一元一次不等式及其解法导学案

合集下载

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例
4.关注学生个体差异,实施个性化指导
在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。

《一元一次不等式组的解法 》 教案精品 2022年数学

《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。

一元一次不等式全章导学案

一元一次不等式全章导学案

鸡西市第十九中学学案要求:任意的有理数,在“”上填“>”、“<”或“=”号;(3)在实验中注意观察不等号方向.....的变化,并总结自己的发现。

5>35>35>35>3我们发现:不等式两边同一个数(无论正负),不等号方向5>35>35>35>3我们发现:不等式两边乘以或除以同一个数,不等号方向但是:不等式两边乘以或除以同一个数,不等号方向鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案-2x+3 >-3x+1 2x > 1 –≤ 1 2x > -1 3152x x->+;2x-19<7x+31.5343y y+>+;25453x x x-+<-;鸡西市第十九中学学案班级姓名:《解一元一次不等式》专题班级 姓名在数轴上表示为:我未曾见过一个早起勤奋谨慎诚实的人抱怨命运不好。

解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5.31222+≥+x x 6. 223125+<-+x x7. 5223-<+x x 8. 234->-x9. )1(281)2(3--≥-+y y 10. 1213<--m m11. 31222-≥+x x 12. )2(3)]2(2[3-->--x x x x 13. 41128)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x15.22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x(1) 41328)1(3--<++x x 20. 215329323+≤---x x x21. 1215312≤+--x x 22. 31222-≥+x x23. 22416->--x x 24. x x x 232416-≤--25.31221+≥+x x 26. 223123+<-+x x27. 5213-<+x x 28.234->-x29. )1(251)2(3--≥-+y y 30.1223<--m m鸡西市第十九中学学案一元一次不等式组解集的规律:练习.利用数轴表示下列不等式13x -<⎧13x ->⎧210x ->⎧313x -->⎧314,x ->⎧21,x x >-⎧⎧+>+321x x 512,x x ->+⎧⎪⎧≥--4)2(3x x 《解一元一次不等式组》专题班级 姓名打击与挫败是成功的踏脚石,而不是绊脚石。

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。

本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。

通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。

但他们对一元一次不等式的定义、解法和应用还不够了解。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。

三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。

2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。

2.难点:一元一次不等式的解法。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。

六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。

2.准备PPT,用于呈现知识点和示例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。

例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。

2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。

讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。

讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。

同时,展示一些实例,让学生理解一元一次不等式的应用。

不等式导学案1

不等式导学案1

第二章一元一次不等式和一元一次不等式组§2.1 不等关系一、学习目标1. 感受生活中存在着大量的不等关系,了解不等式的意义;2. 理解实数范围内代数式的不等关系,能够根据具体的事例列出不等关系式;3.初步体会不等式是研究量与量之间关系的重要模型之一,训练分析判断能力和逻辑推理能力.二、学习重点根据具体的事例列出不等关系式.三、学习过程【课前预习自主学习】3、用不等式表示:(1)x的一半与5的差小于1;(2)x与6的和大于9;(3)8与y的2倍的和是正数;(4)x与8的差不大于0.【合作探究课堂导学】一般地,式子叫做不等式.【例1】用不等式表示:(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;【互助释疑精讲点拨】【例2】如图:用两根长度均为Lcm的绳子,各围成正方形和圆.(1)如果要使正方形的面积不大于25㎝²,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝²,那么绳长L应满足怎样的关系式?(4)由(3)你能发现什么?改变L 的取值再试一试.在上面的问题中,所围谓成的正方形的面积可以表示为(L /4)²,圆的面积可以表示为π(L /2π)² .(1)要是正方形的面积不大于25㎝²,就是 (L /4)²≤25, 即 L ²/16≤25. (2)要使原的面积大于100㎝²,就是 π(L /2π)²>100, 即 L ²/4π>100.(3)当L =8时,正方形的面积为8²/16=6,圆的面积为8²/4π≈5.1,4<5.1 此时圆的面积大. 当L =12时,正方形的面积为12²/16=9,圆的面积为12²/4π≈11.5,9<11.5 此时还是圆的面积大. (4)由(3)可以发现,无论绳长L 取何值,圆的面积总大于正方形的面积,即 L ²/4π>L ²/16. 观察由上述问题得到的关系式,它们有什么共同特点?162l ≤25 π42l >100 π42l >162l 3x+5>240,这些关系式都是用不等号连接的式子.由此可知:结论:用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式. 【巩固练习 达标测评】1. 下列式子中,是不等式的有① x+y, ② 3x ﹥7, ③ 2x+3=5, ④ -2>0, ⑤ x≠3,⑥ x+3≤y+1, ⑦ x 2+ xy -2y ≥52.“x 与4的和的2倍不大于x 的二分之一与3的差”用不等式表示为( )A.321)4(2-<+x x B.32124-≤⨯+x x C.321)4(2-≤+x x D.)3(21)4(2-≤+x x 3.下列各数:0.5,0,-1,π,1.5,2,其中使不等式x +1>2成立的是( )A. 0.5,0,-1B. 0,-1,πC. -1,π,1.5D. π,1.5,2 4.根据下列数量关系列不等式:(1)a 是正数; (2)a 的绝对值是非负数; (3)x 的3倍与1的差大5; (4)x 的一半不小于3; (5)x 的31与x 的2倍的和是非负数; (6)a 与b 两数和的平方不超过3; (7)a 的4倍大于a 的3倍与7的差; (8)x 的3倍与8的和比x 的5倍大 ; (9)a 的3倍与b 的和不大于0;(10)直角三角形斜边c 比它的两直角边a ,b 都长. 【学后反思】知识: 方法: 【拓展延伸】a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:(1)a______b; (2)|a|______|b|; (3)a+b_________0;(4)a -b_______0; (5)a+b_______a -b; (6)ab______a.§2.2 不等关系式的基本性质一、学习目标1.探索并掌握不等式的基本性质; 2. 理解不等式与等式性质的联系与区别. 二、学习重点归纳并运用不等式的基本性质. 三、学习过程【课前预习 自主学习】1.阅读教材:我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变. 如: ∵3<5 ∴3+2<5+2 ; 3-2<5-2;2.回答问题:如果在不等式的两边都加上或都减去同一个数或整式,那么结果会怎样? 如: 3+a <5+a ; 3-a <5-a 是否成立?3.完成填空: 2<3, 2×5 3×5;2<3, 212⨯ 213⨯;2<3, 2×(-1) 3×(-1); 2<3, 2×(-5) 3×(-5); 2<3, 2×(21-) 3×(21-).4. 不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向 ; 不等式的基本性质2: 在不等式的两边同乘以(或除以)一个正数时,不等号的方向 ; 不等式的基本性质3: 在不等式的两边同乘以(或除以)一个负数时,不等号的方向 .【互助释疑 精讲点拨】(1)若a >b ,则2a+1 2b+1; (2)若y 45-<10,则y -8; (3)若a <b ,且c >0,则ac+c bc+c ; (4)若a >0,b <0, c <0,(a-b )c 0. 【例2】将下列不等式化成“a x >”或“a x <”的形式:(1)15->-x (2)32>-x【例3】由(m-1)x>m-1得到x<1,则m 的取值范围是 .【巩固练习 达标测评】1.(1)用“>”号或“<”号填空,并简说理由.① 6+2 -3+2; ② 6×(-2) -3×(-2); ③ 6÷2 -3÷2; ④ 6÷(-2) -3÷(-2) (2)如果a >b ,则① b a + c b + ② b a - c b - ③ ac c bc (>0) ④c a cb(c <0) 2.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3; (2)6x <5x -1; (3)-4x >3.3.判断正误. 若a >b .则(1)a -3<b -3; ( ) (2)2a >2b; ( ) (3)-4a >-4b ;( ) (4)5a <5b ;( ) (5)ac>bc ;( ) (6) a 2c >b 2c ;( ) (7)2a > 2b ;( ) (8)2c a >2c b;( ) (9) 3-a>3-b .( ) 【学后反思】知识: 方法: 【拓展延伸】 1.判断正误(1)若x-y>x ,则y>0( ) (2) 若a 2c >b 2c ,则a >b ( ) 2. 如果10<<x ,则下列不等式成立的( ) A 、 x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<213. a 是任意有理数,试比较5a 与3a 的大小.§2.3 不等式的解集一、学习目标1. 能够根据具体问题中的大小关系了解不等式的意义.2. 理解不等式的解、不等式的解集、解不等式这些概念的含义.3. 会在数轴上表示不等式的解集. 二、学习重点了解不等式的解、解集的含义,会在数轴上表示解集. 三、学习过程【课前预习 自主学习】1. 还记得怎么解一元一次方程、二元一次方程吗?还记得它们的解的含义吗?想一想:(1)x =5,6,8能使不等式x >5成立吗?(2)是否还能找出一些使不等式x >5成立的x 的值?2. 类比方程,阅读教材,归纳结论:(1)能使不等式 ,叫做不等式的解.不等式的解有时有 个,有时有有限个,有时 .(2)一个含有未知数的不等式的 ,组成这个不等式的 ,求不等式的 的过程叫做解不等式.【合作探究 课堂导学】1. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为以0.02 m/s ,人离开的速度为4 m/s ,那么导火线的长度应为多少厘米?分析:人转移到安全区域需要的时间最少为 秒,导火线燃烧的时间 为 秒,要使人转移到安全地带,必须有: > . 解:设导火线的长度应为x cm ,根据题意,得2. 尝试在数轴上表示出下列不等式的解集:(1)x >-1; (2)1-≥x ; (3)x <-1; (4)1-≤x注意:数轴上表示不等式的解集遵循(1)大于向右走,小于向左走 (2)有“ = ”用实心小圆点,没有“ = ”用空心圈. 【互助释疑 精讲点拨】【例1】判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;( ) (2)2=x 是不等式x 3<7的解集;( ) (3)不等式x 3<7的解是2=x ;( ) (4)3=x 是不等式93≥x 的解.( ) 【例2】在数轴上表示下列不等式的解集.(1)x>3; (2) x<﹣2; (3) x≥121; (4) ﹣3 < x ≤ 1.【巩固练习 达标测评】 备选答案: 1.(1)不等式43-≤x 的解集是( ),解集是图( ); A.25-≤x B.x <0 (2)不等式324x x ->的解集是( ),解集是图( ); C.34-≤x D. x >0 (3)不等式x 53->0的解集是( ),解集是图( ); (4)不等式52≥-x 的解集是( ),解集是图( ).2.求不等式3+x <6的正整数解.3.在数轴上与原点的距离小于8的点对应的x 满足( )A 、x <8B 、x >8C 、x <-8或x >8D 、-8<x <8 【学后反思】知识: 方法: 【拓展延伸】 已知关于x 的方程4152435-=-m m x 的解为非负数,求m 的取值范围,并在数轴上表示出来.§2.4.1 一元一次不等式(一)一、学习目标1. 了解什么是一元一次不等式;2. 会解一元一次不等式;3.培养学生运用数学方法解决实际问题的创新能力及探究意识. 二、学习重点解一元一次不等式. 三、学习过程【课前预习 自主学习】 观察下列不等式:(1)2x-2.5≥1.5 (2)x≤8.75 (3)x<4 (4)5+3x>240这些不等式有哪些共同点?结论:左右两边都是 ,只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.【合作探究 课堂导学】【例1】解下列不等式,写出详细步骤,并把它的解集表示在数轴上(1) 3-x < 2x +6 (2) 22-x ≥3x-7归纳:解一元一次不等式的步骤:【例2】 已知关于x 的不等式32125+>-+ax x 的解集为21<x 求a 的值【巩固练习 达标测评】1. 下列不等式是一元一次不等式吗?(1)2x -2.5≥15; (2) 5+3x =240; (3) x >-4; (4)x1>1. (5) x (x+3)>-2 (6) xy -3>0 2. 已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为( )A .B .C .D .3. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示应是( )A .B .C .D .4. 解下列不等式,并把它们的解集分别表示在数轴上.(1) x-4≥2(x+2) (2) -3x +12≤0; (3)21-x <354-x ; (4)27+x -1<223+x .【学后反思】知识: 方法: 【拓展延伸】若关于x 的不等式x <2x +a 与2x >4的解集相同,求a 的值.§2.4.2 一元一次不等式(二)一、学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的实际问题. 二、学习重点用一元一次不等式解决简单的实际问题. 三、学习过程【课前预习 自主学习】温故知新:解下列不等式,并把它们的解集分别表示在数轴上 (1)132<-x x (2)2235-+≥x x【合作探究 课堂导学】【例1】一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?【例2】小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可以买几支笔?小结:解一元一次不等式应用题的步骤:点评:解决这类问题的关键是理解题意,抓住“超过”、“不足”、“以上”、“最多”、“最少”、“至少”等关键词语,将其转化为不等式,并结合实际意义寻求最后的答案。

人教版第九章不等式与不等式组导学案[1]

(1)(2第九章不等式与不等式组9.1.1 不等式及其解集学习目标: 1、了解不等式及一元一次不等式的概念。

2.、理解不等式的解、不等式的解集的概念。

3、能在数轴上正确表示不等式的解集。

学习重点、难点:理解不等式的解集,会在数轴上表示解集.学习过程:一、学前准备:1.等式:用“=”连接的表示相等关系的式子叫做等式.2.一元一次方程:含有_____个未知数,并且未知数的次数是_____的方程叫做一元一次方程.3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解二、新课探究:(一)、不等式、一元一次不等式的概念1. 你能列出下列式子吗?(1)5小于7;(2)x与1的和是正数(3)m的2倍大于或等于-1;(4)x-3不等于2(5)a不大于1 ;(6)y的2倍与1的和不等于3(7)c与4的和的30﹪不大于-2不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。

一元一次不等式:含有且未知数的次数是的不等式,叫做一元一次不等式.巩固练习2:下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)3>2 (5) 2a+1≥0 (6)32x+2x(7)x<2x+1 (8)x=2x-5 (9)2x +4x<3x+1 (10)a+b≠c(11)x十3≥6 (12) 2m< n(二)、不等式的解、不等式的解集总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。

由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的组成这个不等式的解集。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

初中数学教学课例《一元一次不等式的解法》课程思政核心素养教学设计及总结反思

初中数学教学课例《一元一次不等式的解法》教学设计及总 结反思
学科
初中数学
教学课例名
《一元一次不等式的解法》

在前面的学习中,学生已经掌握了一元一次方程的
解法,初步具备了一定的解一元一次方程的能力,而一
元一次方程的解法与一元一次不等式的解法有许多相 教材分析
同的地方,另外,学生还具备了一定的观察、发现规律
的能力,通过类比学习,可以发现和掌握一元一次不等
式的解法。
掌握一元一次不等式的解法,能熟练了一元一次方程的
解法,初步具备了一定的解一元一次方程的能力,而一
学生学习能 元一次方程的解法与一元一次不等式的解法有许多相
力分析 同的地方,另外,学生还具备了一定的观察、发现规律
的能力,通过类比学习,可以发现和掌握一元一次不等
式的解法。
教法:本课的知识点比较重要,操作技能性也比较 教学策略选
强,本节课主要采用演示教学法和任务驱动教学法,通 择与设计
过创设情境,激发学生的学习兴趣。
学法:本节课主要采用小组合作学习的方法。 教学目标:掌握一元一次不等式的解法,能熟练的 解一元一次不等式 教学重点:掌握解一元一次不等式的步骤. 教学难点:必须切实注意遇到要在不等式两边都乘 以(或除以)同一负数时,必须改变不等号的方向. 学情分析:在前面的学习中,学生已经掌握了一元 一次方程的解法,初步具备了一定的解一元一次方程的 能力,而一元一次方程的解法与一元一次不等式的解法 有许多相同的地方,另外,学生还具备了一定的观察、 发现规律的能力,通过类比学习,可以发现和掌握一元 教学过程 一次不等式的解法。 教学过程: 一、问题导入,提出目标 1 导入:请同学们思考两个问题: (1)、不等式的基本性质有哪些? (2)、什么是一元一次方程?解一元一次方程的 步骤。 (3)、解一元一次方程:1-2x=x+3,目的是为了 进行类比,找到它们的联系与区别。 2、大屏幕出示学习目标,检验学生预习 (1)能说出一元一次不等式的定义。

初二-第02讲-一元一次不等式与一元一次不等式组(培优)-学案

学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-一元一次不等式与一元一次不等式组授课类型T同步课堂P实战演练S归纳总结教学目标①了解不等式的概念;②掌握一元一次不等式的概念、解法及应用;③掌握一元一次不等式组的解法及应用。

授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、不等式的定义:一般的,用符号“<”(或“≤”)“>”(或“≥”)连接的式子叫做不等式。

2、不等式的基本性质:不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。

不等式的基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变。

体系搭建不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

3、不等式的其他性质(1)对称性,也叫互逆性:若a b > ,则b a < 。

(2)传递性:若a b >,b c > ,则a c > 。

(3)若0ab > ,则,a b 同号,反之,若,a b 同号,则0ab > ;若0ab < ,则,a b 异号,反之,若,a b 异号,则0ab <。

(4)若0a b -> ,则a b >,反之,若a b >,则0a b ->;若0a b -< ,则a b < ,反之,若a b <,则0a b -<。

4、不等式的解集(1)能使不等式成立的未知数的值,叫做不等式的解。

(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。

(3)不等式的解与不等式的解集的区别:不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数的所有值。

5、不等式解集的两种表示方法:(1)用不等式表示;(2)用数轴表示。

6、一元一次不等式的概念:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 理解不等式的解、不等式的解集、解不等式等概念的含义,会在数轴上表示不等式的解集;
2. 识别一元一次不等式,会解简单的一元一次不等式,并将其解集表示的数轴上;
3.
通过观察一元一次不等式的解法,对比解一元一次方程的步骤,让学生自己归纳解一元一次不等式的基本步骤. 一、课前准备
复习:(1)不等式的基本性质有哪些?
(2)解方程:1132
x x ---,并体会其步骤.
二、新课探究
探究任务一:不等式的解和解集
情境:燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放前转移到10m 以外的安全区域.已知引火线的燃烧速度为0.02m/s ,燃放者离开的速度为4m/s ,那么引火线的长度应满足什么条件?
(1)设引火线的长度为x cm ,根据题意列出不等关系:
_______________________________________; (2)根据不等式的基本性质,将上述不等关系转化为“x a >”或“x a <”的形式:
_______________________________________; 因此,引火线的长度应该________________. 想一想.
(1)4,5,6,7.2x =能使不等式5x >成立吗?
(2)你还能找出一些使不等式5x >成立的x 的值吗?
新知:能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集(solution set ).求不等式解集的过程叫做解不等式.
试试:判断正误
①不等式10x ->有无数个解.
( ) ②2x =是不等式25x <的一个解. ( ) ③不等式25x ≤的正数解为1和2. ( ) ④不等式230x -≤的解集为2
3
x ≥. ( )
探究任务二:一元一次不等式及其解法 思考:观察下列不等式:
6330x +>,175x x +<,5x >,10
0.021004
x >⨯
上述不等式有哪些共同特点?
新知:这些不等式左右两边都是_________,只含有_____________,并且____________________,像这样的不等式叫做一元一次不等式(linear inequality with one unknown ).
试试:每人列举两个一元一次不等式,小组整理并检查.
__________________________________________; __________________________________________; __________________________________________; __________________________________________; __________________________________________; __________________________________________; __________________________________________; __________________________________________.
例1 解不等式326x x -<+.
例2 解不等式2723
x x
--≥.
思考1:解一元一次不等式依据是什么? ________________________________________
思考2:解一元一次方程和解一元一次不等式的步骤有何异同?
总结:对比解一元一次方程的步骤,总结解一元一次不等式的步骤:
(1)______________________________; (2)______________________________; (3)______________________________; (4)______________________________; (5)______________________________.
反思:你认为解一元一次不等式的关键点或易错点在哪些地方?
探究任务三:不等式的解集的表示
思考:请你用自己的方式将不等式例1、例2中的解集分别表示在数轴上,并与同伴交流. 变式:请将不等式2x <、8x ≤的解集分别表示在数轴上.
总结:不等式的解集在数轴上的表示:
(1)____________________________________;
(2)____________________________________.
变式:请在你们小组整理的一元一次不等式中选择两个不等式进行求解,并将解集在数轴上表示.
三、例题精讲
例3. 当x 取何值时,代数式11
32
x x +--的值不超过代数式1
6
x -的值.
例4. 一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
四、总结提升
1. 本节课你学到了哪些内容?
2. 本节你不明白的地方或者容易出错的地方在哪里?
1. 下列说法错误的是( ) A .4-不是不等式28x -<的解. B .不等式28x -<的解集是4x <-. C .不等式4x >-的负数解有无数个. D .不等式4x >-的正数解有无数个.
2. 不等式240x -≥的解集在数轴上表示正确的是( ) A .B . C .
D .
3. 在0、3、3-、4-、5-、4、10-、0.2中,___是方程40x +=的解,________________是不等式40x +≥的解,________________是不等式
40x +<的解.
4. 某数的一半大于它的相反数加1,则这个数的范围为___________.
5. 不等式10
3
x <的解有________个,其正整数解
有___________个.
6. 判断下列不等式是不是一元一次不等式,如果
是,请写出不等式的解集,如果不是,请说明原因. (1)1
351x x
+<-; (2)530x +<;
(3)261x y +≥-; (4)2
450x x --≤.
7. 解下列一元一次不等式,并将其解集表示在数轴上.
(1)173x x -+>-; (2)()6134x x -≥+
(3)1515
x x
-+≤; (4)
124336
x x
--≥
(5)15
x
x +<; (6)
3
57
x x +>-; (7)2123
x x
+≤-; (8)
5
132
x x -+>-;
(9)()312x x x --≤+;
(10)()513222y y ⎛⎫--<-- ⎪⎝⎭

8.x取何值时,代数式
4
3
x+
的值比
31
2
x-
的值
大?
9.三个连续的正偶数的和小于19,这样的正偶数组共有多少组?把它们都写出来.
10.某种商品的进价为400元,出售时标价为500元.商店准备打折出售,但要保持利润率不低于10%,则至多可打几折?。

相关文档
最新文档