人教版七年级数学下册教案 平行线
七年级数学平行线教案

七年级数学平行线教案七年级数学平行线教案通用9篇七年级数学平行线教案1一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。
3、解决问题能在观察、想像、实践、操作中发现并提出问题,初步体会在解决问题的过程中与他人合作、交流的重要性。
4、情感与态度目标认识到通过观察、想象、实践、操作、归纳可以获取数学知识,体验数学活动富有探索性,人而激发学生学习兴趣,增强学生的学习信心,培养学生可持续学习的能力。
二、教材分析“平行线”是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关性质,为今后学平行线的判定做好铺垫。
本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关结论。
学生在观察、实践、操作之前,教师要提醒学生注意以下几点:1、注意想象木条在转动过程中的位置变化情况;2、实际生活中,大量存在的是平行线段,要把它们看成直线;3、强调画平行线时要使用工具,不能徒手画,还注意不能只画横平或竖立的图形,要让学生画出一些变式图形。
三、学校与学生情况分析万宁市第二中学是万宁市一所普通中学,大部分的学生来自农村,学校的教学条件一般。
我校七年级的学生没有通过选拔考试,只是按要求就近入学。
因此,大部分学生的基础以及学习习惯较差。
但在新的教学理念的指导下,在课堂教学中,逐渐淡化了知识传授、接受学习、模仿训练等传统的模式,而注重学生学习兴趣与态度的培养,注重学生的自主探索和合作交流以及创新意识的培养,把课堂真正还给学生。
七年级下册《平行线》说课稿

七年级下册《平行线》说课稿七年级下册《平行线》说课稿1说教学目标知识与技能:1、会用三角尺和直尺熟练准确的画出一组平行线。
2、会利用画垂线的方法准确的画出长方形。
3、培养学生作图的能力。
过程与方法:通过操作活动,使学生经历画平行线的全过程,培养学生作图的能力。
情感态度和价值观:通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。
说重点难点重点:巩固对平行线的认识,会用三角尺和直尺准确的画出一组平行线。
难点:准确的画出垂线和一组平行线。
会利用画垂线和画平行线的方法准确的画出长方形。
教学过程一、复习导入1、回忆一下,什么叫平行线?2、我们身边哪些物体的边是互相平行的。
我们怎么样才能画出一组平行线呢?这节课我们就来学习画平行线板书课题:画平行线二、探究新知1、可以用直尺和三角尺画平行线。
步骤:1)用左手固定直尺,用右手将三角尺的一条直角边紧贴着直尺,沿另一条直角边画一条直线。
2)将三角尺紧贴着直尺移动位置,再画出一条直线,这条直线与第一步画出的直线平行。
可以用画平行线的方法检验两条直线是不是互相平行。
2、大家用自己手中的直尺和三角板自己画一组平行线,然后小组内的同学互相检查,对方画的是否平行。
3、小组活动:在你所画的这组平行线之间画几条与平行线垂直的线段,量一量这些线段的长度,你能发现什么?在小组内交流一下全班汇报小结:平行线间的距离是相等的。
学生汇报学生举生活中的实例。
学生认真观察后叙述画平行线的步骤学生画一组平行线,组内的同学互相检查。
小组讨论后全班汇报复习所学的平行线知识,为学习新知识作准备。
使学生掌握画平行线的方法,培养学生作图的能力。
通过动手操作,使学生理解平行线间的距离是相等的4、小组讨论:怎样画一个长3厘米、宽2厘米的长方形?长方形的对边是互相平行的。
相邻的两条边是互相垂直的。
可以用垂线或平行线的方法来画。
全班汇报组内研究的画法:先画一条长3厘米的线段,再过两个端点在线段的同侧分别画两条与它垂直的2厘米长的线段,最后把两条线段的端点用线连接起来。
人教版数学七年级下册学案 5.2.1《 平行线》 (含答案)

5.2.1 平行线【学习目标】1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解平行线在实际生活中的应用,能举例加以说明.重点:平行线的概念与平行公理;难点:对平行公理的理解.【自主学习】问题1 同一平面内两条直线的位置关系平面内任意两条直线的位置关系除平行外,还有哪些呢?平行线:在同一平面内,_______________的两条直线叫做平行线。
直线a与b平行,记作“a∥b”。
在同一平面内,两条直线只有两种位置关系:_______或_______。
**对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.问题2 平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).归纳:(1)平行公理:经过_____一点,有且只有一条直线与这条直线_____。
(2)两条直线都与第三条直线平行(平行线是在同一平面内定义的),那么这两条直线_______. 即b∥a,c∥a,那么_______。
问题3 在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上。
(1)a与b没有共同点,则a与b_______。
(2)a与b有且只有一个共同点,则a与b_______。
在同一平面内,若两条直线相交,则公共点的个数是____;若两条直线平行,则公共点的个数是____。
【合作学习】1、若直线a∥b,b∥c,则a____c,理由是:_______________。
直线l1是l2的平行线,记作:_______,读作:_______________。
《平行线》 教案 (公开课)人教版数学

5.2平行线及其判定5.平行线1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系;2.掌握平行公理以及平行公理的推论;(重点、难点)3.会用符号语言表示平行公理推论,会用三角尺和直尺过直线外一点画这条直线的平行线.(重点)一、情境导入数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.二、合作探究探究点一:平行线的概念以下说法中正确的有:________.(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直.解析:根据平行线的概念进行判断.线段不相交,延长后不一定不相交,(1)错误;同一平面内,直线只有平行和相交两种位置关系,(2)(4)正确,(5)错误;线段是有长度的,不平行也可以不相交,(3)错误.故答案为(2)(4).方法总结:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.探究点二:过直线外一点画直线的平行线如以下列图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解析:用两个三角板,根据“同位角相等,两直线平行〞来画平行线,然后用量角器量一量l1与l2相交的角,该角与∠O的关系为相等或互补.解:(1)(2)如以下列图;(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.易错点拨:注意∠2与∠O是互补关系,解答时容易漏掉.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有以下四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的个数是() A.1个B.2个C.3个D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线互相平行,正确;正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,两者区别在于:对于平行线公理中,必须是过直线外一点可以作直线的平行线,但过直线上一点不能作直线的平行线,垂线的性质中,无论点在何处都能作出直线的垂线.【类型二】应用平行公理的推论进行论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a∥d.方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】平行公理推论的实际应用将一张长方形的硬纸片ABCD对折后翻开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?解析:根据平行公理的推论得出答案即可.解:∵CD∥EF,EF∥AB,∴CD∥AB.方法总结:利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.三、板书设计平行线⎩⎪⎨⎪⎧概念两条直线的位置关系:平行或相交性质⎩⎪⎨⎪⎧平行公理平行公理的推论本节课以学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分.经历观察多媒体的演示和通过画图等操作,交流归纳与活动,进一步培养学生的空间想象能力4.5一次函数的应用 第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
七年级下册数学平行线教案

七年级下册数学平行线教案一、教学目标:知识与技能:1. 理解平行线的概念,掌握平行线的性质和判定方法。
2. 能够运用平行线的性质和判定方法解决实际问题。
过程与方法:1. 通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
2. 学会运用同位角、内错角、同旁内角等概念判定两条直线是否平行。
情感态度价值观:1. 培养学生的团队合作精神,学会与他人交流和分享。
2. 激发学生对数学的兴趣,培养学生的自信心和自主学习能力。
二、教学内容:第一课时:平行线的概念及性质1. 引入平行线的概念,通过实例让学生感受平行线的特征。
2. 引导学生观察和探索平行线的性质,总结出平行线的性质定理。
第二课时:平行线的判定1. 引入同位角、内错角、同旁内角的概念,让学生通过观察和操作,探索判断两条直线是否平行的方法。
2. 引导学生总结出平行线的判定定理,并进行练习。
第三课时:平行线的应用1. 通过实例引导学生运用平行线的性质和判定方法解决实际问题。
2. 让学生进行练习,巩固所学知识,提高解决问题的能力。
三、教学重点与难点:重点:1. 平行线的概念及性质。
2. 平行线的判定方法。
难点:1. 理解并运用同位角、内错角、同旁内角的概念判断两条直线是否平行。
2. 解决实际问题,运用平行线的性质和判定方法。
四、教学方法:采用问题驱动法、小组合作探究法、案例分析法等多种教学方法,引导学生主动参与课堂,培养学生的思维能力和实践能力。
五、教学准备:教师准备PPT、教学案例、练习题等教学资源;学生准备笔记本、文具等学习用品。
六、教学过程:第一课时:平行线的概念及性质1. 引入平行线的概念,通过实例让学生感受平行线的特征。
2. 引导学生观察和探索平行线的性质,总结出平行线的性质定理。
第二课时:平行线的判定1. 引入同位角、内错角、同旁内角的概念,让学生通过观察和操作,探索判断两条直线是否平行的方法。
2. 引导学生总结出平行线的判定定理,并进行练习。
人教版七年级数学教案:5.2.2平行线的判定

在今天的课堂中,我们探讨了平行线的判定方法,这是几何学习中的一个重要部分。我注意到,学生在理解同位角、内错角和同旁内角的概念时,普遍感到有些困难。我尝试使用了动态图示和实物模型来帮助学生直观地感受这些角度的形成,效果似乎不错,但我认为还需要在后续的课堂中继续巩固这些概念。
课堂上,我设计了一些实践活动,让学生分组讨论并操作实验,我希望通过这样的方式,让他们在实践中学习和理解。从学生的反馈来看,他们对于能够亲手操作、亲眼观察的环节非常感兴趣,这也帮助他们更好地理解了判定条件。不过,我也观察到,在将理论知识应用到具体问题解决时,部分学生仍然感到困惑。这可能是因为他们还没有完全消化和吸收这些概念,或者是我没有提供足够的引导和示例。
直接输出:
二、教学重点与难点
教学重点:
1.平行线的判定方法:同位角相等、内错角相等、同旁内角互补。
2.平行线在实际几何图形中的应用。
3.逻辑推理在平行线判定中的应用。
教学难点:
1.同位角、内错角、同旁内角的准确识别和测量。
2.理解并运用逻辑推理来判断两条直线是否平行。
3.在复杂的几何图形中找出所有相关的角,并进行正确的判定。
-举例:设计练习题,如给出一个图形,要求学生找出所有的平行线,并说明使用的是哪个判定条件。
2.教学难点
-难点一:理解同位角、内错角、同旁内角的概念及其在判定平行线中的作用。
-举例:学生可能难以理解同位角和内错角的概念,教师需用模型或动态图示来直观展示这些角度的关系。
-难点二:在实际图形中准确找出相应的角度,特别是在图形复杂时。
二、核心素养目标
本节课的核心素养目标为:培养学生的逻辑推理能力、几何直观能力和问题解决能力。通过探索平行线的判定方法,使学生能够运用逻辑思维分析和解决问题,提高推理的准确性;通过观察和操作几何图形,发展几何直观,增强对空间关系的认识;在实际问题中,运用所学的平行线判定方法,提高解决几何问题的能力。同时,注重培养学生合作交流的意识,提升数学表达和概括能力,为后续几何学习奠定坚实基础。
人教版七年级数学下册《平行线的判定》教案

七年级下册数学教案:平行线的判定(第一课时)【教学目标】知识与技能目标:了解推理、证明的格式,掌握平行线判定方法过程与方法目标:能运用所学过的平行线的判定方法进行简单的推理论证.情感与态度目标:通过教学演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.【任务分析】1、学习结果:本课属于智慧技能的规则学习。
2、学习条件:( 1)必要性条件:规则学习的先决条件是概念,此处要学习的四个概念是“同位角” ,“内错角”,“同旁内角”和“平行线” ,四个都属于定义性概念。
概念的先决条件是辨别。
(因而决定教学的顺序为辨别—概念学习—规则学习)。
( 2)支持性条件:两直线平行可用推平行线法来检测,同位角相等,内错角相等和同旁内角互补都可以用量角器测得。
学生学习用具:两把尺子或三角板。
本节分两个课时讲,第一课时介绍前两个判定方法,课时二再介绍判定方法三。
3、学生的起点能力:学生已经掌握“同位角” ,“内错角”,“同旁内角”和“平行线”的概念。
学生会具有辨别能力,会使用几何工具辅助学习,具备一般的推理能力。
起点能力使能目标一使能目标二终点能力学生已经掌握“同位角”,“内错角”,“同旁内角”和作图在平行线和结合图形学生自知道两角关系运用判定“平行线”的概念非平行线上找到己归纳出平行线方法来证明,并使用正学生会使用几何这几对角判定方法确的证明格式工具辅助学习,具发现这些角的关备一般的推理能系力。
4、教学重点:对判定方法的概括与推导5、教学难点:方法的归纳与综合运用【教学内容】教学教师活动过程1、?本堂课分五块讲解习得1、回顾三线八角阶段2、平行线概念3、平行线判定方法4、本课重难点5、总结与练习(一)创设情景,激发求知欲望1、回顾上节课所学习的“三线八角”a314a12358a267问那些角是“同位角” ,“内错角”,“同旁内角”让学生在自己纸上也画一下,或者用手势比一下。
学生活动看 PPT个别举手回答大部分学生跟着老师用手势表示各种角学生回答平行线的概念,一部分学生会把在同一2、平行线概念:在同一平面内,不相交的两条直线叫做平行线。
平行线(定义、平行公理及推论)-人教版七年级数学下册教案

平行线(定义、平行公理及推论)一、定义本文将以人教版七年级数学下册为基础,介绍平行线的定义、平行公理及推论。
在几何学中,平行线是指在同一平面内,永远不会相交的两条直线。
这两条直线被称为平行线。
二、平行公理平行公理是欧几里得几何学中的五大公理之一,也被称为第五公理或者平行公设。
平行公理有多种表述方式,本文采用较为经典的一种表述方式:给定一条直线和一点,可以且只可以在这个平面内,过这个点作与所给直线垂直的直线。
这个公理表达的意思是:如果一条直线L和一点P在同一个平面内,那么可以通过在P点作一条与L线垂直的线,最终得到与L线永远不相交的直线。
这条与L线平行的直线被称为L线的平行线。
三、推论平行公理的一个重要推论是:给定一线段和一个不在这线段上的点,则可以且只可以有一条直线过这个点且与线段平行。
这个推论表达的意思是:如果给定一条线段AB和一个点C(不在AB线段上),那么只能存在一条通过点C且与线段AB平行的直线。
在这个推论中,AB线段被称为给定线段,C点被称为不在线段上的点。
在欧氏几何学中,这个推论又被称作“唯一直线公设”,因为它表达了只能存在一条直线通过点C且与线段平行的事实。
另一个重要的平行线推论是:两条平行线与第三条直线相交,那么对这些相交的线上的对应角相等。
这个推论被称为平行线的性质,并且常被大家用来解决许多几何问题。
另外,还有一个重要结论,即“如果两条直线与第三条直线的相应角相等,则这两条线平行”。
这个结论有时被称为“等角推平行定理”,它是几何中常用的用于证明两条直线平行的方法之一。
总结本文介绍了平行线的定义、平行公理及推论。
平行线是在同一平面内永远不会相交的两条直线。
平行公理表述在同一平面内任意一条直线和一点,可以且只可以作一条经过这个点且与这条直线垂直的直线。
平行公理的一个重要推论是“给定一线段和一个不在这线段上的点,则只有唯一一条直线过这个点且与这条线段平行”。
此外,两条平行线与第三条直线相交,那么对这些相交的线上的对应角相等,这条性质十分重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 .2.1 平行线
[教学目标]
1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;
4.了解平行线在实际生活中的应用,能举例加以说明.
[教学重点与难点]
1.教学重点:平行线的概念与平行公理;
2.教学难点:对平行公理的理解.
[教学过程]
一、复习提问
相交线是如何定义的?
二、新课引入
平面内两条直线的位置关系除平行外,还有哪些呢?
制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.
三、同一平面内两条直线的位置关系
1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.
(画出图形)
2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:
两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.
4.平行线的画法
平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).
四、平行公理
1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.
3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、三线八角
由前面的教具演示引出.
如图,直线a,b被直线c所截,形成的8
个角中,其中同位角有4对,内错角有2对,
同旁内角有2对.
六、课堂练习
1.在同一平面内,两条直线可能的位置关系是.2.在同一平面内,三条直线的交点个数可能是.3.下列说法正确的是()
A.经过一点有且只有一条直线与已知直线平行
B.经过一点有无数条直线与已知直线平行
C.经过一点有一条直线与已知直线平行
D.经过直线外一点有且只有一条直线与已知直线平行
4.若∠α与∠β是同旁内角,且∠α=50°,则∠β的度数是()A.50°B.130°C.50°或130°D.不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()
A.1 B.2 C.3 D.4
6.如图,直线AB,CD被DE所截,
则∠1和是同位角,∠1和
是内错角,∠1和是同旁内角.如
果∠5=∠1,那么∠1 ∠3.
七、小结
让学生独立总结本节内容,叙述本节的概念和结论.
八、课后作业
1.教材P19第7题;
2.画图说明在同一平面内三条直线的位置关系及交点情况.
[补充内容]
1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,
试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)。