大学物理实验报告(清华大学)示波器的原理和使用

合集下载

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告大学物理实验示波器的使用实验报告引言:示波器是物理实验中常用的仪器之一,它能够将电信号转化为视觉信号,帮助我们观察和分析电信号的特性。

本实验旨在通过使用示波器,掌握其基本操作和原理,并进一步了解电信号的特性和测量方法。

实验目的:1. 熟悉示波器的基本结构和操作方法;2. 学会使用示波器观察和测量不同类型的电信号;3. 掌握示波器的测量误差分析方法。

实验仪器和材料:1. 示波器;2. 信号发生器;3. 电阻、电容等元器件。

实验原理:示波器是一种能够显示电信号波形的仪器,其基本原理是将电信号转化为可视化的波形。

示波器主要由垂直放大器、水平放大器、时间基准、触发电路和显示屏等组成。

实验步骤:1. 将示波器与信号发生器连接,调节信号发生器的频率和幅度,使其输出一个正弦波信号。

2. 打开示波器电源,调节垂直放大器和水平放大器的增益和偏移量,使波形在显示屏上合适地显示。

3. 调节时间基准,使波形在水平方向上适当延展或压缩。

4. 调节触发电路,使波形在显示屏上稳定显示。

实验结果:通过实验,我们成功地观察到了不同频率和幅度的正弦波信号,并通过示波器的测量功能,得到了相应的波形参数。

我们发现,随着频率增加,波形的周期减小,频率越高,波形越密集;而随着幅度增加,波形的振幅增大,幅度越大,波形越高。

误差分析:在实验中,示波器的测量误差主要来自示波器本身的精度和人为操作的不准确性。

示波器的精度受到其分辨率、带宽和噪声等因素的影响。

而人为操作的不准确性则可能导致示波器参数的调节不准确,进而影响到测量结果的准确性。

实验总结:通过本次实验,我们初步掌握了示波器的基本操作方法和原理,并成功地观察和测量了不同类型的电信号。

同时,我们也意识到了示波器的测量误差对实验结果的影响,因此在实际应用中需要注意减小误差,提高测量的准确性。

展望:示波器作为一种重要的电子测量仪器,在科学研究和工程实践中具有广泛的应用前景。

示波器原理与使用实验报告

示波器原理与使用实验报告

实验报告:示波器原理与使用一、实验目的1. 理解示波器的原理及使用方法。

2. 学习观察模拟信号的波形。

3. 掌握示波器的正确操作。

二、实验原理示波器是一种常用的电子测量仪器,可以显示电信号的变化过程。

其基本原理是利用电子束在垂直方向上扫描,以实现信号的实时显示。

当信号通过一个耦合电路进入示波器后,电子束会受到调制,形成可识别的波形。

然后,这些波形会在荧光屏上显示出来。

三、实验步骤1. 准备实验:连接示波器、信号源、被测电路等设备。

确认设备正常工作,如电源、调节旋钮等。

2. 调整示波器的垂直和水平偏转:调整垂直偏转旋钮,使荧光屏上的光点上下移动;调整水平偏转旋钮,使光点左右移动。

3. 调整扫描速度:根据信号频率,调整扫描速度,使波形稳定显示。

4. 调整信号幅度:通过调整信号源的幅度,使波形在合适的位置显示。

5. 观察并记录实验结果:观察并记录不同信号源的波形,记录信号频率、幅度等参数。

6. 关闭设备,整理实验数据。

四、实验结果与分析在本次实验中,我们使用了不同频率和幅度的正弦波信号作为输入,观察了示波器上显示的波形。

实验结果表明,示波器能够清晰地显示出输入信号的波形,并且可以方便地调整信号幅度和扫描速度。

此外,我们还发现示波器的灵敏度和稳定性都非常出色,可以满足各种实验需求。

五、实验总结通过本次实验,我们深入了解了示波器的原理与使用方法。

在实际操作过程中,我们学会了如何调整示波器的垂直和水平偏转、扫描速度以及信号幅度等参数。

通过观察不同信号源的波形,我们进一步理解了电信号的变化过程。

此外,我们还认识到示波器在电子测量领域的重要地位,为后续的实验和科研工作打下了坚实的基础。

在未来的实验中,我们可以继续探索示波器的其他功能和应用场景。

例如,通过接入不同的电路元件,观察不同类型信号的波形;或者利用示波器进行频率响应分析、相位差测量等复杂实验。

总之,示波器作为一种重要的电子测量仪器,将在我们的科研工作中发挥越来越重要的作用。

示波器使用大学物理实验报告

示波器使用大学物理实验报告

示波器使用大学物理实验报告一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,学会使用示波器测量电压、周期和频率等物理量。

3、观察正弦波、方波、锯齿波等常见信号的波形特征。

二、实验仪器示波器、函数信号发生器、探头、直流电源等。

三、实验原理1、示波器的结构示波器主要由示波管、垂直偏转系统、水平偏转系统、扫描及同步系统、电源等部分组成。

示波管是示波器的核心部件,它由电子枪、偏转板和荧光屏组成。

电子枪发射电子束,经过偏转板的作用,使电子束在荧光屏上产生偏转,从而显示出波形。

2、示波器的工作原理(1)垂直偏转系统:输入的信号电压加到垂直偏转板上,使电子束在垂直方向上产生偏转,偏转的大小与输入信号的电压成正比。

(2)水平偏转系统:锯齿波电压加到水平偏转板上,使电子束在水平方向上匀速移动,形成时间基线。

(3)扫描及同步系统:扫描电压的周期与输入信号的周期相同或成整数倍关系时,荧光屏上就能稳定地显示出输入信号的波形。

四、实验内容及步骤1、熟悉示波器的面板对照示波器的说明书,熟悉示波器面板上各个旋钮和按键的功能,包括垂直灵敏度调节、水平扫描速度调节、触发方式选择、信号输入通道选择等。

2、测量直流电压(1)将示波器的输入通道选择为直流(DC)耦合。

(2)将探头连接到直流电源的输出端,调节垂直灵敏度和水平扫描速度,使直流电压的波形在荧光屏上显示合适。

(3)读取示波器上显示的电压值,并与直流电源的实际输出电压进行比较。

3、测量正弦波信号的电压和周期(1)将函数信号发生器的输出设置为正弦波,调节频率和幅度。

(2)将探头连接到函数信号发生器的输出端,选择合适的垂直灵敏度和水平扫描速度,使正弦波的波形在荧光屏上显示清晰。

(3)使用示波器的测量功能,测量正弦波的峰峰值电压和周期。

根据峰峰值电压计算有效值电压,并与函数信号发生器设置的参数进行比较。

4、观察方波和锯齿波信号(1)将函数信号发生器的输出分别设置为方波和锯齿波,调节频率和幅度。

大学物理实验报告 示波器

大学物理实验报告 示波器

大学物理实验报告示波器大学物理实验报告:示波器引言在大学物理实验中,示波器是一种重要的仪器,用于测量和显示电信号的波形。

它在电子学、通信、电力等领域中发挥着重要作用。

本实验旨在通过对示波器的使用和原理的了解,掌握示波器的基本操作技能,并进一步认识电信号的特性。

一、示波器的基本原理示波器是一种电子测量仪器,能够以波形的形式显示电信号的幅度、频率、相位等特性。

它的基本原理是利用电子束在荧光屏上扫描形成图像。

示波器的主要组成部分包括电子枪、偏转系统、时间基准、触发电路和显示屏。

二、示波器的基本操作1. 示波器的开机与调节首先,将示波器与电源连接,并打开电源开关。

然后,调节亮度、对比度和聚焦度,使显示屏上的波形清晰可见。

2. 示波器的通道设置示波器通常具有多个通道,可以同时测量多个信号。

在本实验中,我们将使用单通道示波器。

首先,将信号源与示波器的输入端连接。

然后,调节示波器的通道开关,选择要测量的通道。

3. 示波器的触发设置触发电路是示波器中一个重要的功能,它用于控制示波器何时开始扫描信号。

在本实验中,我们将使用自由运行触发模式。

首先,调节触发电路的阈值,使其与输入信号的幅度相匹配。

然后,选择触发源,通常为信号源的同步输出。

4. 示波器的时间基准设置时间基准是示波器中用于确定时间轴刻度的参考信号。

在本实验中,我们将使用内部时间基准。

首先,选择合适的时间基准模式,如连续或单次。

然后,调节时间基准的时间/频率刻度,使其适应所测量的信号。

5. 示波器的测量功能示波器通常具有多种测量功能,如幅度、频率、相位等。

在本实验中,我们将主要关注信号的幅度测量。

使用示波器的测量功能,可以直接读取信号的峰值、峰峰值、平均值等参数。

三、示波器的应用示波器在科学研究、工程实践和教学中具有广泛的应用。

以下是一些常见的应用领域:1. 电子学和通信在电子学和通信领域,示波器常用于测量和分析电路中的信号波形。

它可以帮助工程师诊断和解决电路故障,优化电路设计。

示波器的原理和使用实验报告

示波器的原理和使用实验报告

示波器的原理和使用实验报告示波器的原理和使用实验一. 示波器简介示波器是能在屏幕上以图形方式显示、观测被测信号的瞬时值轨迹变化情况的仪器。

它是一种最常用的电子测量/电工测量仪器。

二. 示波器的基本组成电子示波器由示波管、垂直偏转系统、水平偏转系统和主机等部分组成。

(1)示波管示波管是一种特殊的电子管,是示波器一个重要组成部分。

示波管由电子枪、偏转系统和荧光屏3个部分组成。

(2)垂直偏转系统垂直偏转系统包括垂直衰减器和垂直放大器。

它将垂直输人信号衰减或放大到一定幅度,输出推挽信号,加到示波管的垂直偏转板,使电子射线的垂直偏转距离正比于被测信号的瞬时值。

由于示波管的偏转灵敏度甚低,所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的形。

(3)水平偏转系统水平偏转系统从外触发输人端经触发电路、扫描电路、水平放大器到示波管的水平偏转板。

触发电路将被测信号或外触发输人信号置换成触发脉冲启动扫描电路。

由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的形。

(4)电源供给电路电源由高压电源和低压电源两部分组成,供给示波管及各组成部分所需要的直流电压和灯丝电压。

消隐与增辉电路用来传送和放大增辉和消隐信号。

三. 示波器的工作原理示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点,在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线,便于人们研究各种电现象的变化过程。

假设示波管的加速电压为U1,偏转电压为U2,偏转点击长为L,极板间距为d,偏转电极右端到荧光屏的距离为L 1,电子的质量为m ,带电量为e。

首先,在加速场中,电场力对电子做功W=eU1。

根据功能定理,电子在加速场中获得了。

接着电子以初速进入偏转电场,在电场力的作用下做a=eU2/md 的类平抛运动,经过时间t=L/v,电子飞离偏转电场。

示波器的原理及使用实验报告

示波器的原理及使用实验报告

示波器的原理及使用实验报告示波器的原理及使用实验报告引言:示波器是一种常用的电子测量仪器,广泛应用于电子工程、通信工程、医学、物理等领域。

本实验旨在通过对示波器的原理及使用进行研究,深入了解示波器的工作原理及使用方法。

一、示波器的原理示波器是一种能够显示电压随时间变化的仪器。

其原理基于电压信号的变化通过垂直放大器放大后,再通过水平放大器进行时间基准的调整,最终通过示波管将信号以波形的形式显示出来。

1. 垂直放大器:垂直放大器是示波器中的核心部分,其作用是将输入的电压信号放大到适合示波管显示的范围。

垂直放大器通常由放大器、直流耦合、交流耦合和可变增益控制等组成。

2. 水平放大器:水平放大器用于调整时间基准,控制波形在示波器屏幕上的水平位置和宽度。

水平放大器通常由时基控制、触发控制和扫描控制等组成。

3. 示波管:示波管是将放大后的电压信号以波形的形式显示在屏幕上的部分。

示波管通常由电子枪、偏转板和荧光屏等组成。

电子枪发射出的电子束经过偏转板的控制,最终在荧光屏上形成波形。

二、示波器的使用方法在实际使用示波器时,需要注意以下几个方面:1. 连接电路:首先需要将待测电路与示波器进行连接,确保电路正常工作并能够输出信号。

2. 调整垂直放大器:根据待测信号的幅度范围,适当调整垂直放大器的增益,使得波形能够在屏幕上完整显示。

3. 调整水平放大器:根据待测信号的频率范围,调整水平放大器的时间基准,使得波形在屏幕上的位置和宽度合适。

4. 设置触发源:示波器的触发功能可以使波形在屏幕上稳定显示。

根据待测信号的特点,设置合适的触发源和触发电平。

5. 观察波形:通过示波器的屏幕,可以清晰地观察到待测信号的波形。

可以通过调整示波器的控制按钮,如水平扫描控制、垂直偏移控制等,来获取更详细的波形信息。

6. 数据分析:示波器还可以通过测量功能,对波形的各种参数进行测量和分析,如频率、幅度、相位等。

结论:通过本次实验,我们深入了解了示波器的工作原理及使用方法。

示波器的原理及使用实验报告

示波器的原理及使用实验报告
示波器是一种广泛应用于电子测量和实验的仪器,它的原理是利用电子束在屏幕上绘制出被测信号波形的图像。

在使用示波器时,首先需要将被测量的电信号输入到示波器的输入端,并通过控制示波器的各种功能,如扫描速度、垂直增益和触发等,来获得被测信号的波形图像。

示波器通常包括水平和垂直两个方向上的控制器。

在水平方向上,示波器负责控制电子束的水平扫描速度,这决定了示波器屏幕上绘制出的波形图像的时间轴。

在垂直方向上,示波器负责控制电子束的垂直放大倍数,这决定了示波器屏幕上绘制出的波形图像的幅度轴。

此外,示波器还包括触发器,用于确定绘制波形图像的起始位置和终止位置。

使用示波器进行实验时,首先需要选择适当的控制参数,如水平扫描速度和垂直放大倍数,以确保绘制出的波形图像具有足够的清晰度和准确性。

然后,将被测信号输入到示波器的输入端,并使用触发器确定绘制波形图像的起始位置。

最后,观察屏幕上绘制出的波形图像,分析被测信号的特性,并根据需要进行进一步的处理和分析。

总之,示波器是一种重要的电子测量仪器,它的使用广泛应用于各种实验和电子工程中,能够帮助用户快速准确地分析和测量电信号,并为进一步的分析和处理提供有力的支持。

大学物理实验示波器的使用

2.12示波器的使用示波器又称阴极射线示波器,是一种用途极为广泛的电子仪器。

它可用于观测和测量随时间变化的电信号波形,进行电信号特性测试包括频率、相位、电压(或电流)和功率等,凡是能转化为电压的电学量(电流、功率、阻抗)和非电量(如温度、位移、速度、压力、光强、磁场等)都可以用示波器进行测量。

在工业上常用示波器探伤和检验产品质量,医学上用示波器诊断病灶。

至于无线电制造工业和电子测量技术等领域,示波器更是不可缺少的测试设备。

【实验目的】(1)了解示波器的基本结构和工作原理(2)掌握示波器的使用(3)利用李莎如图形测量电压的频率【实验原理】示波器的型号和规格有很多,但基本结构由示波管、扫描同步电路、放大电路和电源电路四个部分组成,如图1所示。

图1示波器结构框图1.示波管它是一个抽成高真空的密封玻璃管,由电子枪、偏转板和荧光屏组成,如图2所示。

电子枪:它由灯丝F,阴极K,栅极G,第一阳极A1,第二阳极A2构成,其主要功能是发射一束强度可调,经过聚焦的高速电子流。

图2示波管将灯丝加电,灯丝会发热,使阴极温度升高,从而发射电子。

栅极位于第一阳极和阴极之间,相对于阴极加数十伏的负电压,调节负电压的大小,就可以调节电子束的强度,从而控制荧光屏光点的亮度。

阳极A 1、A 2相对阴极K 分别加上几百伏和上千伏的正电压。

调节第一阳极A 1,可使电子在荧光屏上会聚成一个很细小的光点。

第二阳极所加的电压也称为加速电压,它决定电子进入偏转板时的速度,起辅助聚焦的作用。

阳极A 1和A 2组成一个电子束聚焦系统。

偏转板:它有两对相互垂直的偏转板,既一对垂直偏转板(与Y 轴对应)及一对水平偏转板(与X 轴对应)。

如果在水平方偏转板加电压,可使光点沿水平方向移动;如果在垂直偏转板上加电压,可使光点沿垂直方向移动。

可见两对偏转板,可以控制光点在整个荧光屏上的移动。

2.扫描和同步电路一般情况下,是从Y 轴输入周期性的电压信号,设周期性电压为V=V 0sinωt,如何才能将这样的电压稳定地显示在荧光屏上?如果只在Y 轴上加电压,光点只在垂直方向来回移动,我们看到的只是垂直方向上的一条亮线。

大学物理实验上 实验2 示波器的原理和使用

一、实验目的1.了解示波器的原理和结构;2.掌握示波器的使用方法;3.学习如何通过示波器观察电路中的波形。

二、实验原理示波器是一种用于观察电信号的仪器,它可以将电信号转换成可视化的波形,以方便工程师进行测量和分析。

示波器的基本原理是利用电子束在荧光屏上扫描,从而形成波形图像。

示波器通常由以下几个部分组成:1.垂直放大器:用于放大电压信号,使其可以被荧光屏显示。

2.水平放大器:用于控制扫描线的速度和位置,以确定波形的时间基准。

3.触发器:用于控制波形的起始位置,以确保波形能够稳定地显示。

4.荧光屏:用于显示波形图像。

示波器的使用方法如下:1.连接被测试电路和示波器:将被测试电路的信号源连接到示波器的输入端口。

2.调整垂直放大器:根据信号的幅值调整垂直放大器的增益,以确保波形可以完整地显示在荧光屏上。

3.调整水平放大器:根据信号的频率调整水平放大器的时间基准,以确保波形可以在荧光屏上稳定地显示。

4.调整触发器:根据信号的特点调整触发器的阈值和延迟时间,以确保波形可以在荧光屏上稳定地显示。

5.观察波形:通过荧光屏观察电路中的波形,可以分析电路中的问题并进行调试。

三、实验过程1.连接被测试电路和示波器:将被测试电路的信号源连接到示波器的输入端口。

2.调整垂直放大器:根据信号的幅值调整垂直放大器的增益,以确保波形可以完整地显示在荧光屏上。

3.调整水平放大器:根据信号的频率调整水平放大器的时间基准,以确保波形可以在荧光屏上稳定地显示。

4.调整触发器:根据信号的特点调整触发器的阈值和延迟时间,以确保波形可以在荧光屏上稳定地显示。

5.观察波形:通过荧光屏观察电路中的波形,可以分析电路中的问题并进行调试。

四、实验结果与分析在实验过程中,我们通过示波器观察了几个电路中的波形,例如正弦波、方波、三角波等。

通过观察波形,我们可以了解电路中的信号特征,例如幅值、频率、相位等。

同时,我们还可以分析电路中的问题,例如信号失真、噪声干扰等,并进行调试。

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告一、实验目的及要求:〔1〕了解示波器的根本工作原理。

〔2〕学习示波器、函数信号发生器的使用方法。

〔3〕学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:1)示波器的根本组成局部:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。

亮点在偏转板电压的作用下,位置也随之改变。

在一定范围内,亮点的位移与偏转板上所加电压成正比。

3)示波器显示波形的原理:如果在某轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而某轴偏转板不加任何电压,那么电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。

我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在某轴偏转板上加锯齿形电压,那么荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。

如果正弦波与锯齿波的周期〔频率〕相同,这个正弦图形将稳定地停在荧光屏上。

但如果正弦波与锯齿波的周期稍有不同,那么第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。

要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与某轴偏转板电压频率的比值必须是整数。

示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步〞。

在人工调节接近满足式频率整数倍时条件下,再参加“同步〞的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4)李萨如图形的根本原理:如果同时从示波器的某轴和y轴输入频率相同或成简单整数比的两个正弦电压,那么屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档