小学奥数精讲:对策问题之必胜策略

合集下载

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略小学奥数精讲:必胜策略对策问题知识点总结:1.一取余制胜(取棋子,报数游戏)1.1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)如果有余数,先拿必胜,拿掉余数,之后总与对手凑成1+n即可。

如果无余数,则后拿,总与对手凑成1+n即可。

1.2.每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

2.抢占制胜点(倒推法)2.1.能一步到棋子的位置均是不能走的地方即负位2.2.处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

3.对称法3.1.同等情况下,模仿对方步骤可以达到制胜目的。

3.2.不同等情况下,创造对等局面方可制胜。

例题:1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16……4,有余数,先拿必胜。

甲先拿4个;乙拿a个,甲就拿6-a个。

2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10,无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜。

3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124……7,有余数,先走必胜。

甲先走7格;乙走a格,甲就拿8-a个必胜。

4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法简介本文档旨在介绍一些小学奥数中的对策问题以及必胜方法。

学生经常面临各种各样的题型和挑战,本文将提供一些建议和策略,帮助学生克服困难,取得好成绩。

1. 阅读题阅读题是小学奥数中常见的问题之一。

解决阅读题的关键在于提高阅读理解能力和速度。

以下是一些必胜方法:- 阅读练:定期进行阅读练,包括故事书、报纸、杂志等,提高阅读理解能力。

- 注意时间管理:在考试中,合理分配时间给每个阅读题,不要花太多时间在一个问题上。

- 理解关键信息:在阅读过程中,学会提取和理解关键信息,帮助快速回答问题。

2. 计算题计算题需要学生具备强大的计算能力和数学思维。

以下是一些必胜方法:- 熟悉基本运算:熟练掌握加减乘除等基本运算,并做到心算快速准确。

- 多做题:通过不断练提高计算能力和速度,遇到较难的计算题时也能迅速解决。

- 运用技巧:学会利用一些数学技巧和公式简化计算步骤,提高效率。

3. 推理题推理题是需要学生进行逻辑思维和推理的题型。

以下是一些必胜方法:- 分析题目:仔细读题,理解问题背景和要求,分析题目中的条件和关系。

- 列清单:对于复杂的推理题,可以列清单来记录和整理问题中的信息和条件,帮助推理过程。

- 多实践:通过解决各种推理题来锻炼逻辑思维能力,提高解题的准确性和速度。

4. 选填题选填题需要根据题目要求,从给定的选项中选择和填入正确的答案。

以下是一些必胜方法:- 仔细阅读选项:在填写答案之前,仔细阅读选项并理解每个选项的含义。

- 排除法:通过排除一些明显错误的选项,缩小答案的范围,并选择最合适的答案。

- 注意题干:注意题干中的提示和关键信息,帮助选取正确的答案。

结论通过掌握上述对策问题的必胜方法,学生可以在小学奥数中取得更好的成绩。

不仅要提高知识水平,还要培养良好的研究惯和解题思路。

多做练,注重理解和分析,相信每个学生都能在小学奥数中取得成功。

以上是关于小学奥数对策问题之必胜方法的介绍,希望对学生们有所帮助。

(完整版)第三讲必胜策略问题.docx

(完整版)第三讲必胜策略问题.docx

第三讲数学游戏中的必胜策略知识要点:做数学游,如果你掌握了一些策略,就一定能取。

“数”游就是两个人按照一定的流数,并将所的数逐步累加,先到定数的一方;“ 数”游与“ 数”游似,只是先到定数的一方失。

然,里藏着数学奥秘。

例题精选:例1.甲乙二人流数。

从 1 起,每人每次可一个数或两个数。

能得 20 就。

先和同学玩一玩个游。

如果由你先数,你能保?点:可以从 20 往前想,如果想,自己不要19 和 18。

因 19,方 20 一个数就了; 18,方两个数19、 20 就了。

,要想(到20)必到 17。

同理,要想到17,就要争取到14;要想到 14,就要争取到11;要想到 11,就要争取到8;要想到 8,就要争取到5;要想到 5,就要争取到2;因此,先到 2。

方 3,自己 4、5;方 3、4,自己 5。

就又到了 5。

依次方法下去,就一定会了。

例2.甲乙二人流数。

从 1 起,每人每次最多可以 3 个数。

能得 30 就。

点:是游“ 30”。

仍可以采用从后往前想的方法。

要想到 30,就要争取到 26;要想到 26,就要争取到 22;⋯⋯因此,先到 2。

再看方数情况依次 6、 10、14、18、22、26、 30 就可。

例3.按照例 1 的数方法,如果先“ 20”的一方失,怎保?点:就是“ 数游”。

20 就要 19,并且依次 16、13、 10、7、4、1。

因此,要先“ 1”,再根据方数情况依次 4、 7、 10、13、16、19,就把 20 了方。

根据上面三个例,你什么律?例4.按照例 1 的数方法,如果先“ 30”的一方,怎保?点:因每次最多两个数,所以要到“ 30”就要一次 27、24、 21、18、15、 12、9、6、3。

而先数的一方最多只能到“ 2”,因此,可以方先数,再看方数情况依次到3、 6、 9⋯⋯例5.甲乙二人流在方格中移棋子。

如下:(1)只能向右移;(2)每次只能移一格或两格;(3)占最后一格的。

小学奥数之对策问题

小学奥数之对策问题

小学奥数之对策问题【典型例题】【例1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

【试一试】1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数。

把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?【例2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的获胜,还是后取的获胜?怎样取法才能取胜?【试一试】1、甲、乙两人从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能取胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。

甲有获胜的可能吗?取胜的策略是什么?【例3】在黑板上写有999个数:2,3,4,……1000。

甲、乙两人轮流擦去黑板上的一个数(甲先擦、乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。

谁能必胜?必胜的策略是什么?【试一试】1、甲、乙两人轮流从分别写有1,2,3,……,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走第97张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?2、两个人进行如下游戏,即两个人轮流从数列1,2,3,……,100,101中勾去九个数。

经过这样的11次删除后,还剩下两个数。

如果这两个数的差是55,这时判第一个勾数的人获胜。

问第一个勾数的人能否获胜?获胜的策略是什么?【例4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。

小学奥数精讲对策问题

小学奥数精讲对策问题

小学奥数精讲对策问题本讲的重点和难点是对策问题,虽然涉及的课本知识不多,但是技巧性比较强。

对策问题通常在游戏中运用较多,而用数学的观点和方法来研究取胜策略就是对策问题。

例1中,桌上放着100根火柴棒,甲、乙二人轮流取,每次取1—3根,规定谁取到最后1根谁获胜。

分析可得,谁能让火柴棒最后剩4根,谁就获胜。

因为对方不论拿走几根,剩下的必能一次拿完。

只要让剩下的火柴棒的根数是4的倍数,就可以保证获胜。

由于100是4的倍数,所以后取的人获胜。

因此,乙后取一定获胜。

甲拿n根,乙就拿(4-n)根,这样乙一定可以拿到最后1根而获胜。

例2中,有一排500个空格,预先在左边第1格中放一枚棋子,然后由甲、乙两人轮流走。

甲先乙后。

每人走时,可以将棋子向右移动1~6格,规定谁将棋子走到最后1格谁输。

甲为了必胜,第一步走1格,以后,乙走n格,甲就走(7-n)格,甲一定获胜。

因为要控制取胜就必须保证自己能将最后1格留给对方,自己就要能走到倒数第二格中。

这样一共能走的格子数只有500-1-1=498格。

498÷7=71……1.例3中,甲、乙二人轮流在黑板上写1~10的自然数,规定不能在黑板上写已写过的数的因数,并不重复,最后无数可写的人失败。

如果甲先写,双方都采用最佳方案,那么谁一定获胜?甲先写,甲一定获胜。

甲必须先写6,这样6的因数1,2,3,6就不能再写了。

将剩下的六个数分为4和5,7和9,8和10三组,当乙写这六个数中的某数时,甲就写与它同组的另一数,必可获胜。

例4中,在一个3×3的方格纸中,甲、乙两人轮流往方格中写1,3,4,5,6,7,8,9,10这九个数中的一个,数字不能重复。

最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜。

为甲找出一种必胜的方法,需要让甲和乙都不能取到数字1和2,因为它们不能同时出现在上下两行和左右两列中。

因此,甲先写数字5,接下来,无论乙写什么数字,甲都可以写与之对称的数字来保证自己得分更高。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

必胜策略 奥数题教案

必胜策略 奥数题教案

必胜策略奥数题教案
奥数题是一门融智力和思维方式于一体的学科,学会了奥数题可以提高人的智力水平,更加有利于把握解决问题的能力。

如何更加积极的学习奥数题,并取得良好的学习成绩,是许多家长和学生时刻关注的焦点。

本文就以《必胜策略数题教案》为题,分享教学成果,帮助家长和学生掌握学习奥数题的有效策略。

首先,要让学生充分了解奥数题训练的内容,把握不同题型特点,更好的理解部分题目难点。

对于一些比较复杂的题目,要求学生注重分析和总结,写出正确的解题步骤和正确的解答。

其次,要掌握奥数题的解题技巧,不断提高学生的思维能力和创造性。

学会了解题、分析题,才能更加快速的解决问题,提高自己的学习效率。

另外,除了把解题技巧训练到极致,还要拓展学生的思维,激发学生的兴趣。

通过课堂游戏,联系实际,让学生认识到奥数题的有趣,可以增强学习的活跃性。

此外,家长也应加强日常的督促。

家长要配合老师,给孩子提供良好的学习环境,实施集中学习和放松学习相结合,避免学习状态短暂陷入低潮。

正确的学习方法可以让孩子更快、更好地掌握奥数知识,有效提高学习成绩。

以上,就是《必胜策略数题教案》,希望能够帮助家长和学生掌握学习奥数题的有效策略,取得良好的学习成绩。

总之,要想在学习奥数题方面取得好成绩,家长和学生可以按照以上教案,制定出一个谨慎详细的学习计划,全面细致地进行奥数题训练,攻克难点,取得必胜。

对策问题五六年级奥数知识讲解

对策问题五六年级奥数知识讲解
2.有1999个球,甲、乙两人轮流取 球,每人每次至少取一个,最多取5 个,取到最后一个球的人为输。如果 甲先取,那么谁将获胜?
3、有100根火柴,甲乙两人轮流玩火 柴游戏,规定每人每次可取10根以内 的任何火柴(包括10根),以谁取完 火柴使对手无火柴可取者胜,如果甲 先取,问谁一定能获胜?他怎样才能 获胜?
请同学们想一想,如果在上面玩法中,两堆 火柴数目一开始就相同,例如两堆都是35根火 柴,那么先取者还能获胜吗?
例7 有3堆火柴,分别有1根、2根与3根火柴。 甲先乙后轮流从任意一堆里取火柴,取的 根数不限,规定谁能取到最后一根或最后 几根火柴就获胜。如果采用最佳方法,那 么谁将获胜?
分析与解:根据例6的解法,谁在某次取过火柴之 后,恰好留下两堆数目相等的火柴,谁就能取胜。
对策问题五六年级奥数
智取火柴
在数学游戏中有一类取火柴游戏, 它有很多种玩法,由于游戏的规 则不同,取胜的方法也就不同。 但不论哪种玩法,要想取胜,一 定离不开用数学思想去推算。
例1 桌子上放着60根火柴,甲、乙二 人轮流每次取走1~3根。规定谁取走 最后一根火柴谁获胜。如果双方都采 用最佳方法,甲先取,那么谁将获胜?
分析与解:本例是例3的变形,但应注意, 一开始棋子已占一格,棋子的右面只有 1111-1=1110(个)空格。由例3知,只 要甲始终留给乙(1+7=)8的倍数加1格, 就可获胜。
(111-1)÷(1+7)=138……6,
所以甲第一步必须移5格,还剩下1105 格,1105是8的倍数加1。以后无论乙移几 格,甲下次移的格数与乙移的格数之和是 8,甲就必胜。因为甲移完后,给乙留下 的空格数永远是8的倍数加1。
由例3看出,在每次取1~n根火柴,取到最后 一根火柴者为输的规定下,谁能做到总给对方留 下(1+n)的倍数加1根火柴,谁将获胜。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。

2. 不同等情况下,创造对等局面方可制胜。

1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。

(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。

(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。

试问:先拿获胜,还是后那获胜?怎么拿法?分析:(1000-1)÷(1+7)=124 (7)有余数,先拿必胜。

(1)甲先拿7个;(2)乙拿a个,甲就拿8-a个6.将一枚棋子放在图中的左下角,双方轮流移动棋子(只能向右,向上或向右上方移),一次可移动任意多格。

谁把棋子移进顶格夺取红旗谁就胜利。

问应如何取胜?分析:后走必胜7.有两堆火柴,每堆都有36根。

两人轮流从两对里的其中一堆里拿,拿的根数不限。

谁拿到最后的部分谁获胜。

那么谁将必胜?获胜的策略是什么?分析:后拿者必胜先拿的人从一堆中拿几根,后拿的人就从另外一堆中拿几根8.有两堆火柴,其中一堆都有25根,另一堆有38根火柴。

两人轮流从两对里的其中一堆里拿,拿的根数不限。

谁拿到最后的部分谁获胜。

那么谁将必胜?获胜的策略是什么?分析:先拿者必胜甲先从38根的一堆中拿出13根,留给对方相同的两堆火柴。

接着乙从一堆中拿几根,甲就从另外一堆中拿几根。

9.在图中左下角放一枚棋子,两人轮流移动它,甲乙两人每人每次可向上或向右或者沿对角线向右上方移动一格。

谁将棋子移进右上角的顶格中,就算谁赢。

必胜的策略是什么?分析:先走必胜。

游戏与策略加强篇1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。

问:先取者如何拿才能保证获胜?答:(30÷4=7…..2,先取2根,与对手凑4即可)2.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。

谁将获胜?怎样获胜?答:(甲胜。

甲先报3个数,以后每次与乙合报5个数即可获胜。

)3.1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者输。

甲为了获胜,第一步必须向右移多少格?答:(1111-1)÷(1+7)=138……6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1。

以后无论乙移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜。

因为甲移完后,给乙留下的空格数永远是8的倍数加1。

4.(1)有两对火柴,每堆都有97根。

两人轮流从两对里的其中一堆里拿,拿的根数不限。

谁拿到最后的部分谁获胜。

那么谁将必胜?获胜的策略是什么?(2)分别装有63,108个球的两个箱子,两人轮流从任一箱中取球,取得球数不限。

规定取得最后球者胜,谁有必胜的策略?怎么获胜?答:(1)后拿必胜。

策略是先拿的人从一堆中拿几根,后拿的人就从另外一堆中拿几根。

(2)先拿必胜。

策略是后拿的人从108个球中拿走45个球,留给对方相同的两堆球。

接下来策略同上。

5.图中是一副2007棋,甲乙两人玩棋,分别取红黑两方。

规定下棋时,每人只能走任意一枚棋子,每枚棋子每次可以走一路或几路,红旗从左至右,黑旗从右至左,但不能跳过对方棋子走,也不能重叠在对方有棋子的格子里,一直到谁无法走棋时谁就失败。

甲先乙后,请问谁有必胜的策略?答:先走者有必胜的策略。

甲先将红棋向右移动5格,这样红与黑之间的距离都是对称的。

以后乙移动黑棋几格,甲就在相应的一行移动红旗几格。

6.在一个挖去中间的2×2正方形的国际象棋棋盘中,在左下角中放有一枚棋子“车”,两人轮流移动它,每人每次可往右或向上移动任意多格,谁把“车”移进右上角的红旗位置谁就赢.获胜的策略是什么?答:后走必胜。

7.棋子“后”位于放个C1中,两人轮流移动它,甲乙两人每人每次可向上或向右或者沿对角线向右上方移动任意多格。

谁将棋子移进h8中,就算谁赢。

必胜的策略是什么?答:先走必胜。

8.(选做)黑板上写着一排相连的自然数1,2,3,…,51。

甲、乙两人轮流划掉连续的3个数。

规定在谁划过之后另一人再也划不成了,谁就算取胜。

问:甲有必胜的策略吗?答:甲先划,把中间25,26,27这三个数划去,就将1到51这51个数分成了两组,每组有24个数。

这样,只要乙在某一组里有数字可划,那么甲在另一组里相对称的位置上就总有数字可划。

因此,若甲先划,且按上述策略去进行,则甲必能获胜。

9.(选做)有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。

问:要想获胜是先取还是后取?答:假设甲先乙后,甲先取必胜。

先取。

从4枚棋子的行中取走1枚。

将1,2,3,留给乙。

那么乙不能从1中取1个,否则甲从3中取1个,留给乙对称的(2,2),乙就输了。

那么乙不能从2中取1个,否则甲从3中取3个,留给乙对称的(1,1),乙又输了。

那么乙不能从3中取1个,否则甲从1中取1个,留给乙对称的(2,2),乙又输了。

那么乙不能从2中取2个,否则甲从3中取2个,留给乙对称的(1,1),乙又输了。

那么乙不能从3中取2个,否则甲从2中取2个,留给乙对称的(1,1),乙又输了。

那么乙不能从3中取3个,否则甲从2中取1个,留给乙对称的(1,1),乙又输了。

乙不管怎么区都会输。

谁先碰到(1,2,3)谁就会输。

10.(选做)在纸上写有一行或若干行“—”号,甲乙两人轮流将其中一个或相邻的两个“—”号改成“+”号,谁能修改到最后一个“—”号,谁就获胜。

如果开始时:(1)有11个“—”号(2)有10个“—”号规定甲先修改,请问谁有必胜的策略。

答:(1)甲必胜。

甲先将最中间的一个—变成+,以后乙在哪里改成+,甲在对称的位置改成+即可。

(2)甲必胜。

甲先将最中间的两个—变成+,以后乙在哪里改成+,甲在对称的位置改成+即可。

11.(选做)把1,2,3,4,……,2009,2010这2010个数排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4划掉5,6.,这样隔一个划掉两个,转圈划下去,……。

问:最后剩下那个数?答:先找规律:如果划数的规律是×,√,×,×,√,×,。

如果一圈有3个数,留下2。

如果一圈有9个数,留下5。

如果一圈有27个数,留下15。

如果一圈有729个数,留下中间的数。

那么需要划掉2010-729=1281个数,划掉的第1281个数的编号(1281-1)÷2×3+1=1921,圈中只剩下729个数了,这时,圈中划数的规律是×,√,×,×,√,×,×,。

中间的第365个数就是所求。

1922成为圈中的第一个数,到2000为止连续的数有89个,之后为1,4,7,10,。

1920 365-89=276个,276×3-6=822。

相关文档
最新文档