人教版七年级数学下《平行线》知识全解

合集下载

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳一、知识梳理二、1、平行线的定义:三、在同一平面内不相交的两条直线叫做平行线.四、2、平行的表示:五、用符号“∥”表示,读作“平行于” .六、3、同一平面内两条直线的位置关系:七、平行或相交.八、4、平行公理:九、经过直线外一点,有且只有一条直线与已知直线平行.十、5、平行的传递性:十一、平行于同一直线的两直线平行.十二、6、平行与角的联系:十三、若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.十四、7、垂直定义:十五、如果两条直线相交所成的四个角中有一个角是直角,那么这两条直线互相垂直.十六、其中一条直线叫做另一条直线的垂线.它们的交点叫做垂足.十七、两条线段、射线垂直是指这两条线段、射线所在的直线垂直.十八、8、垂直的表示:十九、用符号“⊥”表示,读作“垂直于” .二十、9、垂直公理:二十一、过一点有且只有一条直线与已知直线垂直.二十二、10、点到直线的距离:二十三、直线外一点到这条直线的垂线段的长度.二十四、11、垂线段的性质:二十五、直线外一点与直线上各点连接的所有线段中,垂线段最短.二十六、12、垂直与角的联系:二十七、若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.二、典型例题例1、概念辨析(1)两条不相交的直线叫做平行线.(2)两条直线不相交就平行.(3)两条射线或线段平行,是指它们所在的直线平行.(4)在同一平面内不相交的两条线段必平行.(5)经过一点,有且只有一条直线与已知直线平行.(6)同一平面内垂直于同一直线的两条直线互相平行.(7) 点A为直线l外一点,点B在直线l上,若AB=5厘米,则点A到直线l的距离为5cm.解析:(1)错误,必须加同一平面内,否则在立体几何中,会出现异面的情况.比如一个正方体,上面和前面相交的棱与右面和后面相交的棱,所在直线就是既不平行也不相交.(2)错误,理由同(1).(3)正确.(4)错误,反例如下图:(5)错误,必须在直线外,否则,如果这个点在直线上,所作直线就与已知直线重合.(6)正确.(7)错误,如下图,当点B在B2处,点A到直线l的距离为5cm,当点B在B1,点A到直线l的距离小于5cm.例2、试画图说明平面内三条直线的位置关系.分析:我们知道,同一平面内的两条直线有相交、平行两种关系.那么到了三条直线,就会出现三条都平行,两条平行,都不平行的情况.在三条都平行的情况外,必然有相交的情况,我们可以从交点数来考虑,即有一个,有两个,有三个交点三种.解答:例3、(1)如图,P是∠AOB外一点,过点P画直线PC∥OA,交OB于点C,过点P画直线PD∥O B,交OA反向延长线于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?(2)如图,P是∠AOB外一点,过点P画直线PC⊥OA,交OA于点C,过点P画直线PD⊥O B,交OB于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?分析:本题不难,主要是根据要求作图,然后发现度数之间的联系,不是相等就是互补,最后,再关注所研究的两个角的位置关系,发现其中一个角的两边与另一个角的两边分别平行,从而得出最后结论.解答:(1)当P是∠AOB外一点,∠AOB+∠CPD=180°当P是∠AOB内一点,∠AOB=∠CPD发现:若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.(2)当P是∠AOB外一点,∠AOB=∠CPD当P是∠AOB内一点,∠AOB+∠CPD=180°发现:若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.三、思维提升例1、网格作图(1)利用图(1)中的网格,利用直尺过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于______.分析:网格作图是今后的重点内容,我们应该引起足够的重视,(1)对于作平行,有2种作法,第一种观察线段AB是横2竖4的长方形对角线,那么,过要画的点P,也应该是构造横2竖4的长方形对角线.第二种,采用平移的方法,从点A平移到点P,需要向右4格再向下1格,那么点B也要同样平移,然后将线段两端延长,变成直线.对于作垂直,则和平行相反,过点P需要构造横4竖2的长方形对角线.(2)我们可以保持EF不动,将AB,CD平移,注意,有2种情况.(3)对于网格图形的面积,我们通常可以采用割补法,割,把大图形分成几个小图形,计算面积和,补,把大图形再补成一个更大的,可直接计算面积的图形,减去周围几个小图形的面积和.本题适合用补的方法.解答:例2、垂线段再认识如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;(1)请找出图中所有的垂线段,并说明这条垂线段的长度是哪个点到哪条直线的距离.(2)线段PC、PH、OC这三条线段大小关系是______.(用“<”号连接)分析:要找垂线段,首先要找出所有的垂足,因为垂线段是直线外一点到垂足的距离.这里的垂足显然只有P,H,那么点O,点C,可以和点P,点H组成垂线段.要说明垂线段长度是哪个点到哪一条直线的距离,那么必然选择的是垂线段的两个端点中,不是垂足的那个点,到垂足所在的另外一条与垂线段垂直的直线的距离.解答:(1)OP,OP的长度是点O到直线PC的距离.CP,CP的长度是点C到直线OB的距离.OH,OH的长度是点O到直线PH的距离.CH,CH的长度是点C到直线PH的距离.PH,PH的长度是点P到直线OC的距离.(2)PH<PC<OC.例3、思考类作图同一平面内已知线段AB长为10cm,点A、B到直线l的距离分别为6cm和4cm,符合条件的直线l有_______条?分析:显然,同学们都能想到作线段AB的垂线,将线段AB分成6cm,4cm两部分.但其实,在线段AB的两侧还有两条,分别以A、B为圆心、6cm和4cm为半径作圆,当所画的直线与两个圆分别都只有一个交点时,也符合题意,这样的直线有两条,即共有3条.到了初三,我们会知道,这三条线就是所画的两个圆的切线.解答:如图,三条红色的直线即为所求.变式如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.分析:我们可以先找线,再确定点,先找出到l1距离为2的直线,到12距离为1的直线,显然,它们的交点,就满足题意.画图后,不难发现到l1距离为2的直线有2条,到12距离为1的直线有2条,这4条直线两两相交,有4个交点,这4个交点就是"距离坐标"是(2,1)的点.解答:如图,到l1距离为2的直线是2条蓝色直线,到12距离为1的直线是2条红色直线,四个交点即为所求.。

人教版七年级数学课件《平行线的判定》

人教版七年级数学课件《平行线的判定》
A.①②
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时

CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.

人教版七年级数学下册相交线与平行线知识点

人教版七年级数学下册相交线与平行线知识点

一相交线与平行线1.相交线➢关键词:邻补角、对顶角、同位角、内错角、同旁内角➢性质:对顶角相等..2.垂线➢关键词:垂直、垂足、➢定义:两条直线相交所成的四个角中;有一个角是直角时;就说这两条直线互相垂直.其中一条直线叫另一条直线的垂线;它们的交点叫垂足..➢性质:1在同一平面内;过一点有且只有一条直线与已知直线垂直.2直线外一点与直线上各点连结的所有线段中;垂线段最短.简称:垂线段最短.该垂线段的长度称为点到直线的距离..3.平行线➢定义:在同一个平面内;不相交的两条直线叫做平行线.平行用符号“//”表示..如图一;直线AB与CD是平行线;记作“AB//CD” ;读作“AB平行于CD”.在同一个平面内;两条直线的位置关系只有两种:相交或平行.图一➢判定:1同位角相等;两直线平行..2内错角相等;两直线平行..3 同旁内角互补;两直线平行..4 平行于同一直线的两直线平行..5垂直于同一直线的两直线平行..➢性质:1 两条平行线被第三条直线所截;同位角相等.2 两条平行线被第三条直线所截;内错角相等.3 两条平行线被第三条直线所截;同旁内角互补.4.命题➢定义:判断一件事情的语句;叫做命题.➢一般形态:1“如果……;那么…….”2“若……;则…….”3“倘若……;那么…….”➢分类:1正确的命题:如果题设成立;那么结论一定成立的命题.2如果题设成立;不能保证结论总是成立的命题.5. 数学名词➢定理:用推理的方法判断为正确的命题叫做定理;如“内错角相等;两直线平行”、“两直线平行;内错角相等”等等.➢公理:人们在长期实践中总结出来的得到人们公认的真命题;叫做公理;如“同位角相等;两直线平行”、“两直线平行;同位角相等”等.➢证明:判断一个命题的正确性的推理过程叫做证明.二平面直角坐标系1. 有序数对➢定义:有顺序的两个数a与b组成的数对a;b叫做有序数对..➢应用:找出平面上点的坐标..2. 平面直角坐标系➢平面直角坐标系:由平面内两条互相垂直、原点重合的数轴组成..水平的数轴称为 X轴或横轴;竖直的数轴称为y轴或纵轴..➢用坐标表示地理位置:➢用坐标表示平移:1一般地;在平面直角坐标系中;将点x;y向右或左平移 a个单位长度;可以得到对应点x+a;y或x-a;y;将点x;y 向上或下平移b个单位长度;可以得到对应点表示x;y+b或 x;y-b..2一般地;将一个图形一次沿两个坐标轴方向平移所得到的的图形;可以通过将原来的图形作一次平移得到..3一般地;在平面直角坐标系内;如果把一个图形各个点的横坐标都加或减去一个正数a;相应的新图形就是把原图形向上或向下平移a个单位长度..三二元一次方程组1.概念➢二元一次方程:含有两个未知数;并且未知数的指数都是1;像这样的方程叫做二元一次方程;一般形式是ax+by=ca≠0;b≠0..➢二元一次方程的解:一般地;使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解..➢二元一次方程组:把两个二元一次方程合在一起;就组成了一个二元一次方程组..➢二元一次方程组的解:一般地;二元一次方程组的两个方程的公共解叫做二元一次方程组的解..2.消元法➢定义:将未知数的个数由多化少;逐一解决的想法;叫做消元思想..➢代入消元:将一个未知数用含有另一个未知数的式子表示出来;再代入另一个方程;实现消元;进而求得这个二元一次方程组的解;这种方法叫做代入消元法;简称代入法..➢加减消元法:当两个方程中同一未知数的系数相反或相等时;将两个方程的两边分别相加或相减;就能消去这个未知数;这种方法叫做加减消元法;简称加减法..习题一一、选择题1. 如图;∠1和∠2是同位角的是A. ① ② B . ① ③ C . ② ③ D. ② ④① ② ③ ④2. 张雷同学从A 地出发沿北偏东500的方向行驶到B 地;再由B 地沿南偏西200的方向行驶到C 地;则∠ABC 的度数为A. 400B. 300C. 200D. 00 3.下列说法中;正确的是A. 相等的两个角是直角B. 同旁内角互补C. 一个角的补角一定是钝角D. 如果同位角不相等;两条直线一定不平行4.如图1;一个宽度相等的纸条;如图那么折叠一下;∠1等于 度A. 150º B . 120º C. 60º D. 75º5.点B-3;0在 上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上6.点C 在x 轴上方;y 轴左侧;距离x 轴2个单位长度;距离y 轴3个单位长度;则点C 的坐标为 A 、2;3 B 、 -2;-3 C 、 -3;2 D 、3;-2 7.若点Mx ;y 的坐标满足x +y =0;则点M 位于A .第二象限B .第一、三象限的夹角平分线上C .第四象限D .第二、四象限的夹角平分线上 8.某同学的座位号为2;4;那么该同学的所座位置是A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定9.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是A .3217 (23)0122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 10.关于x;y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解;则k 的值是•A .k=-34 B .k=34 C .k=43 D .k=-43 11.如果方程组1x y ax by c +=⎧⎨+=⎩有唯一的一组解;那么a;b;c 的值应当满足A .a=1;c=1B .a ≠bC .a=b=1;c ≠1D .a=1;c ≠112.方程3x+y=7的正整数解的个数是A .1个B .2个C .3个D .4个2112121213.已知x;y 满足方程组45x m y m+=⎧⎨-=⎩;则无论m 取何值;x;y 恒有关系式是A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 二 填空题1.如图1所示;点A 的坐标为_______;点B 的坐标为_______;点C 的坐标为_______;点D 的坐标为_______;2.如图2所示;添加条件:_______________只需写一个;可以使AB ∥CD;理由是___________________________.ODECBAOD ECBA3. 如图3;直线AB 、CD 相交于点O ;OE ⊥AB ;O 为垂足;如果∠EOD = 38°;则∠AOC = ;∠COB = .4.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.5.a -b=2;a -c=12;则b -c 3-3b -c+94=________.6.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解;则a=_______;b=______. 三、解答题:1.已知:如图;AD ∥BC ;∠D =100°;AC 平分∠BCD ;求∠DAC 的度数.2.已知y=3xy+x;求代数式2322x xy yx xy y+---的值.4321BAED C xy2341-1-2-3-4-3-2-12143(1)DC B A1 2 3。

七下数学人教版课本知识点总结非常完整

七下数学人教版课本知识点总结非常完整

七下数学课本知识点总结非常完整人教版七年级数学下册知识点第五章 相交线与平行线一、1、在同一平面内,不重合的两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示,∠1与∠3互为对顶角。

∠1=∠3;∠2与∠4互为对顶角,∠2=∠45、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 ∠1 = 90°时, a ⊥ b 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

性质3:如图2所示,当 a ⊥ b 时,∠1 = ∠2 = ∠3 = ∠4 = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。

同位角呈“F ” ②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

内错角呈“Z ”③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。

同旁内角呈“U ” 7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

七年级数学下《平行线的性质》知识点总结归纳

七年级数学下《平行线的性质》知识点总结归纳

七年级数学下《平行线的性质》知识点总结归纳一、平行线的性质1.同位角相等:两条平行线被一条横截线所截,形成的同位角相等。

2.内错角相等:两条平行线被一条横截线所截,形成的内错角相等。

3.同旁内角互补:两条平行线被一条横截线所截,形成的同旁内角互补,即角度和为180°。

二、性质的应用1.计算平行线的距离:利用平行线的性质,可以计算两条平行线之间的距离。

2.判断角度大小:利用平行线的性质,可以判断两条直线之间的角度大小。

3.解决实际问题:平行线的性质在实际生活中有广泛的应用,如建筑、机械制造等领域。

三、注意事项1.平行线的性质是在同一平面内,两条不相交的直线所具备的属性。

因此,确定两条线是否平行,首先需要确定它们是否在同一平面内。

2.平行线的性质需要通过横截线来体现,因此在证明或应用性质时,需要明确横截线的位置。

3.在实际应用中,需要根据具体情境判断两条线是否平行,并选择适当的方法来解决问题。

四、相关定理与概念1.平行线的判定定理:同位角相等、内错角相等、同旁内角互补等。

2.垂直线的性质:垂直于同一条直线的两条直线互相平行。

3.平行公理:经过直线外一点,有且只有一条直线与已知直线平行。

五、易错点提醒1.学生在应用性质时,容易出现混淆,将判定定理和性质混淆使用。

需要明确的是,判定定理用于判断两条直线是否平行,而性质用于说明平行线之间的关系或推导其他结论。

2.对于同旁内角互补的理解,学生容易出现误区,认为同旁内角之和为90°而非180°。

需要强调的是,同旁内角互补是指它们的角度和为180°,不是90°。

3.在实际解决问题时,学生容易忽略题目中的限制条件或隐藏条件,导致解题错误。

需要提醒学生认真审题,注意细节,以免出现不必要的错误。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

人教版七年级数学下册第五章《平行线的性质1

人教版七年级数学下册第五章《平行线的性质1
……
2、问题探索 问当下题直图2线)A,B前与面C所D不发平现行的时式(子如都
不成立。这说明只有AB∥CD 时,前面的式子才能成立.
如果改变AB和CD的 位置关系,即直线AB 与CD不平行,那么你 刚才发现的结论
还成立吗?请同学们 动手画出图形,并用 量角器量一量各角的 大小,验证一下你的 A 结论.
教学内容
平行线的性质
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
还有一些说不出名字的角, 如 ∠1与 ∠6等,书上没有 定义.
E
A
41 32
B
C
8ห้องสมุดไป่ตู้ 76
D
F
∠1= ∠5, ∠ 2=∠6, ∠ 3=∠7, ∠4= ∠8;
∠2= ∠8, ∠3=∠5, ∠ 1=∠7, ∠4=∠6;
∠2+ ∠5=180°, ∠3+ ∠8=180°, ∠1+ ∠6=180°, ∠4+ ∠7=180°;
问题4
(1)具有相等关系的两个 角,有的是同位角,有的 是内错角,如∠1与 ∠5等
(都1是)同具位有角相; 等∠2关与系∠的8等 两都角是内有错怎角样。的还位有置一些关说 系回不∠呢答出7,名?)∠字(4的与请角∠甲,6组等如.同∠学1与 ((22))互具有补互的补两关角系又的有两个 怎角样,的有位的是置同关旁系内呢角?,如 (∠请2与乙∠组5同等都学是回同答旁)内角;

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。

若直线a平行于直线b,则记作,读作。

注意:一定要在同一平面内。

且一定要时直线。

2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。

②将直尺与三角尺的另一直角边紧靠在一起。

③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。

④沿着三角尺该直角边画直线。

【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。

有且只有:存在且唯一。

2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即若c b b a ∥,∥, 则a c 。

3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。

【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线》知识全解
课标要求
掌握平行线的概念,理解平行公理及推论,会过一点做已知直线的平行线。

知识结构
这一小节的主要结构是平行线的概念,平行公理及推论.
(1)平行线的概念和表示方法
平行线的概念是通过一个两条直线被第三条直线所截的模型,说明在转动a的过程中,存在两条直线不相交的情况,由此给出平行线的概念和表示方法,所以平行线的概念没有用具体的语言来叙述,什么是平行线应结合具体的图形来理解.
(2)平行公理及推论
同样利用两条直线被第三条直线所截的模型,在转动a的过程中,只有一个位置使得a 与b平行,以及通过动手过直线外一点画平行线的活动,引出了平行公理:经过直线外一点,有且只有一条直线与这条直线平行.并进一步给出了平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
内容解析
(1)用一个两条直线被第三条直线所截的模型,既可以引出平行线的概念,又可以引出平行公理,还是三线八角的模型,也可以用它来引入平行线的判定方法的学习.因此,要重视这个模型在教学中的应用.
(2)平行线是用“不相交”这种否定方式来定义的,这种否定的方式包含了对空间的想象,因此,对平行线概念的理解,要使学生发挥想象力,把三个木条看成是三条直线,想象在转动过程中不相交的情况.实际生活中,大量存在的是平行线段,要把它们看成是平行直线.
(3)画平行线是几何画图的基本技能之一,在以后的学习中,常常会遇到画平行线的问题.因此,在画图时,要注意画平行线时要使用工具,不能徒手画.
(4)平行线公理是几何中的重要公理,在本节中不要求会推理,只要能通过观察,实
验,体验这些结论就可以了.
重点难点
重点:平行线的概念和平行公理及推论.难点:理解平行线是无限延伸的,无论怎样延伸都不会相交.
教法导引
主要是在教师的指导下,学生带着问题认真阅读课本,自主学习,然后讨论,小组代表发言,师生达成共识.
学法建议
认真阅读课本和动手画图并探究从中发现几何结论.。

相关文档
最新文档