1 真空中的静电场习题详解

合集下载

大学物理题库-第5章 静电场习题(含答案解析)

大学物理题库-第5章 静电场习题(含答案解析)

真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。

当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。

设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。

《真空中的静电场》选择题解答与分析

《真空中的静电场》选择题解答与分析

12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。

你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。

错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。

3-1电磁-真空中的静电场 大学物理作业习题解答

3-1电磁-真空中的静电场 大学物理作业习题解答

dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯

r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8

真空中的静电场习题详解

真空中的静电场习题详解

习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。

空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Qi R L R πεπε-∆-; (B)2200,84Q L Qi R L R πεπε-∆-; (C)200,44Q L Qi R L Rπεπε∆; (D)200,44Q L Q Li R L RLπεπε-∆-∆。

答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。

由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R L πε∆,所以圆弧产生的场强为204OQ LE i R Lπε-∆=;又根据电势叠加原理可得04O Q U Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。

今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。

在球面上取两块相等的小面积S 1和S 2,其位置如图所示。

设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。

答案:D解:由高斯定理知0Φ=S q ε。

由于面积S 1和S 2相等且很小,场强可视为均匀。

根据场强叠加原理,120,0E E =<,所以12Φ0,Φ0=>。

3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B2∝2∝rRrR解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。

真空中的静电场(1、3)习题难点讲解

真空中的静电场(1、3)习题难点讲解

若球内无空腔,P点的电场为
E1

3 0
r
若空腔内填满体电荷密度为 的电荷,当
其单独存在时,P点的电场为
由电场叠加原理,得
E2


3 0
r
E

E1

E2

3 0
r

r

3 0
a
6.
en E2
h
E1
en
S E dS E1S E2S
(E1 E2 )S
dE 4 0a2 4 0a
dq dl rd sin
dE
1
40r 2

rd sin

d 40r sin
d

4 0a
指向 dq
指向 dq
这一对线元在O点的元 场强等值反向,相互抵 消。故所有电荷在O点 产生的场强为零。
4. 电荷密度为 Ar 的球体的电场
r
dl
R cos 2 R2 sind

40 R3
sin cosd

2 0
dS x d
O
R
E dE

2 sin cosd
2 0 0


1
sin2
2


20 2
0 4 0
3. 两根平行长直线间距为2a一端用半圆形线连起来。全线上均匀 带电。证明在圆心O处的电场强度为零。
0 20a
E2 y

4 0a
(sin 2
sin1 )
1


2
, 2




E2 y 4 0a E2 2 0a

习题讲解1:真空中的静电场习题讲解

习题讲解1:真空中的静电场习题讲解

解: (1)取圆环ds 2rdr, dq ds, 则 dE dqx 4 r x
2

3 2 2

E
0
R
2rdrx
4 r 2 x

3 2 2

x (1 ) 2 2 2 R x
E
0
R
2rdrx
4 r 2 x

3 2 2

x (1 ) 2 R2 x2
1 求均匀带电细棒中垂线上距O为y点的场强。 设棒长为 l , 电荷线密度为 解:由对称性可知,选用如图所示的坐标系,中垂面上 一点的场强沿y 方向,在x方向抵消。 y dx
4 0 r l 2 cos dx E y ( p) dE y 2 l 2 4 0 r
解:dq dl q q ad d a 0 0

0

a
dE
1 dq 1 q dE d 2 2 4 0 a 4 0 a 0
根据对称性, O处的电场强度方向向下
0
2
O
d E
d E d E
dE y dE cos E y dE y 1 q
S 上
计算无限大均匀带电平板(厚度为d、密度为 )的电场。
4


其中

E cos dS E cos dS E cos dS
前 后



E cos dS E cos dS

前 E cos dS 后 E cos dS 0 2

V0 0 q q VD 4 0 (3l ) 4 0l
C +q A

大学大学物理习题解答参考答案-一、真空中的静电场

大学大学物理习题解答参考答案-一、真空中的静电场

20XX年复习资料大学复习资料专业:班级:科目老师:一、日期:真空中的静电场一、 选择题:1.下列几个说法哪一个是正确的?(A ) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。

(B ) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。

(C ) 场强方向可由/F E =q 定出,其中q 为试验电荷的电量,q 可正可负,F 为试验电荷所受的电场力。

(D ) 以上说法都不正确。

[ ]2.关于静电场中某点电势值的正负,下列说法中正确的是:(A ) 电势值的正负取决于置于该点的试验电荷的正负。

(B ) 电势值的正负取决于电场力对试验电荷作功的正负。

(C ) 电势值的正负取决于电势零点的选取。

(D ) 电势值的正负取决于产生电场的电荷的正负。

[ ]3、某电场的电力线分布情况如图所示。

一负电荷从M 点移到N 点。

有人根据这个图作出下列几点结论,其中哪点是正确的?(A ) 电场强度N M E E <。

(B )电势N M U U <。

(C )电势能N M W W <。

(D )电场力的功A>0。

[ ]4、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A)F /q 0 比P 点处原先的场强数值大.(B)F /q 0 比P 点处原先的场强数值小.(C)F /q 0 等于原先P 点处场强的数值.(D)F /q 0 P 点处场强数值关系无法确定,[ ]5、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M 为:(A) F =0,M =0, (B) F =0,M ≠0,(C) F ≠0,M =0, (D) F ≠0,M ≠0, [ ]6、已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A ) 高斯面上各点场强均为零。

(B ) 穿过高斯面上每一面元的电通量均为零。

题解1-真空中的静电场(已修改)

题解1-真空中的静电场(已修改)

3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU

L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L

dq

4 r
0
1
L
R dq
L
r
P

dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd

d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。

空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ](A)200,44Q L Qi R L Rπεπε-∆- ;(B)2200,84Q L Qi R L Rπεπε-∆- ;(C)200,44Q L Qi R L Rπεπε∆ ; (D)200,44Q L Q Li R L RLπεπε-∆-∆ 。

答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。

由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R Lπε∆,所以圆弧产生的场强为204O Q L E i R L πε-∆= ;又根据电势叠加原理可得04OQU Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。

今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。

在球面上取两块相等的小面积S 1和S 2,其位置如图所示。

设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。

答案:D解:由高斯定理知0Φ=S q ε。

由于面积S 1和S 2相等且很小,场强可视为均匀。

根据场强叠加原理,120,0E E =<,所以121122Φ0, Φ0S S E dS E dS =⋅==⋅>⎰⎰。

3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。

4.如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ。

在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接。

设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为 [ ]2∝2∝rRrR(A )00,ln 2a E U r λε==π; (B )00, ln 22bE U r r λλεε==ππ; (C )00,ln 2b E U a λε==π; (D )00, ln 2π2bE U r aλλεε==π。

答案:C解:由高斯定理知内圆柱面里面各点E =0,两圆柱面之间02πE rλε=,则P 点的电势为 00d 0d d ln 2π2b a brrabU E r r r r aλλεε==+=π⎰⎰⎰5.在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为(A; (B; (C )06Qaεπ; (D )012Qaεπ。

答案:B解:正方体中心到顶角处的距离r =,由点电荷的电势公式得04πQ U r ε=二、填空题1.真空中两平行的无限长均匀带电直线,电荷线密度分别为λ-和λ,点P 1和P 2与两带电线共面,位置如图,取向右为坐标正方向,则P 1和P 2两点的场强分别为和。

答案:10E i d λπε=;203E i dλπε=- 。

解:无限长均匀带电直线,在空间某点产生的场强02E aλπε=,方向垂直于带电直线沿径向向外(0λ>)。

式中a 为该点到带电直线的距离。

由场强叠加原理,P 1,P 2点的场强为两直线产生的场强的矢量和。

在P 1点,两场强方向相同,均沿x 轴正向;在P 2点,两场强方向相反,所以100022E i i i d d d λλλπεπεπε=+= ; 20002323E i i i d d dλλλπεπεπε=-=-⨯2.一半径为R ,长为L 的均匀带电圆柱面,其单位长度带电λ。

在带电圆柱的中垂面上有一点P ,它到轴线距离为()r r R >,则P 点的电场强度的大小:当r L <<时,E =_____________;当r L >>时,E =_____________。

答案:02rλπε;204Lr λπε。

解:当r L <<时,带电体可视为无限长均匀带电圆柱面;当r L >>时,带电体可视为点电荷。

3.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径。

A 、B 两处各放有一点电荷,电量分别为+q 和-q 。

若把单位正电荷从O 点沿OCD 移到D 点,则电场力所做的功为______________;把单位负电荷从D 点沿AB 延长线移到无穷远,电场力所做的功为_______________。

xλ+答案:lq 06πε;lq 06πε。

解:电场力做功与路径无关。

(1)0004346D q q q U l llπεπεπε--=+=,00044O q q U llπεπε-=+=,00()1066O D q qA Q U U l l πεπε⎛⎫-=-=⨯-= ⎪⎝⎭ (2)00()1066D q qA Q U U l lπεπε∞⎛⎫-''=-=-⨯-=⎪⎝⎭4.如图所示,两同心带电球面,内球面半径为15cm r =,带电荷81310C q -=⨯;外球面半径为220cm r =, 带电荷82610C q -=-⨯。

设无穷远处电势为零,则在两球面间另一电势为零的球面半径r =__________。

答案:10cm解:半径为R 的均匀带电球面的电势分布为()()00 4 4p qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩。

所以,当12r r r <<时,1200244r q q U rr πεπε=+。

令0r U =,得cm 10=r 。

5.已知某静电场的电势分布为2281220U x x y y =+-,则场强分布E =_______________________________________。

答案:()()28241240E xy i x y j =--+-+解:电场强度与电势梯度的关系为k zU j y U i x U E∂∂-∂∂-∂∂-=。

由此可求得 ()()28241240E xy i x y j =--+-+三、计算题1.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端为d 的P 点的电场强度。

答案:()04q d L d επ+ 解:带电直杆的电荷线密度为/q L λ=。

设坐标原点O 在杆的左端,在x 处取一电荷元/dq dx qdx L λ==,它在P 点的场强为l2lQ -()()2200d d d 44q q x E L d x L L d x πεπε==+-+-总场强 ()2000d 4()4Lqx qE L L d x d L d πεπε==++⎰-方向沿x 轴,即杆的延长线方向。

2.如图所示,一半径为R 的半圆环,右半部均匀带电Q +,左半部均匀带电Q -。

问半圆环中心O 点的电场强度大小为多少?方向如何? 答案:220QR πε,方向水平向左。

解:本题运用点电荷公式对电荷连续分布的带电体在空间产生的电场进行计算。

如图所示,取电荷元d d (/2)Qq R Rθπ=,则电荷元在中心O 点产生的场强为022002d 1d 1d 44Qq E R R θππεπε==由对称性可知⎰=0d Oy E 。

所以()2/200222222000d d cos 2cos d sin 2Ox Q QQE E E RRR ππθθθθπεπεπε=====⎰⎰⎰方向沿x -方向,即水平向左。

3.图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2。

设无穷远处为电势零点,求该带电系统的场强分布和空腔内任一点的电势。

答案:(1)110 ()E r R =<,33121220() ()3r R E R r R r ρε-=<<,33213220()()3R R E r R rρε-=>; (2)()222102U R R ρε=-。

解:(1)根据电场分布的球对称性,可以选以O 为球心、半径为r 的球面作高斯面,根据高斯定理即可求出:2int 04/E r q πε⋅=。

在空腔内(1r R <):i n t 0q =,所以10E =在带电球层内(12R r R <<):33int 14()3q r R πρ=-,331220()3r R E r ρε-=在带电球层外(2r R >):33int 214()3q R R πρ=-,332132()3R R E r ρε-= (2)空腔内任一点的电势为 ()12123333221212122000()()d 0d d d 332R R rrR R r R R R U E r r r r R R r r ρρρεεε∞∞--==++=-⎰⎰⎰⎰ 还可用电势叠加法求空腔内任一点的电势。

在球层内取半径为r r dr →+的薄球层,其电量为2d 4d q r rρπ=⋅d q 在球心处产生的电势为 00d d d 4q r rU r ρεε==π 整个带电球层在球心处产生的电势为 ()212200210d d 2R R U U r r R R ρρεε===-⎰⎰因为空腔内为等势区(0E =),所以空腔内任一点的电势U 为()2202102U U R R ρε==- 4.两个带等量异号电荷的均匀带电同心球面,半径分别为10.03 m R =和20.10 m R =。

已知两者的电势差为450 V ,求内球面上所带的电荷。

答案:-92.1410 C ⨯解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ=(12R r R <<)两球的电势差 2211122001211d 44R R R R Q dr Q U E r r R R εε⎛⎫===- ⎪ππ⎝⎭⎰⎰所以 -901212214 2.1410C R R U Q R R επ==⨯-5.一平面圆环,内外半径分别为R 1,R 2,均匀带电且电荷面密度为σ+。

(1)求圆环轴线上离环心O 为x 处的P 点的电势;(2)再应用场强和电势梯度的关系求P 点的场强;(3)若令2R →∞,则P 点的场强又为多少?答案:(1)02P U σε=; (2)02P E σε=;(3)当2R →∞,p E =解:(1)把圆环分成许多小圆环。

相关文档
最新文档