,从而确保网络设备的稳定性和可靠性。
四、网络链路故障网络链路故障是导致网络中断的另一个重要问题。
如果一条链路出现故障,数据无法正常传输,导致网络服务的中断。
为了解决这个问题,可以使用链路聚合技术。
链路聚合技术可以将多条链路组合成一个逻辑链路,从而提高带宽和可靠性。
当一条链路发生故障时,其他链路可以自动接管数据传输,确保网络的连续性。
五、数据冗余数据冗余是网络冗余部署的关键方面之一。
在传输数据时,如果丢失或损坏,网络服务将受到影响。
为了解决这个问题,可以使用数据冗余技术,如RAID(磁盘阵列冗余)技术。
RAID技术可以将数据存储在多个硬盘上,当一个硬盘发生故障时,数据仍然可靠。
这样可以确保数据的可用性和完整性。
六、监控和管理网络冗余部署需要有效的监控和管理。
如果无法及时发现问题,网络中断的影响将会扩大。
为了解决这个问题,可以使用网络监控和管理工具。
这些工具可以实时监测网络设备的状态,并及时发出警报,以便及时采取措施。
七、定期维护和更新网络冗余部署并不意味着一劳永逸。
为了确保网络的高可用性,定期维护和更新是必不可少的。
例如,对设备进行软件更新、硬件维护和性能优化等。
冗余网络配置实验报告

冗余网络配置实验报告冗余网络配置实验是网络工程中一种重要的设计和实施手段,旨在提高网络的可靠性和稳定性。
本文将从网络冗余的原理、冗余网络的常见形式、实验过程和结果分析等方面进行详细论述。
一、冗余网络的原理冗余网络是通过在网络中增加冗余路径,以提高网络的可靠性和稳定性。
冗余路径即备用路径,当主路径出现故障时,备用路径能够接替主路径的功能,保证网络的连通性。
冗余网络的基本原理是采用备份路径,将网络流量在不同的路径上进行传输,提高了网络的容错能力,减少网络发生故障时网络中断的可能性。
二、冗余网络的常见形式冗余网络可以采用多种形式来实现,常见的几种形式包括:主备式、主主式、冗余链式和冗余环状式。
1. 主备式:主备式是指在网络中设置主路径和备用路径,当主路径发生故障时,备用路径可以接替主路径的功能。
主备式可以简单实现,但是备用路径的利用率较低,效率较低。
2. 主主式:主主式是指设置多个主路径,当其中一个主路径发生故障时,其他主路径可以继续工作。
主主式可以提高网络的可用性,但是配置和管理复杂度较高。
3. 冗余链式:冗余链式是指设置多个路径形成链式结构,当其中一条路径故障时,链式结构中的其他路径可以继续进行数据传输。
冗余链式相对简单,但是链式中的每条路径都是关键路径,一旦出现故障会导致整个链式中断。
4. 冗余环状式:冗余环状式是指设置多个路径形成环状结构,当环状结构中的一条路径故障时,其他路径可以绕过故障路径继续进行数据传输。
冗余环状式相对复杂,但是具有良好的容错能力和高利用率。
三、冗余网络的实验过程本次实验的目的是验证冗余网络对网络可靠性和稳定性的提升效果,实验过程如下:1. 实验准备:准备实验所需要的网络设备和材料,并确保设备的正常运行状态。
2. 实验拓扑设计:根据实验要求,设计适合的网络拓扑结构。
可以选择主备式、主主式、冗余链式或冗余环状式等形式。
3. 网络配置:根据拓扑结构,配置网络设备的相关参数和路径设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图所示:
(3)术语分析: A、BPDU:所有交换机为实现STP协议相互之间交换的信息,通过其决定 BPDU:所有交换机为实现STP协议相互之间交换的信息,通过其决定 STP生成树协议的各种元素。 STP生成树协议的各种元素。 B、根桥:是桥ID最低的网桥,根桥是网络的核心,是生成树拓扑的树 、根桥:是桥ID最低的网桥,根桥是网络的核心,是生成树拓扑的树 直接决定其他设备及接口的状态。 根,
任务1:使用STP实现环型交换网络冗余 任务1:使用STP实现环型交换网络冗余 1、二层冗余分析
(1)二层冗余的作用
a、冗余拓扑的出现避免了网络单点故障 b、所有的网络需要冗余来提高可靠性 c、在冗余的基础上实现的负载均衡可以提高网络的使用率
(2)二层冗余的消极意义
a、冗余增加了可靠性,但是同时将物理环路带入网络
(4)配置端口优先级 (4)配置端口优先级 Switch(config-if)#spanningSwitch(config-if)#spanning-tree mst 实例号 port-priority 优先值 port接口优先值的设定仅对接收方有效(如果想让某端口改变状态,需在其对应 接口优先值的设定仅对接收方有效(如果想让某端口改变状态,需在其对应 的上联接口配置优先级),优先级范围从0 240,16的 的上联接口配置优先级),优先级范围从0-240,16的K倍,数值越小优先级 越高,确省128, 越高,确省128, (5)MST多实例配置 (5)MST多实例配置 类似于在交换机上产生多个实例(多棵生成树),每个生成树对应性质相 同的一类VLAN,各实例相互独立,然后可以对各个实例进行配置,实现不同 同的一类VLAN,各实例相互独立,然后可以对各个实例进行配置,实现不同 的目的要求, 在执行完成(1 在执行完成(1)的配置之后 Switch(config)#spanningSwitch(config)#spanning-tree mst configuration 进入mst模式 进入mst模式 Switch(configSwitch(config-mst)#revision 区域号 默认为0,各交换机的某些实例必须在同一区域才能生效 默认为0,各交换机的某些实例必须在同一区域才能生效 Switch(configSwitch(config-mst)#instance 实例号 vlan vlan号 vlan号 实例号从0 15,0为确省存在的实例, 实例号从0-15,0为确省存在的实例, Vlan号的格式为: 1Vlan号的格式为: 1-65, 72, 300 -200, 200, 各实例的确省状态同实例0,由于各实例相互独立所以可以使用(2)、(3)、 各实例的确省状态同实例0,由于各实例相互独立所以可以使用(2)、(3)、 (4)步骤的配置改变根桥ID和交换机接口状态, (4)步骤的配置改变根桥ID和交换机接口状态, 多个性质相同的一类VLAN指在各VLAN中所需设定的根桥,阻塞端口等性 多个性质相同的一类VLAN指在各VLAN中所需设定的根桥,阻塞端口等性 质一样的VLAN,和其他VLAN可以经不同的连路进行转发,实现负载均衡的目 质一样的VLAN,和其他VLAN可以经不同的连路进行转发,实现负载均衡的目 的。
确定方法:桥ID最低的网桥是根桥, 它由网桥的优先级和网桥的MAC地 确定方法:桥ID最低的网桥是根桥, 它由网桥的优先级和网桥的MAC地 址组合共同决定, 网桥的优先级默认值为32768,设定值为0~65535,在 网桥的优先级默认值为32768,设定值为0~65535,在 比较根桥时首先比较各根桥的优先级,优先级最小的设定为根桥,如果优先级 一致比较各网桥MAC地址最小的选举为根桥。可通过人为改变设定根桥。根 一致比较各网桥MAC地址最小的选举为根桥。可通过人为改变设定根桥。根 桥的所有接口都为指定接口,接口状态一直为转发状态
2、生成树协议(STP) 、生成树协议(STP)
(1)定义:生成树是一个交换网络中通过STA算法自动消除冗余 )定义:生成树是一个交换网络中通过STA算法自动消除冗余 环状链路以防止出现二层循环的一个协议。网桥之间相互交换BPDU 环状链路以防止出现二层循环的一个协议。网桥之间相互交换BPDU 信息,以监测出网络中的环路,然后通过关闭所选择的网桥接口来 删除这些环路。STP最初是一个较慢的基于软件实现的一个桥接规 删除这些环路。STP最初是一个较慢的基于软件实现的一个桥接规 范(IEEE802.1D),现在已经是一个相当成熟的协议了,可以在一 (IEEE802.1D),现在已经是一个相当成熟的协议了,可以在一 个具有多VLAN、大量交换机、多厂商的复杂环境中很好的实施。 个具有多VLAN、大量交换机、多厂商的复杂环境中很好的实施。 (2)实现流程:STP协议通过广播BPDU数据包,决定一个桥ID )实现流程:STP协议通过广播BPDU数据包,决定一个桥ID 最低的交换机做为根桥,然后再设定各非根桥交换机的根端口、指 定端口、非指定端口等等,最后在非指定接口将该接口阻塞,最终 形成逻辑树形结构的网络拓扑
项目八 网络冗余
任务1:使用STP组建环状交换网络 任务1:使用STP组建环状交换网络 任务2:使用HSRP&VRRP实现冗余网关 任务2:使用HSRP&VRRP实现冗余网关 任务3 任务3:使用动态路由实现环状路由网络 任务4:使用浮动静态路由& 任务4:使用浮动静态路由&接口备份实现线路冗余
项目:组建如下高可靠性网络(全国网络技能大赛真题)
C、非根桥:除了根桥外所有的交换机都是非根桥,非根桥交换机根据BPDU信 、非根桥:除了根桥外所有的交换机都是非根桥,非根桥交换机根据BPDU信
息设定各接口的类型及状态,以防止逻辑环路并对链路实效时进行补救。 D、根端口:非根交换机上直接连接根桥的端口,或者到根桥距离最近的端口, 、根端口:非根交换机上直接连接根桥的端口,或者到根桥距离最近的端口, 每个非根交换机只有一个根端口,同一网段上和根端口相连的端口为指定 端口,按下列确定方法遍历确定根端口方法(从上向下依次进行): 端口,按下列确定方法遍历确定根端口方法(从上向下依次进行): a、和根桥交换机直接相连的端口, b、到达根桥的路径开销最小(端口开销累加和) c、连接最低发送方网桥ID的端口 、连接最低发送方网桥ID的端口 d、连接发送方最低端口优先级的端口 、连接发送方最低端口优先级的端口 (缺省端口优先级为128,由上行线路确定) (缺省端口优先级为128,由上行线路确定) e、最低端口编号的端口 、最低端口编号的端口 E、指定端口:交换机上除根端口之外的活跃端口,处于转发状态,指定端口 的确定方法可参考根端口,指定端口具有如下特征。 a、根交换机的所有端口都为指定端口, b、和根端口直接相连的端口为指定端口, c、 每一网段只有一个指定端口, F、非指定端口:其开销比指定端口高的端口就是非指定端口,该端口将被设 置为阻塞状态,不可转发数据。 G、端口开销:为从根交换机到达该接口所有线路开销的总和, 、端口开销:为从根交换机到达该接口所有线路开销的总和, PVST或STP缺省线路开销值: 10M链路为 PVST或STP缺省线路开销值: 10M链路为 100; 100M链路为19; 100M链路为19; 1 G链路为4; G链路为4; 10G链路为2 10G链路为2 Mst中 10M链路为 2000000, 100M的链路为 Mst中 10M链路为 2000000, 100M的链路为 200000 ,
b、交换机对不知道地址的帧进行泛洪,对广播和组播也进行泛洪。 c、冗余交换拓扑引起MAC地址表不稳定的问题 、冗余交换拓扑引起MAC扑,同时保留物理环存在,无环路拓扑称为树状 拓扑,并且是可扩展的树状拓扑,创建无环路拓扑的算法称为生成树算 法,通过生成树算法即可实现逻辑无环的拓扑结构
4、案例分析
(1)两台交换机的双线路冗余
(2)三台交换机的冗余连接
(3)四台交换机的冗余连接
5、MST生成树的配置(神州数码配置) MST生成树的配置(神州数码配置)
(1)启用MST )启用MST Switch(config)#spanningSwitch(config)#spanning-tree mode mst 在神码下需要先运行spanning-tree命令 在神码下需要先运行spanning-tree命令 对于不考虑不同VLAN的多个实例情况只需上述命令即可,根桥的选择及阻 对于不考虑不同VLAN的多个实例情况只需上述命令即可,根桥的选择及阻 塞端口的决定都有各交换机互相协商完成。但可以根据STP规则手动改变各 塞端口的决定都有各交换机互相协商完成。但可以根据STP规则手动改变各 交换机的状态 (2)设定交换机mst实例的桥ID )设定交换机mst实例的桥ID Switch(config)#spanningSwitch(config)#spanning-tree mst 实例号 primary 数值 实例号0代表确省实例,一般对应VLAN 1,可以表示整个交换机的STP树; 实例号0代表确省实例,一般对应VLAN 1,可以表示整个交换机的STP树; 数值为0 61440(需为4096的 倍),确省为32768,数值0 数值为0—61440(需为4096的K倍),确省为32768,数值0代表永远为根桥 (3)配置端口开销 (3)配置端口开销 进入接口模式 Switch(config-if)#spanningSwitch(config-if)#spanning-tree mst 实例号 cost 开销值 开销值范围从1 200000000,数值越小优先级越高,通过该命令可以改变 开销值范围从1-200000000,数值越小优先级越高,通过该命令可以改变 交换机接口的状态(不可改变根桥),由于对不同的实例(对应VLAN)进行 交换机接口的状态(不可改变根桥),由于对不同的实例(对应VLAN)进行 操作,所以可以实现同一个接口在不同的VLAN中的状态不同,以此实现负 操作,所以可以实现同一个接口在不同的VLAN中的状态不同,以此实现负 载均衡
(4)接口状态 A、阻塞状态(black):端口仅能接收BPDU,需要20秒改变这种状态。 阻塞状态(black):端口仅能接收BPDU,需要20秒改变这种状态。