人教版七年级下册数学习题:5.3.1平行线的性质练习题
2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。
人教版七年级数学下册第五章平行线的性质作业练习题(含答案) (97)

人教版七年级数学下册第五章平行线的性质作业练习题(含答案)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=40°,则∠ACB的度数为.②若∠ACB=128°,则∠DCE的度数为.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.【答案】(1)①140°;②52°;(2)180∘(3)当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【解析】【分析】(1)①根据两角互余,可得∠ACE与∠DCE的关系,根据角的和差,可得答案;②角的和差,可得∠ACE与∠ACB的关系,根据互余的两角的关系,可得∠DCE与∠ACE的关系;(2)根据(1)中的计算结果可得∠ACB+∠DCE=180°,再根据图中的角的和差关系进行推理即可;(3)根据平行线的判定方法可得【详解】解:(1)①由互余∠ACB=90°-∠DCB=90°-40°=50°由角的和差得∠ACB=∠ACE+∠BCE=50°+90°=140°故答案是:140°②∠ACE=∠ACB-∠ECB=128°-90°=38°∠DCE=90°-∠ACE=90°-38°=52°;(2)∠ACB+∠DCE=180°;∵∠ACB=∠ACD+∠DCB=90∘+∠DCB,∴∠ACB+∠DCE=90∘+∠DCB+∠DCE=90∘+90∘=180∘(3)当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【点睛】此题考查余角和补角,解题关键在于掌握余角和补角的性质62.直线a,b,c,d的位置如图所示,已知∠1=∠2,∠3=70°,求∠4的度数.【答案】110°【解析】【分析】由已知得出∠1=∠2,证出a ∥b ,再由平行线的性质即可得出∠4的度数.【详解】解:∵∠1=∠2,∴a ∥b ,∴∠3+∠4=180°,∴∠4=180°﹣∠3=180°﹣70°=110°.【点睛】本题考查了平行线的判定与性质,证出平行线是解决问题的关键.63.如图,AC DF =,AC DF ∥,BC EF ∥, 证明:△ABC ≌△DEF .证明:∵AC DF ∥,BC EF ∥(已知)∴A ∠=∠________,E ∠=∠________( )在△ABC 与△DEF 中,__________()__________()______________()⎧∠=∠⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ( ).【答案】详见解析【解析】【分析】根据平行线的性质求出A ∠=∠EDF ,E ∠=∠ABC ,再由AAS 证明△ABC ≌△DEF 即可.【详解】证明:∵AC DF ∥,BC EF ∥(已知)∴A ∠=∠_EDF_,E ∠=∠_ABC_( 两直线平行,同位角相等 )在△ABC 与△DEF 中,_________________A EDF E ABC AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ( AAS ).【点睛】本题考查了平行线的性质的运用,全等三角形的判定运用,解答时证明三角形全等是关键.64.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F .(1)求证:CD∥EF(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数(3)若BC=6cm,△ABC的面积是12cm2,则点A到直线BC的距离是多少?【答案】(1)见解析;(2)115°;(3)4cm.【解析】【分析】(1)根据CD⊥AB,EF⊥AB可得∠CDB =∠EFB=90°,然后根据平行线的判定定理可得CD∥EF;(2)先根据平行线的判定和性质证明DG∥BC,即可得到∠ACB=∠3=115°;(3)根据三角形面积计算方法即可求出点A到直线BC的距离.【详解】证明:(1)∵CD⊥AB,EF⊥AB (已知)∴∠CDB =∠EFB=90°∴CD∥EF(2)∵CD∥EF∴∠DCB=∠2∵∠1=∠2∴∠1=∠DCB∴DG ∥BC∴∠ACB=∠3=115°(3)设所求距离为h ,则由16122h ⨯= 解得 h=4∴点A 到直线BC 的距离是4cm.【点睛】本题主要考查了平行线的判定和性质,熟练掌握相关性质定理是解题关键.65.如图,点D 在△ABC 的BC 边上,利用直尺和三角板画出图形.(1)过点C 画CE ∥AD 交BA 的延长线于点E ;(2)若∠ADC=80°,则∠DCE=_____________度.【答案】(1)见解析;(2)100.【解析】【分析】(1)根据平行线的画法用直尺和三角板作图即可;(2)根据平行线的性质求解即可.【详解】解:(1)如图所示;(2)∠DCE =180°-∠ADC =100°.【点睛】本题考查平行线的作法以及平行线的性质,熟练掌握两直线平行,同旁内角互补是解题关键.三、填空题66.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是________千米.【答案】8【解析】【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°-∠ABG-∠EBC=180°-48°-42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题考查了方向角,平行线的性质及点到直线的距离,结合生活中的实际问题,将方向角与实际生活相关知识有机结合,体现了数学应用于实际生活的思想.67.如下图所示,CD⊥AB于点D,EF⊥AB于F,∠DGC=84°,∠BCG=96°,则∠1+∠2=______________【答案】180°【解析】【分析】求出DC∥EF,求出∠2+∠BCD=180°,由∠DGC=84°,∠BCG=96°,易证DG∥BC,推出∠1=∠BCD,即可求出答案.【详解】∵CD⊥AB,EF⊥AB,∴DC∥EF,∴∠DCB+∠2=180°,∵∠DGC=84°,∠BCG=96°,∴∠DGC+∠BCG=180°,∴BC∥GD,∴∠1=∠DCB,∴∠1+∠2=180°.故答案为:180°【点睛】本题主要考查了平行线的性质及判定定理,综合运用性质定理是解答此题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.68.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为_____.【答案】32°【解析】【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可.【详解】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故答案为32°【点睛】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.69.如图,已知直线l1∥l2,将等边三角形如图放置,若∠β=20°,则∠α等于_____.【答案】40°【解析】【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【详解】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α,∵△ABC是等边三角形,∴∠BAC =60°,∴∠β=∠BAD =∠BAC ﹣∠α=60°﹣α=20°.∴∠α=40°,故答案为40°.【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA 与l 2交于点E ,运用平行线的性质及三角形外角的性质解决问题.70.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】【分析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.。
【初中数学】人教版七年级下册课时作业(练习题)

人教版七年级下册课时作业(八) [5.3.1 第1课时平行线的性质](646)1.如图,直线a//b,AB⊥BC,如果∠1=48∘,那么∠2=∘.2.如图,直线AB//CD,直线EC分别与AB,CD相交于点A,C,AD平分∠BAC.若∠ACD= 80∘,则∠DAC的度数为.3.如图,直线a//b,∠1=60∘,∠2=40∘,则∠3的度数为.4.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26∘,则∠ACD=.5.如图,AB∥CD,BC∥DE.若∠B=50∘,则∠D的度数是.6.如图,小明从A处出发沿北偏东60∘方向行走至B处,又沿北偏西20∘方向行走至C处,此时需把方向调整到与出发时一致,则应右转度.7.填空:(1)如图AD,BC相交于点O.因为AB//CD(已知),所以=,=.(两直线平行,内错角相等)(2)如图,因为l1//l2(已知),所以∠1=(两直线平行,同位角相等).因为l2//l3,所以∠3+∠4=().(3)如图,因为AB//EF(已知),所以∠A+=180∘(两直线平行,同旁内角互补).因为ED//CB(已知),所以∠DEF=().8.如图,已知AB//CD,AC//BD,则∠1与∠2相等吗?为什么?9.如图,AD//EF,AB//DG.说明∠1=∠2的理由.10.探究题:(1)如图甲,AB//CD,则∠2与∠1+∠3的关系是什么?为什么?(2)如图乙,AB//CD,则∠2+∠4与∠1+∠3+∠5一样大吗?为什么?(3)如图丙,AB//CD,则∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.11.如图,已知直线a//b,若∠1=100∘,则∠2的度数是()A.110∘B.80∘C.70∘D.60∘12.如图,直线AB//CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180∘D.∠3+∠4=180∘13.如图,直线a//b,将一块含30∘角(∠BAC=30∘)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上,若∠1=20∘,则∠2的度数为()A.20∘B.30∘C.40∘D.50∘14.如图,已知l1//AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠315.如图,AD//BC,则一定有()A.∠1=∠2B.∠3=∠4C.∠1=∠2,∠3=∠4D.∠2=∠316.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35∘,那么∠2的度数为()A.45∘B.50∘C.55∘D.60∘17.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等参考答案1.【答案】:42【解析】:因为AB⊥BC,∠1=48∘,所以∠1的余角为42∘.因为直线a//b,所以∠2=42∘.2.【答案】:50∘【解析】:∵AB//CD,∠ACD=80∘,∴∠BAC=100∘.又∵AD平分∠BAC,∴∠DAC=1∠BAC=50∘.2故答案为50∘.3.【答案】:80∘【解析】:如图,因为a//b,所以∠4=∠1=60∘.因为a//b,所以∠5=∠2=40∘.因为∠4+∠3+∠5=180∘,所以∠3=180∘−∠4−∠5=180∘−60∘−40∘=80∘.4.【答案】:128∘5.【答案】:130∘【解析】:∵AB∥CD,∴∠B=∠C=50∘. ∵BC∥DE,∴∠C+∠D=180∘,∴∠D=180∘−50∘=130∘6.【答案】:80【解析】:射线BC与射线AB所夹的锐角是80∘,即在B处相对于原方向左转了80∘,所以欲恢复原行走方向,则需右转80∘.7(1)【答案】∠B;∠C;∠A;∠D(2)【答案】∠2;180∘;两直线平行, 同旁内角互补(3)【答案】∠AEF;∠EFC;两直线平行,内错角相等8.【答案】:解:相等.理由:∵AB//CD,∴∠1=∠CAB.又∵AC//BD,∴∠2=∠CAB,∴∠1=∠2.9.【答案】:解:∵AD//EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵AB//DG(已知),∴∠BAD=∠2(两直线平行,内错角相等),∴∠1=∠2(等量代换).10(1)【答案】解:∠2=∠1+∠3.理由:如图甲,过点E作EF//AB.∵AB//CD,∴AB//CD//EF,∴∠BEF=∠1,∠CEF=∠3,∴∠2=∠BEF+∠CEF=∠1+∠3.(2)【答案】一样大.理由:如图乙,分别过点E,G,M作EF//AB,GH//AB,MN//AB.∵AB//CD,∴AB//CD//EF//GH//MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠HGM+∠5=∠1+∠3+∠5.(3)【答案】一样大.理由:如图丙,分别过点E,G,M,K,P作EF//AB,GH//AB,MN//AB,KL//AB,PQ//AB.∵AB//CD,∴AB//CD//EF//GH//MN//KL//PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.结论:开口朝左的所有角度之和与开口朝右的所有角度之和相等.11.【答案】:B【解析】:如图,∵a//b,∴∠1=∠3=100∘.∵∠2+∠3=180∘,∴∠2=180∘−∠3=80∘.故选B.12.【答案】:D13.【答案】:C14.【答案】:B15.【答案】:A【解析】:两直线平行,内错角相等.16.【答案】:C【解析】:如图,∵AB⊥BC,∠1=35∘,∴∠3=90∘−35∘=55∘.∵a∥b,∴∠2=∠3=55∘.故选 C17.【答案】:D【解析】:∵AO,BO分别是∠BAC,∠ABD的平分线,∴∠BAO=∠CAO=12∠BAC,∠ABO=∠DBO=12∠ABD.∴A选项正确,D选项错误;∵AC∥BD,∴∠ABD+∠BAC=180∘.∴B选项正确;∴∠BAO+∠ABO=12∠BAC+12∠ABD=12×180∘=90∘.∴∠BAO与∠ABO互余,∴C选项正确.故选 D。
人教版七年级数学下册5.3 平行线的性质 同步练习及答案

5.3 平行线的性质同步练习一、选择题1、下列命题中,是真命题的是( )A.在同一平面内,垂直于同一条直线的两条直线平行 B.三角形的一个外角大于它的任何一个内角C. 两条直线被第三条直线所截,同旁内角互补 D.过一点有且只有一条直线与已知直线平行2、如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()第2题图第3题图第4题图第6题图A. ∠B=∠CB. AD∥BCC. ∠2+∠B=180°D. AB∥CD3、如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°4、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°5、如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°6、如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B. 45°C. 50°D. 55°7、如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()第9题图第10题图第11题图第12题图A.75°B.80°C.85°D.95°8、如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°9、如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50° B.70° C.80° D.110°10、在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50° B.45° C.40° D.35°11、把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为()第13题图第14题图第15题图 16题图 17题图A.114° B.124° C.116° D.126°二、填空题12、如图所示,请写出能判定CE∥AB的一个条件.13、把一张长方形纸条沿E,折叠,使,如图所示,则的度数为.14、如下图,在△ABC中,DE∥BC,EF∥AB,则与∠B相等的角有个。
初中数学人教版七年级下册 5.3 平行线的性质 同步练习

2020-2021学年初中数学人教版七年级下册第五章相交线与平行线5.3平行线的性质同步练习一、单选题1.阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b//c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(同位角相等,两直线平行)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).A. ①B. ②C. ③D. ④2.如图,AB//CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为()A. 100°B. 80°C. 50°D. 40°3.将一副直角三角板按如图方式摆放,若直线a//b,则∠1的大小为()A. 45°B. 60°C. 75°D. 105°4.某同学的作业如下框,其中※处填的依据是().A. 两直线平行,内错角相等B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,同旁内角互补5.一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是()A. 10°B. 15°C. 20°D. 25°6.如图,已知AB//CD,∠A=140°,∠E=120°,则∠C的度数是()A. 80°B. 120°C. 100°D. 140°7.如图,AB//CD,点E在BC上,DE=EC,若∠B=35°,则∠BED=()A. 70°B. 145°C. 110°D. 140°8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 14°B. 15°C. 20°D. 30°9.如图,∠1=80°,∠2=80°,∠5=70°,则∠3的大小是( )A. 70°B. 80°C. 100°D. 110°10.如图,l1∥l2,点O在直线l1上,将三角板的直角顶点放在点O处,三角板的两条直角边与l2交于A,B两点,若∠1=35°,则∠2的度数为()A. 35°B. 45°C. 55°D. 65°11.已知AB//CD,CE平分∠ACD,交AB于点E,∠A=124°,则∠1的度数为()A. 56°B. 38°C. 36°D. 28°12.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()A. 130°B. 140°C. 150°D. 160°二、填空题13.下图是可调躺椅示意图(数据如图), AE 与 BD 的交点为 C ,且 ∠A , ∠B , ∠E 保持不变.为了舒适,需调整 ∠D 的大小,使 ∠EFD =110° ,则图中 ∠D 应________(填“增加”或“减少”)________度.14.如图,已知等腰梯形 ABCD 中, AD//BC,BC =3AD ,如果 BC ⃗⃗⃗⃗⃗ =a ,BD⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么 AB ⃗⃗⃗⃗⃗ = ________.15.如图, AC//BD,∠C =72°,∠ABC =70° ,那么 ∠ABD 的度数为________.16.如图,直线l 1∥l 2 , ∠BAE =125°,∠ABF =85°,则∠1+∠2=________.17.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,如果被b 反射出的光线n 与光线m 平行,且 ∠1=37° ,那么 ∠2 的度数为________.18.完成下面的证明:已知:如图,∠AEC=∠A+∠C.求证:AB∥CD.证明:过点E作EF∥AB.∴∠A=▲().∵∠AEC=∠1+∠2,∠AEC=∠A+∠C,∴∠C=∠2.∴▲∥▲().∴AB∥CD().三、综合题19. 如图所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数。
人教版七年级数学下册 5.3.1平行线的性质 习题课件

∵∠ABC=30°,∠BAC=90°,∠1=40°,
∴∠2=180°-30°-90°-40°=20°.
11.(中考·重庆) 如图,直线 EF∥GH,点 A 在 EF 上,AC 交 GH 于点 B. 若∠FAC=72°,∠ACD=58°,点 D 在 GH 上, 求∠BDC 的度数.
解:∵EF∥GH, ∴∠DBC=∠FAC=72°. ∵三角形的内角和为 180°, ∴∠BDC=180°-∠DBC-∠ACD=180°-72°-58°=50°.
8.(中考·滨州) 如图,直线 AB∥CD,则下列结论正确的是( D )
A.∠1=∠2
B.∠3=∠4
C.∠1+∠3=180° D.∠3+∠4=180°
9.(2020·营口) 如图,AB∥CD,∠EFD=64°,∠FEB 的平分 线 EG 交 CD 于点 G,则∠GEB 的度数为( D ) A.66° B.56° C.68° D.58°
4.(2019·深圳) 如图,已知 l1∥AB,AC 为角平分线,下列说法 错.误.的是( B ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3
【点拨】 利用平行线的性质得到∠2=∠4,∠3=∠2, ∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2,则 ∠1=∠2=∠4=∠3,∠5=2∠1,从ቤተ መጻሕፍቲ ባይዱ可对各选项进行判断.
谢谢欣赏
THANK YOU FOR LISTENING
2.(2020·常州) 如图,直线 a,b 被直线 c 所截,a∥b,∠1=140°, 则∠2 的度数是( B ) A.30° B.40° C.50° D.60°
3.(2020·娄底)如图,将直尺与三角尺叠放在一起,如果∠1=28°, 那么∠2 的度数为( A ) A.62° B.56° C.28° D.72°
人教版七年级数学下册第五章平行线的性质作业练习题(含答案) (93)

人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,直线a∥b,直线c分别与a,b相交,∠1=55°,则∠2的度数为()A.55°B.105°C.125°D.135°【答案】C【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的性质求出∠2的度数即可.【详解】如图:∵∠1与∠3是对顶角,∠1=55°,∴∠3=55°.∵a∥b,∴∠2=180°﹣∠3=180°﹣55°=125°.故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.22.将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为( )A.45°B.42°C.21°D.12°【答案】D【解析】【分析】直接利用平行线的性质得出∠ACM=∠QPC=42°,进而得出∠ABP的度数.【详解】解:∵PQ∥MN,∴∠ACM=∠QPC=42°,∵∠PCQ=90°,∴∠PQC=48°,∴∠ABP=60°﹣48°=12°.故选D.【点睛】本题考查平行线的性质,正确应用平行线的性质是解题关键.23.如图,直线l1∥l2,且分别与直线l交于C、D两点,把一块含30o角的三角尺按如图所示的位置摆放,若∠1=53o,则∠2的度数是( )A .93oB .97oC .103oD .107o【答案】B【解析】【分析】 依据l 1∥l 2,即可得到∠1=∠3=53°,再根据∠4=30°,即可得出∠2=180°-∠3-∠4=97°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=53°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-53°-30°=97°,故选B .【点睛】此题主要考查了平行线的性质,三角板的特征,角度的计算,熟练掌握是解题的关键.24.如图,已知AE 平分BAC ∠,BE AE ⊥于E ,ED AC ,34BAE ∠=,那么BED ∠=( )A.134B.124C.114D.104【答案】B【解析】【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,然后易求∠BED度数.【详解】解:∵AE平分∠BAC∴∠BAE=∠CAE=34°∵ED∥AC∴∠DEA=180°−34°=146°∵∠AED+∠AEB+∠BED=360°∴∠BED=360°−146°−90°=124°.故选:B.【点睛】本题考查平行线的性质和角平分线的性质.熟知两直线平行,同旁内角互补是解题关键.25.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°【答案】C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.26.一副三角板如图放置,若AB∥DE,则∠1的度数为()A .105°B .120°C .135°D .150°【答案】A【解析】【分析】 利用平行线的性质以及三角形的内角和定理即可解决问题.【详解】解:如图,延长EF 交AB 于点H.AB DE ,BHE E 45?∠∠∴==,1180B EHB 1803045105=﹣﹣=﹣﹣=,∠∠∠∴︒︒︒︒︒故选A.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.如图,E 为BC 上一点,AB ∥DE,∠1=∠2,则AE 与DC 的位置关系是( )A.相交B.平行C.垂直D.不能确定【答案】B【解析】【分析】根据AB∥DE可得∠1=∠AED,再由∠1=∠2可得∠AED=∠2,根据平行线的判定可得AE∥DC.【详解】AB∥DC;∵AB∥DE,∴∠1=∠AED∵∠1=∠2∴∠AED=∠2∴AE∥DC故选B【点睛】此题考查平行线的判定与性质,难度不大28.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=( )A.48°B.42°C.40°D.45°【答案】A【解析】【分析】由互余得出可求得∠3的度数,然后由两直线平行,同位角相等求得∠1的度数.【详解】如图,∵∠2=42°,∴∠3=90°﹣∠2=48°,∴∠1=48°.故选:A.【点睛】考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.29.将一把直尺与一块含30°和60°角的三角板ABC按如图所示的位置放置,直尺的一边恰好经过点A,如果∠CDE=50°,那么∠BAF的度数为()A.15°B.20°C.30°D.40°【答案】B【解析】【分析】先根据∠CDE=50°,得出∠CED=40°,再根据DE∥AF,即可得到∠CAF=40°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】解:由图可得,∠CDE=50°,∠C=90°,∴∠CED=40°,又∵DE∥AF,∴∠CAF=40°,∵∠BAC=60°,∴∠BAF=60°﹣40°=20°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.30.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,2=84°,则∠3的度数为()A.30°B.40°C.45°D.60°【答案】B【解析】【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后根据平角的定义求出∠3即可解决问题.【详解】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣84°﹣56°=40°,故选:B.【点睛】该题主要考查了平行线的性质及其应用,平角的定义,应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.。
人教版七年级数学下册第五章平行线的性质习试(含答案) (47)

人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,已知A C ∠=∠,E F ∠=∠,试说明://AD BC ,【答案】见解析【解析】【分析】由∠E =∠F ,根据内错角相等,两直线平行得AE ∥CF ,根据平行线的性质得∠A =∠ADF ,利用等量代换得到∠ADF =∠C ,然后根据同位角相等,两直线平行可判定AD ∥BC .【详解】证明:∵E F ∠=∠,∵//AE CF ,∵A ADF ∠=∠,∵A C ∠=∠,∵ADF C =∠∠,∵//AD BC ,【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.62.如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?【答案】∠1=∠2,理由见解析【解析】【分析】由∠A+∠ABC=180°,可以判断AD∥BC,进而得到∠1=∠DBC,由BD⊥CD,EF⊥CD,可得BD∥EF,进而得到∠DBC=∠2,于是得出结论.【详解】解:∠1=∠2,理由:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠2,∴∠1=∠2.【点睛】本题考查平行线的性质和判定,掌握平行线的性质和判定是正确得出结论的前提.∠=∠,1∠与2∠互补.63.如图所示,AD与BE相交于点F,A C(1)试说明//AB CE ;(2)若295∠=︒,59C ∠=︒,求E ∠的度数.【答案】(1)见解析;(2)∠E =26°【解析】【分析】(1)先由∠1=∠BFD 得出∠BFD +∠2=180°,故可得出AD ∥BC ,故可得出∠ADE =∠C ,据此可得出∠A =∠ADE ,进而得出结论;(2)直接根据三角形内角和的性质即可得出结论.【详解】(1)∵∠1=∠BFD ,∠1+∠2=180°,∴∠BFD +∠2=180°,∴AD ∥BC ,∴∠ADE =∠C ,∴∠A =∠ADE ,∴AB ∥CE ;(2)∵∠2=95°,∠C =59°,∠E +∠2+∠C =180°∴∠E =180°−95°−59°=26°.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.64.如图,已知EF ∥AB ,1B ∠=∠,求证:EDC DCB ∠=∠.【答案】见解析【解析】【分析】证明∠EDC=∠DCB ,只需具备DE ∥BC 即可,可以考虑证得∠ADE=∠B ,而∠1与这两个角都相等.【详解】证明:∵EF ∥AB ,∴∠1=∠ADE ,∵∠1=∠B ,∴∠ADE=∠B ,∴DE ∥BC ,∴∠EDC=∠DCB .【点睛】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.65. 如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC=3∠BCF ,∠ACF=20°.(1)求∠FEC的度数;(2)若∠BAC=3∠B,求证:AB⊥AC;(3)当∠DAB=______度时,∠BAC=∠AEC.(请直接填出结果,不用证明)【答案】(1)20°;(2)详见解析;(3)50【解析】【分析】(1)先根据CE平分∠BCF,设∠BCE=∠ECF=12∠BCF=x.由∠DAC=3∠BCF可得出∠DAC=6x.根据AD∥EF,AD∥BC,得出EF∥BC,由平行线的性质即可得出x的值,进而得出结论;(2)根据AD∥BC可知∠DAB=∠B,再由∠BAC=3∠B得出∠DAC=4∠B=120°,故∠B=30°,∠BAC=90°,由此可得出结论;(3)根据(1)可得出∠BCF的度数,设∠BAD=∠B=α,由∠BAC=∠AEC 即可得出结论.【详解】解:(1)∵CE平分∠BCF,∴设∠BCE=∠ECF=12∠BCF=x.∵∠DAC=3∠BCF,∴∠DAC=6x.∵AD∥BC,∴∠DAC+∠ACB=180°,∴6x+2x+20°=180°,∴x=20°,即∠BCE=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠BCE=∠FEC=20°;(2)证明:∵AD∥BC,∴∠DAB=∠B,又∵∠BAC=3∠B,∴∠DAC=4∠B,由(1)可得∠BCA=20°×3=60°,∴∠DAC=4∠B=120°,∴∠B=30°,∴∠BAC=30°×3=90°,∴AB⊥AC;(3)由(1)知∠BCE=20°,∴∠BCF=40°.∴∠DAC=3×40°=120°,∵AD∥BC,∴可设∠BAD=∠B=α,∴∠AEC=∠B+∠BCE=α+20°,∠BAC=∠DAC-∠DAB=120°-α,∴当∠BAC=∠AEC时,α+20°=120°-α,解得α=50°,∴∠DAB=50°.故答案为:50.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,难度一般.66.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.n°+35°;(3)见解析.【答案】(1) 35°;(2)12【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.分三种情况讨论,分别过点E作EF∥AB,先由角平分线的定义可得:∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,然后根据平行线的性质即可得到∠BED的度数.【详解】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=12ADC=12×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=12n°+35°;(3)分三种情况:①如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=2∠ABC=2n°,∠CDG=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABE=12n°,∠CDG=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.②如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.③如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=2∠ABC=2n°,∠CDE=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABG=12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.综上所述答案为:∠BED角度改变,其度数为12n°−35°或215°−12n°.【点睛】此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,利用平行线的性质进行推算.三、填空题67.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.【答案】70°.【解析】【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.68.如图,将一个宽度相等的纸条按图所示折叠一下,如果∠1=145°,那么∠2=_____.【答案】107.5°【解析】【分析】根据折叠的性质得到∠3=∠4,由a ∥b ,根据平行线的性质得到∠1=∠3+∠4,∠2+∠3=180°,可计算出∠3=72.5°,则∠2=180°-72.5°=107.5°.【详解】由折叠可得∠3=∠4,∵a∥b,∴∠1=∠3+∠4,∠2+∠3=180°,∴2∠3=145°,∴∠3=72.5°,∴∠2=180°﹣72.5°=107.5°.故答案为:107.5°.【点睛】本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,比较简单.,∠1=∠2,则∠DFE的度数是_______.69.如图已知CD AD【答案】90°【解析】【分析】根据同位角相等两直线平行判定EF∥CD,再根据平行线的性质及垂直的定义得出∥DFE的度数.【详解】解:∥∥1=∥2,∥EF∥CD,∥∥DFE+∥D=180°,又∥CD∥AD,∥∥D=90°,∥∥DFE=180°-90°=90°.故答案为90°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.70.如图,AB∥CD,AD⊥BD,∠A=60°,则∠BDC的度数为__.【答案】30°.【解析】【分析】先根据AB∥CD,∠A=60°,求出∠ADC的度数,再由AD⊥BD得出∠ADB=90°,进而可得出结论.【详解】解:∵AB∥CD,∠A=60°,∴∠BDC=180°﹣60°=120°,∵AD⊥BD,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=120°﹣90°=30°.故答案为:30°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质练习题
1、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )
A.180°
B.360°
C.540°
D.720°
2、若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
3、同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直 B.互相平行 C.相交 D.无法确定
4、若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
5、如图所示,如果AB∥CD,那么().
A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5
C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8
6、下列图形中,由AB‖CD ,能得到∠1=∠2的是()
7、如图,AB ,CD 被EF 所截,AB//CD. 按要求填空: 若∠1=120°,则∠2=____°( ); ∠3=___- ∠1=__°( )
8、如图,AB ∥CD ,AD ∥BC ,如果∠B=50°,那么∠
D= 。
9、如图所示,直线a ,b 被c ,d 所截,且c ⊥a ,c ⊥b ,∠1=70°,则∠2= 度.
10、一大门的栏杆如图所示,BA 垂直于
地面AE 于
A ,CD 平行于地面AE ,则∠ABC +∠BCD = 度.
A
E
F
C D
11、如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.
12. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.
(1) (2) (3) (4)
13、已知:如图,∠AOB 、∠BOC 互为邻补角,OE 平分∠AOB ,OF 平分∠BOC.求证:
OE ⊥OF.
14、如图,直线DE 经过点A ,DE ∥BC ,∠B=44°,∠C=85°.⑴求∠DAB 的度数;⑵求∠EAC 的度数;⑶求∠BAC 的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?
E
D
C B
A
P
D
C
B
A P D
C
B
A
P D
C
B A P
D
C
B A A
D
E
B
C
D
C
B
A
15、如图,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,求∠CAD,∠ACD 的度数.
16、如图:已知 ∠1= ∠ 2求证:∠ BCD+ ∠ D=180︒
17、如图,已知AB ∥DE ,BC ∥EF ,∠B=60°,求∠E 的度数。