一、集合与一元二次不等式
一元二次不等式的解集

一元二次不等式的解集一元二次不等式是指一个包含一个未知数的二次方程不等式。
解集指的是满足不等式条件的所有实数值的集合。
在本文中,我们将讨论一元二次不等式的性质、解法和解集的表示方法。
一、一元二次不等式的性质1. 一元二次不等式的基本形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0,其中a、b、c为常数且a ≠ 0。
2. 当a > 0时,一元二次不等式的图像为开口向上的抛物线;当a < 0时,一元二次不等式的图像为开口向下的抛物线。
3. 一元二次不等式有零个、一个或两个解,解的个数取决于不等式的形式和系数的取值。
二、一元二次不等式的解法1. 通过图像法求解:通过绘制一元二次不等式的图像,可确定其解集的范围。
在绘制图像时,注意抛物线的开口方向和顶点的坐标。
2. 通过因式分解求解:对于特定的一元二次不等式,可以通过因式分解将其转化为多个一次因式相乘的形式,然后利用每个因式的符号确定不等式的解集。
3. 通过配方法求解:对于特定的一元二次不等式,可以通过配方法将其转化为一个平方差或完全平方式,然后利用平方差或完全平方式的性质求解不等式。
三、一元二次不等式解集的表示方法1. 解集的表示方法有三种常用形式:区间表示法、集合表示法和图像表示法。
a) 区间表示法:用区间形式表示解集,如(a, b)、[a, b]、(a, +∞)、(-∞, b]等。
b) 集合表示法:用集合的形式表示解集,如{x ∈ R | a < x < b}表示一个开区间。
c) 图像表示法:用图形的方式表示解集,通过绘制坐标轴上的区间来表示解集的范围。
2. 解集的界限问题:解集的上下界取决于不等式的形式和系数的取值。
对于开口向上的抛物线,解集的下界是抛物线的顶点坐标;对于开口向下的抛物线,解集的上界是抛物线的顶点坐标。
4. 解集的无解情况:有些一元二次不等式没有实数解,这意味着不等式在实数范围内不成立。
高考数学复习点拨 集合与一元二次不等式综合问题例析

1 / 1集合与一元二次不等式综合问题例析集合,是现代数学中的一个最基本的概念.集合概念渗透到数学各个分支中,对于培养运用集合观念解题的能力,提高数学素养是大有好处的.集合问题多与不等式等有关,解答此类问题时要注意各类知识的相互转化、融会贯通与综合运用.下面就与集合与不等式有关问题选解评析几例,供读者参考.例1 已知全集U ={x | x 2-3x + 2≥0},A ={x || x -2|>0},B ={x |21--x x >0},求AUB ,(UA )B .解:U ={ x |x ≤1或x ≥2},A ={ x |x <1或x >3},B ={x |x >2或x <1},故A UB =φ,(UA )B =U .评析:本题中把二次不等式、绝对值不等式、分式不等式的解集,与集合的交、并、补运算相结合,既考察了不等式的几种类型的解法,又考察了集合运算.这里准确解出不等式的解集很重要.例2 已知A ={x |x -a >0},B ={ x | x 2-2ax -3a 2<0},求A B 及A B .解:A ={x |x >a },B ={ x | (x + a )(x -3a )<0}, 考虑集合B 中-a 与3a 的大小关系,对字母a 进行分类讨论: ⑴当a >0时,-a <3a ,B ={ x | -a <x <3a }, ∵-a <a <3a ,∴AB ={ x | a <x <3a },A B ={ x | x >-a }.⑵当a = 0时,A ={x |x >0},B =φ,此时,AB =φ,A B ={ x | x >0}.⑶当a <0时,-a >3a ,B ={ x | 3a <x <-a }, ∵3a <a <-a ,∴AB ={ x | a <x <-a },A B ={ x | x >3a }.评析:分类讨论时,要求既不重复讨论,也不遗漏某些特殊情况,往往是数形结合、分类讨论交叉进行.本题还应注意到-a 与3a 的大小比较.常常可见到方程两根都含字母且不只是一次式时,比较这两根大小之后,再写出不等式的解集.而作差比较的不同情况,往往就是讨论的不同步骤.例3 关于x 的不等式| x -2)1(2+a |≤2)1(2-a 及x 2-3(a + 1)x + 2(3a + 1)≤0的解集依次记为A 和B ,求使A ⊆B 时a 的取值范围.解:由| x -2)1(2+a |≤2)1(2-a 得: -2)1(2-a ≤x -2)1(2+a ≤2)1(2-a ,∴2a ≤x ≤a 2+ 1,即A ={ x |2a ≤x ≤a 2+ 1},由x 2-3(a + 1)x + 2(3a + 1)≤0得:(x -2)[x -(3a + 1)]≤0,① 当3a + 1≥2,即a ≥31时,B ={ x |2≤x ≤3a + 1},欲使A ⊆B ,需有⎩⎨⎧+≥+≤.113,222a a a ⇒ 1≤a ≤3 , ② ② 当3a + 1<2,即a <31时,B ={ x |3a + 1≤x ≤2},欲使A ⊆B ,需有⎩⎨⎧+≥≤+.12,2132a a a ⇒ a =-1 . ∴使A ⊆B 时a 的取值范围为1≤a ≤3或a =-1 .评析:对于含有参数的不等式应考虑到:⑴参数a 对不等式方向的影响;⑵参数a 对根的大小的影响.例4 已知集合A ={x |x 2-2x + a ≤0} ,B ={x | x 2-3x + 2≤0},且A ≠⊂B ,求实数a 的取值范围.解:B ={x |1≤x ≤2},A ={x |x 2-2x + a ≤0},由于A ≠⊂B ,所以:① 当A =φ时满足A ≠⊂B ,即x 2-2x + a ≤0无解,所以△= (-2)2-4a <0 ⇒a >1 .② 当A ≠φ时,由于不等式x 2-2x + a ≤0对应二次函数y = x 2-2x + a 的对称轴是x = 1 .要保证A ≠⊂[1,2] ,当且仅当A ={1},即△= 0,解得 a = 1 .由①、②知当a ≥1时,A ≠⊂B .评析:将集合语言转化为图形语言,便使a 的取值范围显而易见.所以,数形结合是求含参数集合问题常用的思想方法.。
第1章-集合与不等式(初等数学教案)

第1章集合与不等式【学习目标】1.了解集合的概念及其表示方法.2. 掌握集合之间的运算(子集、真子集、相等、交集、并集、补集).3. 理解区间的概念,会在数轴上表示区间.4. 掌握绝对值不等式、一元二次不等式、分式不等式的解法.5. 培养学生应用数学概念的能力和计算能力.1.1 集合1.集合的概念集合是现代数学中最基本的概念之一.研究集合的数学理论称为集合论,它是数学的一个基本分支,是近代许多数学分支的基础.我们在初中就已经接触到了“集合”一词,如: “自然数的集合” ,“有理数的集合”, “不等式的解集”等. 在数学和日常生活中,也经常把某些指定的对象作为一个整体加以研究,例如:⑴一个班里的全体学生;⑵某图书馆的全部藏书;⑶所有的直角三角形;⑷与一个角的两边距离相等的所有点;⑸不等式21x->3的所有解;⑹某工厂金工车间的所有机床.它们分别是由一些人、书、图形、点、数和机床组成的.一般地,指定的某些对象的全体称为集合(简称为集),用大写字母,,,A B C表示.集合中的每个对象叫做这个集合的元素,用小写字母,,,a b c表示.如果a是集合A的元素,就说“a属于集合A”,记作a A∈;如果a不是集合A的元素,就说“a不属于集合A”,记作a A∉.某校高一(1) 班全体学生就构成了一个集合,该校内的任一学生,或者是高一(1) 班的同学,或者不是,二者必居其一,这一性质叫做集合元素的确定性;在书写高一(1)班全体同学的名单时,谁写在前面或者后面,不论次序如何,都是高一(1)班全体同学的名单,这一性质叫做集合元素的无序性;另外,每名同学的名字,必须写而且只需写一次就可以了,这一性质叫做集合元素的互异性.练一练:判断下列各组元素能否构成一个集合:(1)所有爱唱歌的孩子;(2) 0,1,1,2.集合理论的创始人是康托尔(Cantor,G.F.L.P,1845—1918),德国数学家.任何集合的子集,即∅A⊆.因此,任何一个集合是它本身的子集,即AA⊆.集合A不包含于集合B时,记作A⊆/B.例1 写出集合{},,a b c的所有子集.解集合{},,a b c的所有子集是:{}{}{}{}{}{}{},,,,,,,,,,,,a b c a b a c b c a b c∅2. 真子集在集合{},,a b c的所有子集中,除去它本身{},,a b c外,集合{},,a b c中至少有一个元素不在其余的某个子集中.如果集合A是集合B的子集,且集合B中至少有一个元素不属于A,则称集合A是集合B的真子集,记作A B(或AB≠⊃),读作A真包含于B(或B真包含A).如文氏图1-1所示.集合{},,a b c的子集中,除了{},,a b c外,其它子集都是{},,a b c的真子集.显然,空集是任何非空集合的真子集.练一练:判断集合A B与的关系:(1)集合{}1,2,3A=,{}1,2,3,4B=;设合{}1,2,3A=,{}2,3,1=B.3、集合的相等如果集合A与集合B的元素完全相同,即ABBA⊆⊆且,则称集合A与集合B相等,记作BA=.练一练:对于集合{}1,2A=, {}1,2,3,4,5,6B=,{}2,7C=,思考:符号∈与符号⊆表达的含义相同吗?思考:集合{},,a b c有三个元素,子集个数为8个,即32个;真子集个数为321-个;推广到含有n个元素的集合,则子集个数和真子集的个数分别为多少?{}(1)(2)0D x x x=--=,下列关系是否成立:A D=,A B⊆, A B,A C⊂?例2 指出下列各组中两个集合之间的关系:(1){}{}1,7,1,2,3,7A B==;(2){}{}21,1,1C x x D===-;(3){}{},E F==偶数整数;解(1) A B; (2)C D=; (3)E F.例3 讨论集合{}20A x x=-=与集合{}260B x x x=+-=的关系.解因为集合{}{}22==-=xxA,集合{}{}2,362-==-+=xxxB,所以集合A是集合B的真子集,即A B.【习题1.2】1.用符号∈、∉、=、、≠⊃填空:(1)1 N;(2)0 Z;(3)-2 -Q(4)43Q;(5)πQ;(6)2R;(7){1,2} {2,1};(8){3,5} {1,3,5};(9){2,4,6,8} {2,8};(10)∅ {1,2,3}.2.图1-2中A、B、C表示集合,说明它们之间的关系.图1-23.写出集合{1,3,5}的所有子集.4.设A={1,3,5,7,9},B={1,2,4,6},写出由A和B的所有元素组成的集合C.5.设A={1,3,5,7,9},B={1,2,3,4,6,8,10},写出由A和B的公共元素组成的集合 C.1.3 集合的运算 1. 交集观察集合{}1,237A =,,与{}2,3,67,B =,,容易看出,集合}73,2{,是由集合A 与B 的所有公共元素组成的,对于这样的集合我们给出如下定义.定义 由集合A 与集合B 的所有公共元素组成的集合,叫做集合A 与集合B 的交集(如图1-3的阴影部分所示),记作B A ,读作“A 交B ”.即{}A B x x A x B =∈∈且.由交集的定义及图1-3可以看出, B A 既是A 的子集,也是B 的子集,即A B A ⊆且A B B ⊆.另外,交集还有如下性质:A A A A AB B A∅=∅== 若A B A =,则A B ⊆,反之也成立. 例1 设集合:(1){}2,578A =,,,{}5,68,10B =,; (2) {}A =奇数,{}B =偶数; (3) {}A =奇数,{}B =整数;(4) {}A =等腰三角形,{}B =直角三角形; (5){}(,)25A x y x y =+=,{}(,)27B x y x y =+=; (6){}13A x x =≤≤,{}25B x x =≤≤. 求B A .解 (1) {}{}{}2,5785,68,105,8A B ==,,,; (2) {}{}A B ==∅奇数偶数;(3) {}{}{}AB A ===奇数整数奇数;{}{}{}(4);A B ==等腰三角形直角三角形等腰直角三角形{}{}{}(5)(,)25(,)2725(,)(1,3);27A B x y x y x y x yx yx yx y=+=+=⎧⎫+=⎧⎪⎪==⎨⎨⎬+=⎩⎪⎪⎩⎭(6){}{}{}132523A B x x x x x=≤≤≤≤=≤≤, 如图1-4所示.2. 并集我们把集合{}1,237A=,,与{}2,3,67,B=,的元素放在一起,构建新的集合,由集合元素的互异性得新的集合为{}1,2,3,6,7. 它是由所有属于A,或属于B的元素组成的.对于这样的集合,我们给出如下定义.定义由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(如图1-5的阴影部分所示),记作A B,读作A并B,即{|,}A B x x A x B=∈∈或.由并集的定义及图1-5可以看出,集合A B、都是A B的子集,即A A B⊆,B A B⊆.另外,并集还有如下性质:A AA A AA B B A∅===若A B B=,则A B⊆,反之也成立.例2设集合:(1){}2,578A=,,,{}5,68,10B=,;(2) {}A=奇数,{}B=偶数;(3) {}A=奇数,{}B=整数;(4) {}A=等腰三角形,{}B=直角三角形;(5) {}13A x x=≤≤,{}25B x x=≤≤.求A B.解(1) {}{}{}2,5785,68,1025678,10A B==,,,,,,,;(2) {}{}{}A B==奇数偶数整数;(3) {}{}{}A B B===奇数整数整数;{}{}(4);A B=⎧⎫=⎨⎬⎩⎭等腰三角形直角三角形等腰直角三角形,等腰非直角三角形,直角非等腰三角形(5){}{}{}132515A B x x x x x=≤≤≤≤=≤≤,如图1-6所示.3. 补集观察下列三个集合之间的关系:I={全班同学}, A={班上男同学} , B={班上女同学}.容易看出,集合B就是在集合I中,去掉集合A的所有元素之后,由余下来的元素组成的集合.在研究集合之间的关系时,如果集合I包含我们要研究的各个集合,则称I为全集.设I是全集,A是I的一个子集(即A⊆I),则由I中所有不属于A的元素组成的集合,叫作集合A在I中的补集(如图1-7所示),简称集合A的补集.记作ΑIC,读作“A补”,即{}AxIxxΑ∉∈=且IC.由全集与补集的定义可得:IΑA=IC,oΑA/=IC,oI/=IC,Io=/IC,ΑΑ=)II(CC.例3 设{}I=三角形,{}A=锐角三角形,求ΑIC.解{}形直角三角形,钝角三角=ΑIC.在求集合的并集时,同时属于A和B的公共元素,在他们的并集中只列举一次},2,3,4,5,A=∅,求}{2++=a a A,3,21,(1)1A 、2A 、3A 、4A 中哪两个集合的交集是非空集合?(2)求23A A .(3)求14A A .(4)2A 、3A 、4A 中哪些集合是1A 的真子集.1.4 区间 设,a b 是两个实数,且a b <,则:满足不等式a x b ≤≤的所有实数x 的集合,叫做由a 到b 的闭区间,记作[,]a b .满足不等式a x b <<的所有实数x 的集合,叫做由a 到b 的开区间,记作(,)a b .满足不等式a x b ≤<(或a x b <≤)的所有实数x 的集合,叫做由a 到b 的半开区间,记作[,)a b (或(,]a b ).在这里,实数,a b 叫做相应区间的端点. 上述区间[,]a b ,(,)a b ,[,)a b ,(,]a b 统称为有限区间. 满足,,,x a x a x b x b ≥>≤<的实数x 的集合,分别记作),[+∞a ,),(+∞a ,],(b -∞,),(b -∞,这些区间称为无限区间. 其中符号+∞与-∞分别读做正无穷大与负无穷大. 全体实数的集合R 也是无限区间,记作(,)-∞+∞.区间可以用数轴上的点集来表示,其中用实心点表示端点包括在区间内, 用空心点表示端点不包括在区间内,如图1-8所示.无限区间也可以用数轴上的点集来表示, 如图1-9所示.例1 用区间表示下列集合:(1){}16x x <≤; (2){},1,2x x R x x ∈≠≠. 解 各集合用区间分别表示为(1)(]6,1; (2)(,1)(1,2)(2,)-∞+∞.练一练:用区间表示下列集合:(1){}16x x -≤≤; (2){}5x x ≥;例2 把下列不等式组的解集用集合、区间及数轴上相应的点集表示:(1)2,0;x x >-⎧⎨≤⎩ (2)30,20.x x ->⎧⎨+>⎩解 (1)不等式组2,0,x x >-⎧⎨≤⎩解集的集合形式为{}20x x -<≤.区间形式为(2,0]-.数轴上的点集表示如图1-10(1)所示. (2)不等式组30,20,x x ->⎧⎨+>⎩解集的集合形式为{}3>x x .区间形式为)(∞+,3.数轴上的点集表示如图1-10(2)所示..例3 设集合{}{}21,14A x xB x x=-<<=-≤≤,求,A B A B,并用区间及数轴上的点集表示.解{}{}2114A B x x x x=-<<-≤≤{}11x x=-≤<.区间形式为[1,1)-.数轴上的点集表示如图1-11(1)所示.{}{}2114A B x x x x=-<<-≤≤{}24x x=-<≤.区间形式为(2,4]-.数轴上的点集表示如图1-11(2)所示.今后,我们可以采用不等式、集合、区间、数轴上的点集等不同的方法表示数集.【习题1-4】1.用区间表示下列集合:(1) {}15x x-<<; (2) {}14x x≤≤;(3) {}3≤x x; (4) {}53x x x≥<-或.2. 把下列不等式组的解集用三种方式——集合、区间及数轴上点集表示出来:(1)47;xx>⎧⎨≥⎩(2)4030.xx-≤⎧⎨+>⎩3. 设集合{}{}2,22A x xB x x=-<<+∞=-<≤,求,A B A B,并用区间及数轴上的点集表示.1.5 绝对值不等式的解法一个数的绝对值,表示数轴上与这个数所对应的点到原点的距离.一个实数a 的绝对值记作a ,是指由a 所唯一确定的非负实数,且,0;0,0;,0a a a a a a >⎧⎪==⎨⎪-<⎩当时当时当时.下面,我们学习绝对值不等式的解法.依据绝对值的定义可知,x 是数轴上表示x 的点到原点的距离.从而当0a >时,x a <的解集,是数轴上与原点的距离小于a 的点的集合,即{}x a x a -<<(如图1-12(1)所示);x a >的解集,是数轴上与原点的距离大于a 的点的集合, 即{}x x a x a <->或(如图1-12(2)所示).例1 解下列不等式:(1) 3x <; (2)5x ≥. 解 (1) 3x <的解集为{}33x x -<<; (2)5x ≥ 的解集为{}55x x x ≤-≥或.对于,(0)ax b c ax b c c +<+>>型的不等式,可以把ax b +看作一个整体,转化成,x a x a <>型不等式来求解.例2 解下列不等式,并用区间表示解集: (1) 87x -≤; (2)4214x +>. 解 (1) 由87x -≤,得787x -≤-≤,整理得 115x ≤≤, 所以原不等式的解集为 [1,15].当不等号取"",""≤≥时有类似的性质,其解集可简记为“小于在中间,大于在两边”.(2) 由4214x +> ,得42144214x x +>+<-或, 解得43-<>x x 或, 所以原不等式的解集为(,4)(3,)-∞-+∞.【习题1.5】1. 解下列不等式,将解集表示为集合的形式:(1)132x ≥; (2)1105x ≤; (3)61x -<; (4)38x <-. 2. 解下列不等式,将解集表示为区间的形式: (1)3813x -<; (2)257x -≤;(2)11223x +>; (4)3214x -≥.1.6一元二次不等式的解法形如2200(,,,0)ax bx c ax bx c a b c a ++>++<≠或为常数且的不等式称为一元二次不等式.这里,我们利用一元二次函数的图像,找出一元二次不等式与一元二次函数及一元二次方程之间的关系,进而得到求解一元二次不等式的方法.在一元二次函数22y x x =--中,令0=y ,得022=--x x解得 21=-=x x 或.观察函数22y x x =--的图像(如图1-13),可得 (1) 当12x x =-=或时,0y =; (2) 当12x -<<时,0y <; (3) 当12x x <->或时,0y >.由此可知(a)一元二次方程220x x --=有两个不同的根1212x x =-=,;(b)一元二次不等式220x x --<的解集为{}12x x -<<; (c) 一元二次不等式220x x -->的解集为{}12x x x <->或.该例表明,一元二次函数的图象与x 轴的交点,可以确定相应的一元二次不等式的解集.练一练:讨论:当x 取何值时,下列一元二次函数的值0,0,0y y y >=<? (1) 22y x x =-+ (2) 244y x x =-+ (3)222+-=x x y 下表按一元二次函数2y ax bx c =++(0>a )的判别式000<∆=∆>∆,,三种情形,给出了一元二次不等式的解集.如果二次项系数0a <,我们可用(-1)乘不等式两边,将其变形为二次项系数为正的情况.例1 解下列不等式:(1)260x x -->; (2) 2280x x -++≥. 解 (1)2(1)41(6)250∆=--⨯⨯-=>, 方程260x x --=有两个不相等的实根24b ac ∆=-2y ax bx c =++(0)a >的图象20ax bx c ++=(0)a ≠的根20ax bx c ++<(0)a >的解集2ax bx c ++>(0)a >的解集(1)0∆>21,242b b acx a-±-=12()x x <{}12x xx x <<{}12x x x x x <>或(2)0∆=122b x x a==-∅,2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭(3)0∆<无实根∅R思考: 当0∆=时,不等式2≥++c bx ax 的解集是什么?要解二次不等式,二次系数先变正.0∆>时,大于在两边,小于在中间.复习题1 A 组1.用适当的符号∈∉=⊆“”“”“”“”“”填空: {}{}5____;____;______;______0;;__.Q Q R R a a b A B A B +-+-∅-1________N; -5_______Q; 0.6______; -2 3 ____,2. 用另一种方法表示下列集合: (1){}22150A x x x =+-=; (2){}44,B x x x Z =-≤≤∈;(3){}4绝对值等于的数; (4){}215,A x x x Z =+=∈.3.判断下列各组元素是否构成一个集合?(1)非常小的数; (2)本班兴趣广泛的同学; (3)0与1之间的实数; (4) 非常漂亮的孩子. 4. 写出集合{},,红绿蓝的所有子集和真子集. 5. 设集合{}{}25,32A x x B x x =-≤<=-<<. 用区间及数轴上相应的点集表示,A B ; (2)求,AB A B .6. 解下列绝对值不等式:(1) 2x ≤; (2) 5x >; (3) 2515x -<; (4) 212x +≥. 7.解下列不等式:(1) 240x x -+->; (2) 243(43)x x >-;(3)23620x x -+<; (4) 29610x x -+<. 8. 解下列不等式:(1)3212x x +≥-; (2) 1111x x +≤-; (3)4502x x ->-; (4) 3443x x -<+.}N +,{}1,2,3,4,5,9A =,B ,B ΑI I C C .已知{2A x x =-{}3,求,a b 的值.4. 已知x (1)2x +60m。
不等式的解集 一元二次不等式的解法

11
7.三个“二次”的关系
设 y=ax2+bx+c(a>0),方程 ax2+bx+c=0 的判别式 Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
有两个不相等 有两个相等的
解不等式 y>0 求方程 y=0 的
7
4.一元二次不等式的概念 一般地,形如 ax2+bx+c>0 的不等式称为一元二次不等式,其 中 a,b,c 是常数,而且 a≠0. 5.一元二次不等式的一般形式 (1)ax2+bx+c>0(a≠0). (2)ax2+bx+c≥0(a≠0). (3)ax2+bx+c<0(a≠0). (4)ax2+bx+c≤0(a≠0).
18
3.不等式|x|-3<0 的解集为________. {x|-3<x<3} [不等式变形为|x|<3,解集为{x|-3<x<3}.]
19
4.不等式-3x2+5x-4>0 的解集为________. ∅ [原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=- 23<0,所以3x2-5x+4=0无解. 由函数y=3x2-5x+4的图像可知,3x2-5x+4<0的解集为∅.]
38
[解]
(1)∵Δ>0,方程2x2-3x-2=0的根是x1=-
1 2
,x2=2,∴
不等式2x2-3x-2>0的解集为
xx<-12或x>2
.
(2)∵Δ=0,方程x2-4x+4=0的根是x1=x2=2,
∴不等式x2-4x+4>0的解集为x|x≠2.
第一章 集合、方程及不等式

解一元一次方程的基本步骤是: (1)去分母; (2)去括号; (3)移项; (4) 合并同类项,将方程整理,使等式的一端含有未 知数,另一端为常数,即 ax b ; ( 5)两边同 除以 a 得解。
例 1、解下列一元一次方程:
第一章
集合、方程及不等式
1、集合的概念: 一组确定的对象的全体叫做集合 2、常用的数集:
整数集:Z 如正整数、负整数、零 有理数集:Q 包括整数、分数、有限小数 实数集:R 我们所学习的所有数都是实数 自然数集:N 只包括零和正整数
注意:不含有任何元素的集合叫空集,记作
3、集合与元素的关系:
(2) 不等式的两边都乘以 (或除以) 同一个正数, 不等号的方向不变。
a b 即: a b 且 c 0 那么 ac bc ( ) c c
例 1、设 a 0 ,比较 (a 1) 与 a a 1 值的大小。
2
2
例 2、根据下列描述,提炼出不等关系。 (1)今年小王比小徐的年龄大,若干年以后, 小王比小徐的年龄还是大,那么,若干年前呢? (2)现在小王的身高比小李高,假定他们在一 年中身高增长的百分数相同,一年后小王比小 李还是要高。 (3)小王比小李跑得快,小李比小张跑得快, 那么小王比小张跑得快。
1、比较 ( x 5)( x 7) 与 ( x 6) 的大小。
2
2、如果 a b 0 ,用“>” “<”填空。
1 1 (1) a _____ > b (2) a _____ > b
(3) a _____ b
2
>
2
高考数学十年真题专题汇总—集合概念与运算

高考数学十年真题专题汇总—集合概念与运算年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .52.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A .2B .3C .4D .63.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .04.【2018新课标2,理1】已知集合 = ,2+ 2≤3, ∈ , ∈ ,则 中元素的个数为()A .9B .8C .5D .45.【2013山东,理1】已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .96.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或47.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为()A .5B .4C .3D .28.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .19.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.考点2集合间关系1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .A BÜB .B AÜC .A B=D .A B =∅2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =BB .A B =∅∩C .A BÜD .B AÜ4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是()A .N M⊆B .M N M= C .M N N= D .{2}M N = 5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则()A .P Q⊆B .Q P⊆C .R C P Q⊆D .R Q C P⊆6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P = ,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1] [1,+∞)7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆BB .C ⊆BC .D ⊆C D .A ⊆D9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为()A .1B .2C .3D .4考点3集合间的基本运算1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=()A .{1}B .{2}C .{0,1}D .{1,2}7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N = ()A.)1,2(-B .)1,1(-C .)3,1(D .)3,2(-8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ()A.∅B .{}2C .{0}D .{2}-9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ()A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,210.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为()(A)5(B)4(C)3(D)211.【2015新课标2,文1】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B = ()A .()1,3-B .()1,0-C .()0,2D .()2,312.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂=(A)3(3,2--(B)3(3,2-(C)3(1,2(D)3(,3)213.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()(A){1}(B){12},(C){0123},,,(D){10123}-,,,,14.【2016新课标3,理1】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则T S ⋂=(A)[2,3](B)(-∞,2]U [3,+∞)(C)[3,+∞)(D)(0,2]U [3,+∞)15.【2016新课标2,文1】已知集合{123}A =,,,2{|9}B x x =<,则A B = ()(A){210123}--,,,,,(B){21012}--,,,,(C){123},,(D){12},16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ()(A){1,3}(B){3,5}(C){5,7}(D){1,7}17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x => D .A B =∅19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则()A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,521.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =()A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为()A .1B .2C .3D .423.【2018新课标1,理1】已知集合 = 2− −2>0,则∁ =A . −1< <2B . −1≤ ≤2C . | <−1∪ | >2D . | ≤−1∪ | ≥224.【2018新课标3,理1】已知集合 = | −1≥0, =0,1,2,则 ∩ =A .0B .1C .1,2D .0,1,225.【2018新课标1,文1】已知集合,,则()A .B .C .D .26.【2018新课标2,文1】已知集合,,则A .B .C .D .27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =()A .{}1,6B .{}1,7C .{}6,7D .{}1,6,729.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,232.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,434.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<36.【2017山东,理1】设函数24y x =-的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = ()A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C = A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4}41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A B = A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于()A .{}1-B .{}1C .{}1,1-D .∅44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N = A .{}1,4B .{}1,4--C .{}0D .∅45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B =ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,847.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A .[0,2]B .(1,3)C .[1,3)D .(1,4)48.【2014浙江,理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅B .}2{C .}5{D .}5,2{49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅51.【2013陕西,理1】设全集为R ,函数()f x =的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-52.【2013湖北,理1】已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则()R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N⋃B .M N⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B = ,则实数a 的值为_.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .458.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B =ð()A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<<则P Q =()A .{|12}x x <≤B .{|23}x x <<C .{|23}x x <≤D .{|14}x x <<61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A B A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B = ð()A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则A B = .65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B =.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为()A .3B .6C .8D .102.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为()A .77B .49C .45D .303.【2013广东,理8】设整数4n ≥,集合{}1,2,3,,X n = ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S∈D .(),,y z w S ∉,(),,x y w S∉4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是()A .1B .2C .3D .45.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,kii i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈= .对于集合A中的任意元素12(,,,)n x x x α= 和12(,,,)n y y y β= ,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++-- .(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.。
数学讲义:第3章 3.3 一元二次不等式及其解法 Word版含答案

高中数学课程
1.含参数的不等式的解题步骤 (1)将二次项系数转化为正数; (2)判断相应方程是否有根(如果可以直接分解因式,可省去此步); (3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根 的大小). 2.解含参数的一元二次不等式 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 与等于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.
∴g(x)max=g(3)=7m-6.
∴7m-6<0,解得
6 m<7.
∴0<m<67.
当 m=0 时,-6<0 恒成立.
当 m<0 时,g(x)在[1,3]上是减函数.
∴g(x)max=g(1)=m-6<0,解得 m<6,∴m<0.
高中数学课程
综上所述,m 的取值范围为-∞,67. 法二:f(x)<-m+5 恒成立,
高中数学课程
综上所述,
当-2<a<0 时,解集为x2a≤x≤-1
;
当 a=-2 时,解集为{x|x=-1};
当 a<-2 时,解集为x-1≤x≤2a
.
不等式恒成立问题
【例 3】 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
.
(2)原不等式等价于 3x2-6x+2≥0.Δ=12>0,解方程 3x2-6x+2=0,得 x1=
高中数学 一元二次不等式及其解法

一元二次不等式及其解法
2014高考导航
考纲展示 备考指南
1.会从实际情境中抽象出一元 二次不等式模型.
1.以考查一元二次不等式的解法
为主,兼顾二次方程的判别式、 根的存在性及二次函数的图象 与性质等知识. 2.以集合为载休,考查一元二次
2.通过函数图象了解一元二次
不等式与相应的二次函数、 一元二次方程的联系.
目录
【解】
(1)设生产第x档次产品时,所获利润最大,则生
产第x档次产品时,每件利润为16+(x-1)×1(元), 生产第x档次产品时,每天生产[40-2(x-1)]件, 所以生产第x档次产品时,每天所获利润为: y=[40-2(x-1)][16+(x-1)]
=-2(x-3)2+648(元).
当x=3时,y最大,即生产第三档次产品利润最大.
目录
2.用程序框图来描述一元二次不等式ax2+bx+c>0(a>0)的求 解的算法过程为:
目录
课前热身
1.若集合 A={x|(2x+1)(x-3)<0},B={x∈N*|x≤5},则 A∩B 是( A.{1,2,3} C.{4,5} ) B.{1,2} D.{1,2,3,4,5}
答案:B
目录
x -1<0 2.不等式组 2 的解集为( x -3x<0
(2)引进数学符号、用不等式表示不等关系; (3)解不等式; (4)回归实际问题.
目录
跟踪训练 3.某汽车厂上年度生产汽车的投入成本为 10 万元/辆,出厂价为 12 万元/辆,年销售量为 10000 辆.本年度为适应市场需求,计划提高 产品质量,适度增加投入成本.若每辆车投入成本增加的比例为 x(0 <x<1),则出厂价相应地提高比例为 0.75x,同时预计年销售量增加 的比例为 0.6x,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润 y 与投入成本增加的比例 x 的关系式; (2)为使本年度的年利润比上年度有所增加, 则投入成本增加的比例 x 应在什么范围内?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与函数1.1 集合及集合间的基本关系一 、知识梳理:1、集合中元素的性质:________、 ________ 、________;2、 集合的表示方法:________、 __________;3、 元素与集合的关系:_____________________ ;4、 集合与集合的关系:______________ 。
5、子集的概念:___________ ,表示: ,文氏图表示: 真子集:___________ , 集合的相等的意义:___________6、 数集之间的关系(横线上填数集的专用符号)→→⎧⎧⎧⎨⎪⎪⎩⎨⎪⎨⎪⎩⎪⎪⎩整数集自然数集正整数集有理数集实数集分数集复数集无理数集虚数集7、空集的含义:________________________,符号表示_______________ 空集的特征__________________________。
8、设有限集合A 含有n 个元素,则其子集有_______个;真子集有________个。
二 、基础练习1.用符号“∈”“∉”填空(1)设A 为所有亚洲国家组成的集合,则:中国_____A , 美国_______A , 印度_______A , 英国_______A ; (2)若{}x x x A ==2|,则—1 _____ A ; (3)若{}06|2=-+=x x x B ,则3 ___ A ;(4)若{}101|≤≤∈=x N x C ,则8_______C ,9.1 ____ C 2.试选择适当的方法表示下列集合:(1)由方程092=-x 的所有实数根组成的集合; (2)由小于8的所有质数组成的集合;(3)一次函数3+=x y 与62+-=x y 的图象的交点组成的集合; 3.写出集合{}c b a ,,的所有子集。
4.用适当的符号填空:(1)a {}c b a ,,; (2)0_____{}0|2=x x ; (3)∅_____{}01|2=+∈x R x ;(4){}1,0_____N ; (5){}0_____N ; (6){}1,2_____{}023|2=+-x x x ;(7){}{,,}a a b c ; (8) {}{}{}{}{}a a b c ,; (9) {1,2,3}∅; (10) {0}∅。
5.判断下列两个集合之间的关系:(1){}4,2,1=A , {}的约数是8|x x B =; (2){}N k k x x A ∈==,3|,{}N z z x x B ∈==,6|(3){}*104|N x x x A ∈=的公倍数,与是,{}*,20|N m m x x B ∈== 三、例题讲解:例1、若全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是例2、已知集合A={x |y=x 2,x ∈R},B={y |y=x 2,x ∈R},C={(x,y)|y=x 2}则有 A . A=B=C B. A ⊂B ⊂C C. A ⊇B D. A=B ≠C 例 3.用列举法分别写出集合6|,,2A y y x N y N x ⎧⎫==∈∈⎨⎬-⎩⎭, 6|,,2B x y x N y N x ⎧⎫==∈∈⎨⎬-⎩⎭,6(,)|,,2C x y y x N y N x ⎧⎫==∈∈⎨⎬-⎩⎭。
例4、若集合 {}2,A a b =,,{}22,B a b =,2,且A B =,求,a b 的值。
例5、已知集合2{|3100}A x x x =--≤,{|121}B x p x p =+≤≤-若,求B A 时 实数p 的范围.四、课后练习1、下列各式中,正确的个数是( )①∅={0} ②∅⊆{0} ③∅∈{0} ④0={0}⑤0∈{0} ⑥{1,2}⊆{1,2} A.1 个 B.2 个 C.3 个 D.4个 2、下面表示同一集合的是( )A. M ={(1,2)},N={(2,1)}B. M={1,2}, N={(2,1)}C.M =∅,N={∅} D .M={x|x 2-3x +2=0}, N ={1,2}变式题:若集合{}012M =,,,{}()210210N x y x y x y x y M =-+≥--≤∈,且,,,则N 中元素的个数为( ) A.9 B.6 C.4 D.2 3、下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有________个4、设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-5、集合{}0,2,A a =,{}21,B a=,若{}0,1,2,4,16AB =,则a 的值为( )A.0B.1C.2D.46、定义集合运算:A ⊗B={z |z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则 集合A ⊗B 的所有元素之和为 ( )A .0B .6 C.12 D.1 87、设P,Q 为两个非空实数集合,定义集合P+Q={a+b|a ∈P,b ∈Q},若P={0,2,5},Q={1,2,6}则P+Q 中元素的个数是________个。
8、已知A ={x |x <-1或x >5},B ={x |a <x <a +4}.若AB ,则实数a 的取值范围.9、已知集合{}2|45,A x x a a a R ==-+∈,{}2|445,B y y b b b R ==-+∈ 10、集合{x ∈N |x=- y 2+6,y ∈N},试写出该集合的所有真子集.11、若{1,3,}A x =,2{,1}B x =且B A ,求x 的可能取值.12、 设A={x|4x+p <0},B={x|x<-1或x >2},若使A ⊆B,则p 的取值范围是________________.13、写出满足条件{1,2}A ⊆ {1,2,3,4,5}的所有集合A1.2 集合的运算一、 知识梳理 1、交集(1)定义:__________________________________________(2)符号表示:____________________________________, (3) 图形表示:__________________ (4)运算性质: ⑴AA =⑵A ∅=⑶AB B A ,⑷,ABA A BB2、并集(1)定义:__________________________________________(2)符号表示:___________________________________,(3)图形表示:__________________ (4)运算性质:⑴AA =⑵A ∅=⑶A BB A⑷,ABA AB B ⑸A I =3、补集(1)定义:______________________________________(2)符号表示:___________________________________,(3)图形表示:__________________ (4)运算性质:⑴()U U C C A =;⑵U C U =;⑶U C ∅=;⑷U A C A =; ⑸U A C A =;⑹()()U U C A C B =;⑺()()U U C A C B =。
二、基础练习1.设{}d c b a A ,,,=,{}h f d b B ,,,=,则=B A ,=B A ;2.全集{}7,6,5,4,3,2,1=U ,{}432,,=A ,{}7,54,2,=B ,则 B A =__________,B A =__________,B A C U )(=__________, )(B C A U =___________3.设{}3<=x x A ,{}0≥=x x B ,求B A =__________B A =_________4.设集合{}21|<<-=x x A ,{}31|<<=x x B ,则B A =_________,B C R =______________,B A =__________________,)(B A C R =________________,B C A R =__________________,B C A R =__________________。
5.已知集合}2y x |)y ,x {(M =+=,}4y x |)y ,x {(N ==-,那么集合N M 为( ) A .x=3 , y=-1 B .(3,-1) C .{3,-1} D .{(3,-1)}6.已知集合A ={}2,1,集合B 满足A B A = ,则集合B 有__________个。
7.某班共30人,其中15人喜爱篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________________________ 8. 若集合A B 、满足A B A = ,则A B 、的关系为_______________ 若集合A B 、满足A B A =,则A B 、的关系为_______________三、例题讲解:例1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合(U C A )∪(U C B )中的元素共有( )A.3个 B.4个 C.5个 D.6个例2. 已知集合{}2|6A x x x =-≤,{}a x x B ≥=|,求AB四、课后巩固:1、满足A ∪{a}={a,b,c}的集合A 的个数为( )A.1个B.2个C.3个D.4个 2、已知U ={x ∈N | x ≤ 7 },集合A ={3,5,7},集合B ={2,3,4,5},则( ) A. U C A ={1,2,4,6} B.(U C A )∩(U C B )={1,2,3,4,6} C.A ∩U C B =∅ D.B ∩U C A ={2,4} 3、集合M={x|2x 2+3ax+2=0},N={x|2x 2+x+b=0},M ∩N={21},则a+b=__________________.4、已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则 C u ( M N )=A. {5,7}B.{2,4}C.{2.4.8}D. {1,3,5,6,7} 5、集合M={(x,y )|x+y=2},N={(x,y )|x-y =4},则M ∩N =_______________.6、集合M ={x |-1≤x ≤2},N ={x|x -a ≥0},若M ∩N ≠∅,则实数a 的取值范围是_____________.7、已知集合{}1|≤=x x A ,{}a x x B ≥=|,且R B A = ,则实数a 的取值范围是_________8、若集合P ={1,2,3,m},Q ={m 2,3},满足P ∩Q=Q ,求m 的值.9、已知集合{}{}2125,3A m m B =--=,,且{}3AB =,求m 。