【小学六年级奥数讲义】对策问题

合集下载

人教版小学数学六年级奥数训练第37讲 对策问题

人教版小学数学六年级奥数训练第37讲 对策问题

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

六年级奥数分册第37周 对策问题【推荐】

六年级奥数分册第37周  对策问题【推荐】

第三十七周对策问题专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?例题2:有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略小学奥数精讲:必胜策略对策问题知识点总结:1.一取余制胜(取棋子,报数游戏)1.1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)如果有余数,先拿必胜,拿掉余数,之后总与对手凑成1+n即可。

如果无余数,则后拿,总与对手凑成1+n即可。

1.2.每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

2.抢占制胜点(倒推法)2.1.能一步到棋子的位置均是不能走的地方即负位2.2.处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

3.对称法3.1.同等情况下,模仿对方步骤可以达到制胜目的。

3.2.不同等情况下,创造对等局面方可制胜。

例题:1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16……4,有余数,先拿必胜。

甲先拿4个;乙拿a个,甲就拿6-a个。

2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10,无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜。

3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124……7,有余数,先走必胜。

甲先走7格;乙走a格,甲就拿8-a个必胜。

4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法简介本文档旨在介绍一些小学奥数中的对策问题以及必胜方法。

学生经常面临各种各样的题型和挑战,本文将提供一些建议和策略,帮助学生克服困难,取得好成绩。

1. 阅读题阅读题是小学奥数中常见的问题之一。

解决阅读题的关键在于提高阅读理解能力和速度。

以下是一些必胜方法:- 阅读练:定期进行阅读练,包括故事书、报纸、杂志等,提高阅读理解能力。

- 注意时间管理:在考试中,合理分配时间给每个阅读题,不要花太多时间在一个问题上。

- 理解关键信息:在阅读过程中,学会提取和理解关键信息,帮助快速回答问题。

2. 计算题计算题需要学生具备强大的计算能力和数学思维。

以下是一些必胜方法:- 熟悉基本运算:熟练掌握加减乘除等基本运算,并做到心算快速准确。

- 多做题:通过不断练提高计算能力和速度,遇到较难的计算题时也能迅速解决。

- 运用技巧:学会利用一些数学技巧和公式简化计算步骤,提高效率。

3. 推理题推理题是需要学生进行逻辑思维和推理的题型。

以下是一些必胜方法:- 分析题目:仔细读题,理解问题背景和要求,分析题目中的条件和关系。

- 列清单:对于复杂的推理题,可以列清单来记录和整理问题中的信息和条件,帮助推理过程。

- 多实践:通过解决各种推理题来锻炼逻辑思维能力,提高解题的准确性和速度。

4. 选填题选填题需要根据题目要求,从给定的选项中选择和填入正确的答案。

以下是一些必胜方法:- 仔细阅读选项:在填写答案之前,仔细阅读选项并理解每个选项的含义。

- 排除法:通过排除一些明显错误的选项,缩小答案的范围,并选择最合适的答案。

- 注意题干:注意题干中的提示和关键信息,帮助选取正确的答案。

结论通过掌握上述对策问题的必胜方法,学生可以在小学奥数中取得更好的成绩。

不仅要提高知识水平,还要培养良好的研究惯和解题思路。

多做练,注重理解和分析,相信每个学生都能在小学奥数中取得成功。

以上是关于小学奥数对策问题之必胜方法的介绍,希望对学生们有所帮助。

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。

2. 不同等情况下,创造对等局面方可制胜。

1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。

(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。

(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。

小学奥数讲座标准教案-学案-六年级第29讲 对策问题

小学奥数讲座标准教案-学案-六年级第29讲  对策问题

第29讲对策问题商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?例题2:有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。

小学奥数精讲对策问题

小学奥数精讲对策问题

小学奥数精讲对策问题本讲的重点和难点是对策问题,虽然涉及的课本知识不多,但是技巧性比较强。

对策问题通常在游戏中运用较多,而用数学的观点和方法来研究取胜策略就是对策问题。

例1中,桌上放着100根火柴棒,甲、乙二人轮流取,每次取1—3根,规定谁取到最后1根谁获胜。

分析可得,谁能让火柴棒最后剩4根,谁就获胜。

因为对方不论拿走几根,剩下的必能一次拿完。

只要让剩下的火柴棒的根数是4的倍数,就可以保证获胜。

由于100是4的倍数,所以后取的人获胜。

因此,乙后取一定获胜。

甲拿n根,乙就拿(4-n)根,这样乙一定可以拿到最后1根而获胜。

例2中,有一排500个空格,预先在左边第1格中放一枚棋子,然后由甲、乙两人轮流走。

甲先乙后。

每人走时,可以将棋子向右移动1~6格,规定谁将棋子走到最后1格谁输。

甲为了必胜,第一步走1格,以后,乙走n格,甲就走(7-n)格,甲一定获胜。

因为要控制取胜就必须保证自己能将最后1格留给对方,自己就要能走到倒数第二格中。

这样一共能走的格子数只有500-1-1=498格。

498÷7=71……1.例3中,甲、乙二人轮流在黑板上写1~10的自然数,规定不能在黑板上写已写过的数的因数,并不重复,最后无数可写的人失败。

如果甲先写,双方都采用最佳方案,那么谁一定获胜?甲先写,甲一定获胜。

甲必须先写6,这样6的因数1,2,3,6就不能再写了。

将剩下的六个数分为4和5,7和9,8和10三组,当乙写这六个数中的某数时,甲就写与它同组的另一数,必可获胜。

例4中,在一个3×3的方格纸中,甲、乙两人轮流往方格中写1,3,4,5,6,7,8,9,10这九个数中的一个,数字不能重复。

最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜。

为甲找出一种必胜的方法,需要让甲和乙都不能取到数字1和2,因为它们不能同时出现在上下两行和左右两列中。

因此,甲先写数字5,接下来,无论乙写什么数字,甲都可以写与之对称的数字来保证自己得分更高。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【小学六年级奥数讲义】对策问题
一、知识要点
同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练
【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:
1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?
1。

相关文档
最新文档