六年级奥数第17讲-最大最小问题(教)
六年级奥数考点:极值问题

考点:极值问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a和b是小于100的两个不同的自然数,求a-ba+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a-b a+b 的最大值是99-199+1=4950答:a-ba+b的最大值是4950。
练习1:1、(课后)设x和y是选自前100个自然数的两个不同的数,求x-yx+y的最大值。
99 1012、a和b是小于50的两个不同的自然数,且a>b,求a-ba+b的最小值。
1 973、设x和y是选自前200个自然数的两个不同的数,且x>y,①求x+yx-y的最大值;②求x+yx-y的最小值。
(1)399 (2)201 199【例题2】有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56答:这两个两位数的差最多是56。
练习2:1.(课后)有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。
2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?甲、乙两数的比是3:10,甲数最小是102,和最小是442。
3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?一、二、三道工序所需的工人数的比是148:132:128=14:21:24,所以至少安排14+21+24=59个工人。
六年级奥数第17讲盈亏问题

学生课程讲义
“盈”就是剩余,“亏”就是不足不够的意思。
这类题目的共同特点就是:把一定数量的物品平均分给固定对象,如果按某种标准分,则分配后会有剩余(盈),如果按另一种标准分,分配后又会有不足(亏),求物品和分配对象的数量,这种一盈一亏的应用题,就是我们通常所说的盈亏问题。
【例1】植树小组种树,如果每人种5棵,还剩5棵树苗,如果每人种6棵,就缺4棵树苗,这个植树小组有多少人?这批树苗有多少棵?
【例2】给住校生安排宿舍,每个房间住5人,则缺27个床位若每间房住7人,则空出9个房间。
求住校生人数和房间数。
【例3】幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块,如果只分给中班的小朋友平均每人可以多分得4块,如果只分给小班的小朋友,平均每人分得多少块?
【例4】1根绳子绕树5周,还余六分之一米,若用绳子绕树1周还余六分之五米。
求绳子长和树的周长。
高斯小学奥数六年级上册含答案第17讲 整数型计算综合提高

第十七讲 整数型计算综合提高一、多位数计算1. 凑整、凑9的思想;2. 数字和问题:与一个小于它的数相乘,积的数字和是9×n .二、等差数列1. 等差数列的“配对”思想; 2. 求和公式:(1) ; (2) . 3. 项数公式:.4. 第n 项:.三、等比数列:等比数列“错位相减”法求和,基本步骤是: (1)设等比数列的和为S ;(2)等式两边同时乘以公比(或者公比的倒数); (3)两式对应的项相减,消去同样的项,求出结果;四、基本公式1. 平方差公式.2. 平方求和.3. 立方求和.五、整数裂项1. ;2. .()()()()()123123234345124n n n n n n n ⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=L()()()1212233413n n n n n ⨯+⨯+⨯+⨯+⨯++⨯+=L()2333312312n n ++++=+++L L ()()22221211236n n n n ⨯+⨯+++++=L ()()22a b a b a b -=-+()1n +-⨯首项公差()1÷+末项-首项公差 ⨯中间项项数 ()2+⨯÷首项末项项数 99999n 个L 14243一、整数数列基本计算 1. 公式型计算; 2. 平方差公式的应用; 3. 整数裂项:(1)基本裂项:例如1×2、1×2×3等; (2) 高等裂项:与阶乘或其它数列相关的裂项. 二、计算技巧 1. 换元思想; 2. 分组思想; 3. 裂项思想;4. 数论思想在计算中的应用;例1. (1)228888888811111111-的计算结果是多少?(2)30830388883333⨯个个L L 1424314243的计算结果的数字和是多少?「分析」(1)还记得平方差公式吗?(2)可以用凑整的思想计算出这个算式的结果,再算数字和.练习1、999999999999999999⨯的计算结果的数字和是多少?例2. 某书的页码是连续的自然数1、2、3、…、9、10、…;小须把这些页码相加时,将其中连续2个页码漏掉了,结果得到2013,那么这本书共有多少页?漏掉的2页是多少?「分析」首先可以估算一下这本书的大概页数是多少?确定页码总数的范围后再计算就变得简单一些了.练习2、把从1开始的所有奇数进行分组,其中每一组的第一个数都等于这一段中所有数的个数,例如:(1),(3,5,7),(9,11,13,15,17,19,21,23,25),(27,29,L L ,79),(81,83,L L ),那么第8组中所有数的和是多少?经典题型例3.对自然数a 和n ,规定1-+=∇n n a a n a ,例如1233232=+=∇,那么: (1)计算:1222302∇+∇++∇L ; (2)计算:2122210∇+∇++∇L .「分析」首先理解题目定义的新运算规则,然后再计算,注意三角符号前后数字顺序.练习3、对自然数a 和n ,规定1n n a n a a -∇=+,例如32333336∇=+=,那么:算式:1323303∇+∇++∇L 的结果是多少?例4.计算:12+(1+2)4+(1+2+3)6+(1+2+3+4)8++(1+2++20)40⨯⨯⨯⨯⨯L L . 「分析」试着计算几项,寻找一下规律.练习4、计算:3333333333112123123100112123123100++++++++++++++++++L L L .例5.计算:12345699100⨯+⨯+⨯++⨯L . 「分析」这是一道整数裂项的题目,分析一下如何进行拆分.例6.计算:1!32!43!54!62009!20112010!20122011!20132012!⨯-⨯+⨯-⨯++⨯-⨯+⨯-L 「分析」关于阶乘的计算一定牢记:()()!11!n n n ⨯+=+,本题是否有类似计算.数学史上的一代王者——欧拉莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家.他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯).欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人.他是把微积分应用于物理学的先驱者之一.欧拉1707年4月15日出生于瑞士,在那里受教育.他一生大部分时间在俄罗斯帝国和普鲁士度过.欧拉是一位数学神童.他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡,柏林科学院的创始人之一.欧拉是有史以来最多遗产的数学家,他的全集共计75卷.他是刚体力学和流体力学的奠基者,弹性系统稳定性理论的开创人.欧拉在固体力学方面的著述也很多,诸如弹性压杆失稳后的形状,上端悬挂重链的振动问题,等等.欧拉实际上支配了18世纪的数学,对于当时的新发明微积分,他推导出了很多结果.在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作.1733年,丹尼尔吃够了神圣俄罗斯的苦头回自由的瑞士去了,26岁的欧拉坐上了科学院的第一把数学交椅.他感到自己以后的生活要固定在圣彼得堡,便决定结婚,定居下来,并随遇而安.夫人凯瑟琳娜(Catharina),是彼得大帝带回俄国的画家格塞尔的女儿.后来政治形势变得更糟了,欧拉曾经绝望得想逃走,但随着孩子一个接一个地很快出生,他又感到被拴得越来越牢了,使到不休止的工作中去寻求慰藉.某些传记作家把欧拉的无比多产追溯到他这第一次旅居俄国的时期;平常的谨慎迫使他去成了勤奋工作的牢不可破的习惯.欧拉是能在任何地方、任何条件下进行工作的几个伟大数学家之一.他很喜欢孩子(他自己曾有13个,但除了5个以外,都很年轻就死了).他写论文时常常把一个婴儿抱在膝上,而较大的孩子都围着他玩.他写作最难的数学作品时也令人难以置信的轻松.许多关于他才思横溢的传说流传至今.有些无疑是夸张的,但据说欧拉确实常常在两次叫他吃晚饭的半小时左右的时间里赶出一篇数学论文.文章一写完,就放到给印刷者准备的不断增高的稿子堆儿上.当科学院的学报需要材料时,印刷者便从这堆儿顶上拿走一打.这样一来,这些文章的发表日期就常常与写作顺序颠倒.由于欧拉习惯于为了搞透或扩展他已经做过的东西而对一个课题反覆搞多次,这种恶果便显得更严重,以至有时关于某课题的一系列文章发表顺序完全相反.1730年小沙皇死去,安娜.伊凡诺芙娜(Annalvanovna,彼得的侄女)当了女皇.就科学院而言,受到了关心,工作活跃多了.而俄国,在安娜的宠臣欧内斯特的间接统治下,遭受了其历史上一段最血腥的恐怖统治.10年里,欧拉沉默地埋头工作.这中间,他遭受了第一次巨大的不幸.他为了赢得巴黎奖金而投身于一个天文学问题,那是几个有影响的大数学家搞了几个月时间的,欧拉在三天之后把它解决了.可是过分的劳累使他得了一场病,病中右眼失明了.欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了.欧拉的专著和论文多达800多种.小行星欧拉2002是为了纪念欧拉而命名的.作业1. 333333333333⨯的计算结果的数字和是多少?2. 甲、乙二人每天背单词,甲背单词的数量每天增加5个,乙背单词的数量每天增加1倍,已知第一天二人共背了33单词,第二天二人共背了40个单词,那么从第几天起乙每天背的单词要比甲多,从第几天起乙背过的单词数量要比甲多?3. 计算:(1)222221222340++++L ;(2)222224642++++L ;(3)222213523+++L ,的结果?4. 计算:139238337436391⨯+⨯+⨯+⨯++⨯L .5. 已知一个平方数加上143后还是一个平方数,请问两个平方数中较小的那个是多少?第十七讲 整数型计算综合提高例题:例7. 答案:7777777622222223;270详解:(1)根据平方差公式可得: ()()()2288888888111111118888888811111111888888881111111199999999777777777777777710000000017777777700000000777777777777777622222223-=+⨯-=⨯=⨯-=-=(2)凑整可得:30830330830310296309929697038888333388883333332962962969999296296295703703704⨯=÷⨯⨯=⨯=L L L L 14243142431424314243L L L L 1442443142431424314243个个个个个个个个数字和是270.例8. 答案:这本书共有64或63页;漏掉的两页是33、34或1、2详解:123642080++++=L .所以共64页,差的两个页码的和是67,所以是33页和34页.123632016++++=L .所以也可以数63页,差的两个页码的和是3,所以是1页和2页.例9.答案:(1)9920;(2)3069 详解:(1)根据题目定义的新运算可得:()()()()()2222212302112230301301309920∇++∇=++++++=+++++=L L L L ; (2)()()()10211092122210222222∇+∇++∇=++++++L L()()1210019111022222222213069=+++++++=-+-=L L .例10. 答案:46970详解:()()()()()()2222222233322212+(1+2)4+(1+2+3)6+(1+2+3+4)8++(1+2++20)401223342021=2464022221223342021111221331202011220122046970⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯+⨯+⨯=⨯+⨯+⨯++⨯=⨯++⨯++⨯+++⨯+=+++++++=L L L L L L L例11. 答案:169150详解:()()()()()()22222221234569910022446610010024100241001717002550169150⨯+⨯+⨯++⨯=-+-+-++-=+++-+++=-=L L L L例12. 答案:1详解:()()()()()()()()()1!32!43!54!62009!20112010!20122011!20132012!1!122!133!142010!120112011!120122012!1!2!2!3!3!4!2010!2011!2011!2012!2012!1⨯-⨯+⨯-⨯++⨯-⨯+⨯-=⨯+-⨯++⨯+--⨯++⨯+-=+-+++--+++-=L L L练习:练习1、答案:81 简答:11111111199111111111=1234567999999999912345678987654321=÷⨯⨯⨯=原式结果数字和为81.练习2、 答案:9563751简答:找规律,发现每个括号的第一个数恰好是3的次方,即1,3,9,27,81,L L ,从而第8组第1个数为2187,第9个组第1个数为6561,即求218721896559+++L L ,等差数列求和得()21876559218729563751+⨯÷=.练习3、答案:225680简答:3232323213233031122333030∇+∇++∇=++++++++L L222233331233012330225680+++++++++=L L .练习4、 答案:171700简答:需要借助这样一个公式:()23333123123n n ++++=++++L L L L ,因此,原式1(12)(123)(123100)(122334100101)2=+++++++++++=⨯+⨯+⨯++⨯÷L L L()()22211210021210021001012012505021717006=+++÷++++÷=⨯⨯⨯÷+÷=L L .作业6. 答案:54简答:333333333333111110888889⨯=,数字和是54.7. 答案:6;8简答:设第一天两人分别背了a 、b 个单词,所以甲第n 天背5(1)a n +-个单词,乙第n 天背12n b -个单词,由第一、二天分别背了的单词数可分别列出方程33a b +=和5240a b ++=,可求得a 和b 分别为31和2,可知答案为6;8.8. 答案:(1)19270;(2)13244;(3)23009. 答案:10660简答:2221(401)2(402)39(4039)40(1239)(1239)=⨯-+⨯-++⨯-=⨯+++-+++L L L 原式 10660=.10. 答案:1或5041简答:设已知关系式为22143a b +=,应用平方差公式有()()143b a b a +-=,然后讨论143的约数知两数和与差分别为143与1,或13与11,所以可得答案为1或5041.。
最新小学数学奥数基础教程(六年级)目30讲全[1]
![最新小学数学奥数基础教程(六年级)目30讲全[1]](https://img.taocdn.com/s3/m/d93b1eb7b4daa58da0114ab5.png)
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
高斯小学奥数六年级上册含答案第17讲整数型计算综合提高

34第十七讲整数型计算综合提高「、多位数计算1. 凑整、凑9的思想;2.数字和问题:992L$9与一个小于它的数相乘,积的数字和是9xn .n 个9、等差数列1. 等差数列的“ 配对”思想;2. 求和公式:(1) 首项末项 项数 2;(2)中间项项数. 3. 项数公式: 末项-首项公差14. 第n 项:首项页n 1 公差.三、等比数列:等比数列“错位相减”法求和,基本步骤是: (1) 设等比数列的和为 S ;(2) 等式两边同时乘以公比(或者公比的倒数) (3) 两式对应的项相减,消去同样的项,求出结果;四、基本公式n n 1 2n 13. 立方求和 五、 1.2..331 2 整数裂项 331. 平方差公式2. 平方求和I经典题型一、整数数列基本计算1. 公式型计算;2. 平方差公式的应用;3. 整数裂项:(1)基本裂项:例如1X2、1X2X3等;(2)高等裂项:与阶乘或其它数列相关的裂项.二、计算技巧1. 换元思想;2. 分组思想;3. 裂项思想;4. 数论思想在计算中的应用;例1 . ( 1) 888888882 111111112的计算结果是多少?(2) 888Lg8 332^3的计算结果的数字和是多少?30个8 30个3「分析」(1)还记得平方差公式吗?( 2 )可以用凑整的思想计算出这个算式的结果,再算数字和.练习1、999999999 999999999的计算结果的数字和是多少?例2.某书的页码是连续的自然数1、2、3、…、9、10、…;小须把这些页码相加时,将其中连续2个页码漏掉了,结果得到2013,那么这本书共有多少页?漏掉的2页是多少?「分析」首先可以估算一下这本书的大概页数是多少?确定页码总数的范围后再计算就变得简单一些了.练习2、把从1开始的所有奇数进行分组,其中每一组的第一个数都等于这一段中所有数的个数,例如:(1), (3, 5, 7), (9, 11, 13, 15, 17, 19, 21 , 23, 25), (27, 29,L L , 79), (81, 83, L L ),那么第8组中所有数的和是多少?(1)计算:(2)计算:「分析」首先理解题目定义的新运算规则,然后再计算,注意三角符号前后数字顺序.1 323 L 30 3的结果是多少?「分析」这是一道整数裂项的题目,分析一下如何进行拆分.例3.对自然数a 和n , 规定a n a n 1,例如 3 2 32 3 12,那么:30 2 ;2 10.练习3、对自然数a和n ,规定a n a n 1,例如 3 3 33 3236,那么: 算式:例4.计算:1 2+(1+2) 4+(1+2+3) 6+(1+2+3+4) 8+L +(1+2+L +20) 40 -「分析」试着计算几项,寻找一下规律.练习4、计算:33 3 3 3 3112 12 3. — ------- --------------- L 1 1 2 1 2 :3 3 3 . 31 2 3 L 100 1 2 3 L__100例5.计算:1 2 3 4 5 6 L 99 100 .例6.计算:1! 3 2! 4 3! 5 4! 6 L 2009! 2011 2010! 2012 2011! 2013 2012!「分析」关于阶乘的计算一定牢记:n! n 1 n 1 !,本题是否有类似计算.数学史上的一代王者--- 欧拉莱昂哈德欧拉(Leonhard Euler , 1707年4月5日〜1783年9月18日)是瑞士数学家和物理学家.他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔弗里德里克高斯).欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人•他是把微积分应用于物理学的先驱者之一.欧拉1707年4月15日出生于瑞士,在那里受教育.他一生大部分时间在俄罗斯帝国和普鲁士度过.欧拉是一位数学神童.他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡,柏林科学院的创始人之一.欧拉是有史以来最多遗产的数学家,他的全集共计75卷•他是刚体力学和流体力学的奠基者,弹性系统稳定性理论的开创人.欧拉在固体力学方面的著述也很多,诸如弹性压杆失稳后的形状,上端悬挂重链的振动问题,等等•欧拉实际上支配了18世纪的数学,对于当时的新发明微积分,他推导出了很多结果•在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作.1733年,丹尼尔吃够了神圣俄罗斯的苦头回自由的瑞士去了,26岁的欧拉坐上了科学院的第一把数学交椅. 他感到自己以后的生活要固定在圣彼得堡,便决定结婚,定居下来,并随遇而安.夫人凯瑟琳娜(Catharina),是彼得大帝带回俄国的画家格塞尔的女儿.后来政治形势变得更糟了,欧拉曾经绝望得想逃走,但随着孩子一个接一个地很快出生,他又感到被拴得越来越牢了,使到不休止的工作中去寻求慰藉. 某些传记作家把欧拉的无比多产追溯到他这第一次旅居俄国的时期;平常的谨慎迫使他去成了勤奋工作的牢不可破的习惯.欧拉是能在任何地方、任何条件下进行工作的几个伟大数学家之一. 他很喜欢孩子(他自己曾有13个,但除了5个以外,都很年轻就死了).他写论文时常常把一个婴儿抱在膝上,而较大的孩子都围着他玩.他写作最难的数学作品时也令人难以置信的轻松.许多关于他才思横溢的传说流传至今. 有些无疑是夸张的,但据说欧拉确实常常在两次叫他吃晚饭的半小时左右的时间里赶出一篇数学论文. 文章一写完,就放到给印刷者准备的不断增高的稿子堆儿上. 当科学院的学报需要材料时,印刷者便从这堆儿顶上拿走一打.这样一来,这些文章的发表日期就常常与写作顺序颠倒. 由于欧拉习惯于为了搞透或扩展他已经做过的东西而对一个课题反覆搞多次,这种恶果便显得更严重,以至有时关于某课题的一系列文章发表顺序完全相反.1730年小沙皇死去,安娜.伊凡诺芙娜(Annalvanovna,彼得的侄女)当了女皇.就科学院而言,受到了关心,工作活跃多了.而俄国,在安娜的宠臣欧内斯特的间接统治下,遭受了其历史上一段最血腥的恐怖统治. 10年里,欧拉沉默地埋头工作. 这中间,他遭受了第一次巨大的不幸.他为了赢得巴黎奖金而投身于一个天文学问题,那是几个有影响的大数学家搞了几个月时间的,欧拉在三天之后把它解决了. 可是过分的劳累使他得了一场病,病中右眼失明了.欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了.欧拉的专著和论文多达800多种.小行星欧拉2002是为了纪念欧拉而命名的.作业1. 333333 333333 的计算结果的数字和是多少?2. 甲、乙二人每天背单词,甲背单词的数量每天增加5 个,乙背单词的数量每天增加1 倍,已知第一天二人共背了33 单词,第二天二人共背了40 个单词,那么从第几天起乙每天背的单词要比甲多,从第几天起乙背过的单词数量要比甲多?3. 计算:(1) 212222232 L 402;(2) 224262L 422;(3) 123252L 232,的结果?4. 计算:1 39 2 38 3 37 4 36 L 39 1 .5. 已知一个平方数加上143后还是一个平方数,请问两个平方数中较小的那个是多少?第十七讲整数型计算综合提高例题:例7.答案:7777777622222223; 270详解 :(1)根据平方差公式可得:22888888882 11111111288888888 11111111 88888888 1111111199999999 7777777777777777 100000000 17777777700000000 777777777777777622222223(2)凑整可得:814828L438 314332L433 814882L438 3 3 314323L43330个8 30 个3 30个8 30个321 94642926 L4 24396 914992 L43 9 129462L 42396295710432L 473037041 0个296 30个9 9个296 9个703数字和是270.例8. 答案:这本书共有64或63页;漏掉的两页是33、34或1、2详解 : 1 2 3 L 64 2080 .所以共64 页,差的两个页码的和是67,所以是33 页和34 页.1 2 3 L 63 2016.所以也可以数63页,差的两个页码的和是3,所以是1 页和2 页.例9. 答案:(1)9920;(2)3069详解 :(1)根据题目定义的新运算可得:122L 30 2 121222L3023012L3021 L 30 9920;(2)2122L21021202221L210292122L2102021L29211 2 21013069.例10 . 答案:46970详解:1 2+(1+2) 4+(1+2+3) 6+(1+2+3+4) 8+L +(1+2+L +20) 401 2 门2 3 , 3 4门20 21246L4022222 22. 21 2 233 4 L 202112 1 122 2 1 323 1 L202 20 11323 L2031222 L20246970例11 .答案:169150详解:1 2 3 4 5 6 L99 10022 242462 6 L1002 1002 22 4L1002 2 4 L1001717002550169150例12 . 答案:1详解:1! 3 2! 43!5 4! 6 L2009!20112010! 2012 2011! 2013 2012!1! 1 22! 1 3 3! 1 4 L2010! 1 2011 2011! 1 2012 2012!1! 2! 2!3!3! 4! L2010!2011!2011! 2012! 2012!1练习:练习1、答案:81简答:原式111111111 9 9 11111111 仁12345679 99999999912345678987654321结果数字和为81 .练习2、答案:9563751简答:找规律,发现每个括号的第一个数恰好是3的次方,即1 , 3, 9, 27, 81, L L,从而第8组第1个数为2187,第9个组第1个数为6561 ,即求2187 2189 L L 6559,等差数列求和得218765592187 29563751 .练习3、答案: :225680简答: :1 3 2 3 L30 3.3 .21 123 2233朋■小小3 小小23 L 30 30? ^2 ^21 2 3L"2 ,330 1^3 小32 3L 303225680 .练习4、答案:171700简答: 需要借助这样一个公式:132333 L L n3122 3 L L n ,因此,原式1(1 2) (1 2 3) L (12 3 L100) (1 2 2 3 3 4 L 100 101) 21222 L 1002 2 1 2L10012 - 100101201 2 5050 2 171700 .6作业6. 答案:54简答:333333 333333 111110888889 ,数字和是54.7. 答案:6;8简答:设第一天两人分别背了a、b个单词,所以甲第n天背a 5(n 1)个单词,乙第n 天背2n1b个单词,由第一、二天分别背了的单词数可分别列出方程 a b 33和a 5 2b 40 ,可求得a 和b 分别为31 和2,可知答案为6;8.8. 答案:(1)19270;(2)13244;(3)23009. 答案:10660简答:2 2 2 原式1 (40 1) 2 (40 2) L 39 (40 39) 40 (1 2 L 39) (1222 L 392)10660 .10. 答案:1 或5041简答:设已知关系式为a2143 b2,应用平方差公式有(b a)(b a) 143,然后讨论143 的约数知两数和与差分别为143与1,或13 与11,所以可得答案为1 或5041.。
(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。
小学六年级小升初培优奥数-最大与最小问题

最大与最小问题知识要点在日常生活中,我们经常会遇到有关最大、最小、最多、最少等诸多问题,而这一类问题我们统一称为最大与最小问题。
最大与最小问题涉及的知识点很广泛,题目也相对复杂,而且很多题目没有固定的解题模式,所以解决这一类问题时,需要根据题目所给的条件灵活的去分析、判断、计算以及推理最后得到正确的答案。
1、若三个数的和为定值,则当三个数相等时,他们的乘积最大。
2、若n个数的和为定值,则当这n个数相等时,他们的乘积最大。
3、若两个数的乘积一定,则当两个数相等时,他们的和最小。
4、在棱长和相等的长方体中,长、宽、高都相等的长方体(正方体)的体积最大。
精选例题例1 如果四个人的平均年龄为30岁,并且在四个人当中没有谁的年龄小于21岁,那么年龄最大的可能是多少岁?☝思路点拨:四个人的平均年龄是30岁,则四个人的年龄总和是30×4=120岁,又因为四个人当中没有小于21岁的,所以当其中三个人的年龄都为最小时,另一个人的年龄最大。
☝标准答案:30×4-21×3=57(岁)活学巧用1、如果8个人的平均年龄是48岁,已知8人中,没有大于51岁的,又知,最多能有三个人的年龄相同,那么年龄最小的可能是几岁?2、有一队学生(200人以内)如果每9人排成一列,最后余下4人,如果7人排成一列,最后余下3人,问,这队学生有多少人?3、已知五个人的平均年龄为18岁,且五个人中没有小于15岁的,则五个人中年龄最大的是多少岁?例2 某人有一根长16米的铁丝网,他要借用围墙作一面,用这根铁丝网围成一个长方形菜地,并且使这块菜地的面积尽可能的大,问这个菜地的最大面积是多少?☝思路点拨:将菜地关于围墙“对称”得菜地与对称图形的复合图形,其长与宽的和为16×2=32从而,当复合图形是边长为8米时面积最大,而当菜地的长为8米,宽为4米时菜地的面积是最大的。
☝标准答案:4×8=32✌活学巧用1、用长为28米的竹篱笆围成一块长方形菜地,其中一边靠墙,为使菜地面积最大,应该怎么分配长于宽,最大面积是多少平方米?2、用30厘米的铁丝围成一个长方形,要使长方形的面积最大,长和宽应该是多少厘米?最大面积是多少平方厘米?3、把一根长537厘米的木料锯成长为35厘米和长为26厘米的短木料那么,各锯多少根才能使余料最少?(不计损耗)例3 将14分拆成若干个自然数的和,如何分拆,可以使这些自然数的乘积最大?☝思路点拨:将14分成若干个自然数的和时,为了使这些自然数的乘积最大,分拆中尽可能的用2与3,且尽可能的选择3多一点。
六年级数学竞赛上册奥数高思第17讲数论综合与简单代数式(彩色)

开关.现在有编号为 1 至 2008 的 2008 个人来按动这些开关.已知第 1 个
人按的开关的编号是 1 的倍数(也就是说他把所有开关都按了一遍),第
2
个人按的开关的编号是 2 的倍 ,第 3 个人按的开关的编号是 3 的倍数, ……
依次做下去,第 2008 个人
开关的编号是 2008 的倍数.如果最开始的
3 2 或 中的某一个数的倍数时,会有一个掉坑里.这种分数的
4 怎么处 理呢?
3
1
12 的倍数且又是 4
8
2
“公倍数 ”问题,
练习
2
6. 大、中、小三只乌龟围着龙宫绕圈.三只乌龟从同一地点同时出发,大乌龟每
1
3
分钟绕龙宫爬一圈,中乌龟每
2 3 分钟绕龙宫爬一圈,小乌龟每 4
4 2 分钟绕龙宫爬一圈. 5
数论综合与简单代数式
课本
分析 由于约数是成对出现的(即如果甲是乙的约数,则乙除以甲的商也是乙
的约数,可以配对,当然完全平方数会有一对两数相同的配对)
,这个数的最大
的约数是它本身,第二大约数是这个数除以它的最小质因数.
练习
5. 一个两位数,其最小的三个约数之和是 是多少?
32 ,那么这个两位数最大的三个约数之和
数论综合与简单代数式
17 数论综合与简单代数式
课本
123
身体健康
六年级
上册第 17 讲
今天我们主要针对以往学过的数论知识作一些复习.同时,出于向初中数论过渡的 考虑,所涉及的题目与之前所学问题相比,多了不少字母.这样的问题处理起来并没有 太多的不同,只是对理解字母含义提出了较高的要求,需要同学们初步地建立对 的感觉.
我们列举两个如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第17讲-最大最小问题授课类型T同步课堂P实战演练S归纳总结教学目标①学会在题目中判断出限制条件;②学会分数知识的综合运用;③从题目限制条件中分析最大最小问题。
授课日期及时段T(Textbook-Based)——同步课堂在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1、枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
知识梳理典例分析考点一:简单最大最小问题例1、把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?【解析】为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72例2、有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?【解析】3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8.5千克组成,另外两堆分别是14千克。
例3、一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)【解析】除得65分的同学外,其余5位同学的总分是91×6-65=481分。
根据第三名同学得分要至少,也就说其他四人得分要尽量高,第一、第二名分别得100分和99分,而接近的三个不同分是93、94、95。
所以,第三名至少得95分。
例4、一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
现由两个小组分别承包这两项工作,工时如下表(一种庄稼不割好、捆好,不准运输),这两组从开工到完工最少经过多少小时?【解析】先把各类庄稼从开工到完工所用的时间分别算出来:大豆7+5=12小时,谷子3+6=9小时,高梁5+1=6小时,小米5+9=14小时。
平均每个小组用(12+9+6+14)÷2=20.5小时,但实际做不到。
因此,根据各类庄稼所需时间相加,使其最接近20.5小时。
12+9=21小时是最少经过的时间。
例5、A、B、C是三个风景点,从A出发经过B到达C要走18千米,从A经过C到B要走16千米,从B经过A到C要走24千米。
相距最近的是哪两个风景点?它们之间相距多少千米?【解析】根据题意可知,AB+BC=18千米,AC+BC=16千米,AB+AC=24千米,用(18+16+24)÷2就能算出AB+BC+AC=29千米。
因此,AC=29-18=11千米,AB=29-16=13千米,BC=29-24=5千米。
B、C两个风景点的距离最近,只相距5千米。
考点二:数论中的极端思想例1、1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。
那么这两个四位数各是多少?【解析】8531和7642。
高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。
两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。
同理可确定十位和个位数。
例2、有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【解析】要想使自然数尽量大,数位就要尽量多,所以数位高的数值应尽量小,故10112358满足条件.如果最前面的两个数字越大,则按规则构造的数的位数较少,所以最前面两个数字尽可能地小,取1与0。
例3、某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元……100元的钱数(整数元),那么至少需要准备货币多少张?【解析】为了使货币越少越好,那么9元的货币应该尽量多才行。
当有10张9元时,容易看出1、1、3、5这四张加上后就可以满足条件。
当9元的货币超过11张时,找不到比14张更少的方案。
当9元的货币少于10张时,至少有19元需要由5元以下的货币构成,且1元的货币至少2张,这样也找不到比14张更少的方案。
综上分析可以知道,最少需要10张9元的、2张1元的、1张3元的、1张5元的,共14张货币。
例4、a 和b 是小于100的两个不同的自然数,求a -b a+b的最大值。
【解析】根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950答:a -b a+b 的最大值是4950例5、有甲、乙两个两位数,甲数27 等于乙数的23。
这两个两位数的差最多是多少? 【解析】甲数:乙数=23 :27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56。
例6、将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12……9899100从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【解析】要得到最大的数,左边应尽量多地保留9。
因为1~59中有109个数码,其中有6个9,要想左边保留6个9,必须划掉1~59中的109-6=103(个)数码,剩下的数码只有192-103=89(个),不合题意,所以左边只能保留5个9,即保留1~49中的5个9,划掉1~49中其余的84个数码。
然后,在后面再划掉16个数码,尽量保留大数(见下图):所求最大数是9999978596061…99100。
同理,要得到最小的数,左边第一个数是1,之后应尽量保留0。
2~50中有90个数码,其中有5个0,划掉其余90-5=85(个)数码,然后在后面再划掉15个数码,尽量保留小数(见下图):;所求最小数是100000123406162…99100。
考点三:智巧趣题的极端思想例1、99个苹果要分给一群小朋友,每一个小朋友所分得的苹果数都要不一样,且每位小朋友至少要有一个苹果.问:这群小朋友最多有几位?【解析】1+2+3+…+13=91<99,1+2+3+…+14=105>99,说明若13位各分得1,2,3,…,13个苹果,未分完99个,若14位各分得1,2,3,…,14个苹果,则超出99个.因91+8=99,在13位上述分法中若把剩下的8个苹果分别加到后8位人上,就可得合题意的一个分法:13人依次分1,2,3,4,5,7,8,9,10,11,12,13,14个。
所以最多有13位小朋友。
(注:13人的分法不唯一)例2、某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到过一次,则这三天都迟到的学生最多有多少人?【解析】三天都迟到的要尽量多,则将迟到的22人次分为仅迟到一次和三天都迟到的。
可求出三天都迟到的学生最多有:(15+12+9-22)÷2=7(人)。
例3、如图,司机开车按顺序到五个车站接学生到学校,每个站都有学生上车。
第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半。
车到学校时,车上最少有多少学生?【解析】因为每个站都有学生上车,所以第五站至少有1个学生上车.假如第五站只有一个学生上车,那么第四、三、二、一站上车的人数分别是2,4,8,16个.因此五个站上车的人数共有1+2+4+8+16=31(人),很明显,如果第五站有不止一个学生上车,那么上车的总人数一定多于31个。
所以,最少有31个学生。
例4、若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师,那么在这22人中,爸爸有多少人?【解析】家长比老师多,所以老师少于22÷2=11人,即不超过10人;相应的,家长就不少于12人。
在至少12个家长中,妈妈比爸爸多,所以妈妈要多于12÷2=6人,即不少于7人。
因为女老师比妈妈多2人,所以女老师不少于9人。
但老师最多就10个,并且还至少有1个男老师,所以老师必定是9个女老师和1个男老师,共10个。
那么,在12个家长中,就有7个是妈妈。
所以,爸爸有12-7=5人。
例5、三个数字能组成6个不同的三位数。
这6个三位数的和是2886。
求所有这样的6个三位数中的最小的三位数。
【解析】因为三个数字分别在百位、十位、个位各出现了2次。
所以,2886÷222能得到三个数字的和。
设三个数字为a、b、c,那么6个不同的三位数的和为abc+acb+bac+bca+cab+cba=(a+b+c)×100×2+(a+b+c)×100×2+(a+b+c)×100×2=(a+b+c )×222=2886即a+b+c =2886÷222=13答:所有这样的6个三位数中,最小的三位数是139。
P (Practice-Oriented)——实战演练➢ 课堂狙击1、两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【解析】将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。