人教版七年级数学下册--《平行线》教学设计
人教版数学七年级下册5.2.1《平行线》教学设计4

人教版数学七年级下册5.2.1《平行线》教学设计4一. 教材分析《平行线》是人教版数学七年级下册第五章第二节第一课时内容。
本节课主要介绍平行线的概念及其性质。
通过本节课的学习,学生能够理解平行线的定义,掌握平行线的性质,并能够运用这些性质解决一些实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对图形的认知和观察能力有所提高。
但是,对于平行线的概念和性质,学生可能还存在一些模糊的认识。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,逐步建立起对平行线的正确认识。
三. 教学目标1.知识与技能:理解平行线的定义,掌握平行线的性质,能够运用平行线的性质解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:平行线的定义及其性质。
2.难点:平行线的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。
2.动手操作法:让学生通过实际操作,观察、总结平行线的性质。
3.合作交流法:引导学生分组讨论,共同探索平行线的性质,培养学生的合作意识。
4.引导发现法:教师引导学生发现问题,引导学生通过思考、交流得出结论。
六. 教学准备1.教学课件:制作课件,展示平行线的图片、例题和练习题。
2.教学用具:黑板、粉笔、直尺、三角板等。
3.学习素材:收集一些与平行线相关的实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的平行线现象,如操场、铁路、楼房等,引导学生观察并提问:“这些图片中有哪些共同的特点?”学生回答后,教师总结引入平行线的概念。
2.呈现(10分钟)教师简要讲解平行线的定义,然后通过PPT展示一些平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
初一下学期数学平行线教案5篇

初一下学期数学平行线教案5篇初一下学期数学平行线教案篇1教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.2、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么2、根据题设,应画出什么样的图形(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例2、证明:邻补角的平分线互相垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.三、课堂练习:1、平行于同一条直线的两条直线平行.2、两条平行线被第三条直线所截,同位角的平分线互相平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业课本P143 5、(2),7.六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样初一下学期数学平行线教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
新人教版初中七年级数学下册《平行线》教案

平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?cb ac ba C 本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: c b a如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P19.7,P20.11.。
七年级下册《平行线》说课稿

七年级下册《平行线》说课稿七年级下册《平行线》说课稿1说教学目标知识与技能:1、会用三角尺和直尺熟练准确的画出一组平行线。
2、会利用画垂线的方法准确的画出长方形。
3、培养学生作图的能力。
过程与方法:通过操作活动,使学生经历画平行线的全过程,培养学生作图的能力。
情感态度和价值观:通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。
说重点难点重点:巩固对平行线的认识,会用三角尺和直尺准确的画出一组平行线。
难点:准确的画出垂线和一组平行线。
会利用画垂线和画平行线的方法准确的画出长方形。
教学过程一、复习导入1、回忆一下,什么叫平行线?2、我们身边哪些物体的边是互相平行的。
我们怎么样才能画出一组平行线呢?这节课我们就来学习画平行线板书课题:画平行线二、探究新知1、可以用直尺和三角尺画平行线。
步骤:1)用左手固定直尺,用右手将三角尺的一条直角边紧贴着直尺,沿另一条直角边画一条直线。
2)将三角尺紧贴着直尺移动位置,再画出一条直线,这条直线与第一步画出的直线平行。
可以用画平行线的方法检验两条直线是不是互相平行。
2、大家用自己手中的直尺和三角板自己画一组平行线,然后小组内的同学互相检查,对方画的是否平行。
3、小组活动:在你所画的这组平行线之间画几条与平行线垂直的线段,量一量这些线段的长度,你能发现什么?在小组内交流一下全班汇报小结:平行线间的距离是相等的。
学生汇报学生举生活中的实例。
学生认真观察后叙述画平行线的步骤学生画一组平行线,组内的同学互相检查。
小组讨论后全班汇报复习所学的平行线知识,为学习新知识作准备。
使学生掌握画平行线的方法,培养学生作图的能力。
通过动手操作,使学生理解平行线间的距离是相等的4、小组讨论:怎样画一个长3厘米、宽2厘米的长方形?长方形的对边是互相平行的。
相邻的两条边是互相垂直的。
可以用垂线或平行线的方法来画。
全班汇报组内研究的画法:先画一条长3厘米的线段,再过两个端点在线段的同侧分别画两条与它垂直的2厘米长的线段,最后把两条线段的端点用线连接起来。
人教版七年级数学下册 教学设计5.2.1 第1课时《平行线》

人教版七年级数学下册教学设计5.2.1 第1课时《平行线》一. 教材分析《平行线》是人教版七年级数学下册第五章第二节的第一课时内容。
本节课主要让学生掌握平行线的定义、性质以及平行线的判定方法。
通过本节课的学习,为学生后续学习几何其他内容打下基础。
教材中通过丰富的图片和实例,引导学生探究平行线的性质,激发学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了直线、射线的基本概念,具备一定的观察和分析能力。
但对于平行线的定义和性质,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要注重引导学生通过观察、操作、思考、交流等活动,自主探索平行线的性质。
三. 教学目标1.知识与技能:掌握平行线的定义、性质及判定方法。
2.过程与方法:通过观察、操作、思考、交流等途径,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识。
四. 教学重难点1.重点:平行线的定义、性质及判定方法。
2.难点:平行线的性质和判定方法的灵活运用。
五. 教学方法采用问题驱动法、合作学习法、引导发现法等教学方法。
通过丰富的实例和图片,激发学生的学习兴趣,引导学生主动探究平行线的性质,培养学生的空间想象能力和逻辑思维能力。
六. 教学准备1.教师准备:熟练掌握平行线的定义、性质及判定方法,准备相关实例和图片。
2.学生准备:预习本节课内容,了解平行线的基本概念。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的平行线现象,如操场、教室地板等,引导学生关注平行线。
提问:你们能找出这些图片中的平行线吗?并简要介绍平行线的定义。
2.呈现(10分钟)教师通过PPT展示平行线的定义和性质,引导学生观察、思考。
同时,教师举例说明平行线的判定方法,如同位角相等、内错角相等等。
3.操练(10分钟)教师提出几个关于平行线性质的问题,如:“在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线互相平行吗?”学生分组讨论,并进行回答。
七年级下册数学平行线教案

七年级下册数学平行线教案一、教学目标1. 知识与技能:(1)理解平行线的概念,掌握平行线的性质和判定方法。
(2)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的空间想象能力和思维能力。
(2)学会用画图工具(如直尺、三角板)画平行线。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的观察力、动手能力。
(2)培养学生合作、交流的良好学习习惯。
二、教学重点与难点1. 教学重点:(1)平行线的概念及性质。
(2)平行线的判定方法。
2. 教学难点:(1)平行线的判定方法。
(2)运用平行线的性质解决实际问题。
三、教学准备1. 教具:直尺、三角板、多媒体设备。
2. 学具:每人一份平行线学习资料、练习题。
四、教学过程1. 导入新课(1)教师出示两组直线,让学生观察并说出它们的特征。
(2)引导学生思考:这两组直线之间有什么关系?(3)学生回答:这两组直线互相平行。
(4)教师提问:什么是平行线呢?2. 探究平行线的性质(2)学生回答:在同一平面内,不相交的两条直线叫做平行线。
(3)教师提问:平行线还有其他性质吗?3. 学习平行线的判定方法(1)教师出示几种不同的图形,让学生判断哪些是平行线。
(3)教师提问:如何证明两条直线平行呢?4. 练习与巩固(1)教师出示练习题,让学生独立完成。
(2)学生互相交流、讨论,教师指导。
五、课堂小结1. 本节课我们学习了平行线的概念、性质和判定方法。
2. 平行线的性质:在同一平面内,不相交的两条直线叫做平行线。
3. 平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
注意事项:1. 在教学过程中,要注意引导学生通过观察、操作、探究等活动,发现并理解平行线的性质和判定方法。
2. 针对不同学生的学习情况,给予适当的引导和帮助,使他们在掌握知识的提高空间想象能力和思维能力。
3. 注重培养学生的合作、交流能力,鼓励他们主动参与课堂讨论,激发对数学的兴趣。
七年级数学《平行线》教案

《5.2.1平行线》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》七年级下册第5章第二节平行线及其判定第1小节平行线第1课时。
2.知识背景分析本章前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移变换的内容。
这些内容的学习是图形与几何领域的基础,在以后的学习中经常要用到。
这部分内容掌握不好,将会影响日后内容的学习。
在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要求说理和简单推理,把它作为探究结论的自然延续。
本节课是学习平行的概念和判定的第一课时,在全章中起着承上启下的作用。
本课内容是在学生学习了相交线、垂线的基础上根据已学过的过直线上和直线外外一点有且只有一条直线与已知直线垂直来学习过直线外一点有且只有一条直线与已知直线平行,同时又揭示了两条直线都与第三条直线平行那么这两条直线也互相平行为下节课直线平行的条件作了铺垫。
3.学情背景分析教学对象是七年级学生,他们思维敏捷,联想丰富,本节课的学习可以让学生在联系生活观察生活的同时激发对数学的浓厚兴趣,密切联系实际,体现知识的形成和应用过程,通过合作学习引出平行线的概念。
这节课对学生来说接受有一定的难度,刚接触几何,对几何语言叙述不明确,形认识能力以及分析能力还较差。
因此应加强几何语言的训练,和动手操作,想方设法让他们动起来会做一条直线平行与以知直线,鉴于学生的知识基础和学习方法的积累,本节课以学生自主探究,合作学习为主,教师根据反馈信息进行指导、点评。
4.学习目标4.1知识与技能目标(1)理解平行线的概念。
(2)掌握平行公理的内容。
4.2过程与方法目标(1)经历观察、思考的过程,感受平面内两直线间的位置。
(2)通过观察和操作,体验基本的数学事实:平行公理。
4.3情感态度与价值观目标经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识。
人教版数学七年级下册5-2-1 平行线

5.2.1 平行线教学设计课题 5.2.1 平行线单元第五单元学科初中数学年级七下学习目标1.了解平行线的概念,能说出平行公理以及平行公理的推论;2.能叙述平行线的概念,通过观察实际模型,直观感知并记住基本事实(即平行公理);3.会用符号语言表示平行公理及其推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;4.通过观察、操作、思考,培养学生学习数学的兴趣.重点了解平行线的概念,能叙述平行公理以及平行公理的推论;难点会用符号语言表示平行公理及其推论;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】在同一平面内,两条直线有怎样的位置关系呢?预设答案:在同一平面内,两条直线的位置关系有相交和不相交两种.追问:你能举出一些生活中两直线不相交的例子吗?教师通过层层提问,引出本节课将要学习的内容. 学生思考并回答学生举例通过现实生活背景,让学生初步感受相交与不相交直线的特殊位置关系,为引出新课的学习埋下伏笔.讲授新课【合作探究】请同学们自主阅读教材11页思考,观看动画,回答问题.阅读思考环节,并观看动画,回答问题学生通过观察、思考,直观了解两直线平行的位置关系-平行,并旋转过程中,直线a与直线b有没有不相交的位置呢?答:存在这时,我们就说直线a与直线b平行.记作:a//b归纳:在同一平面内,两条直线有相交和平行两种位置关系.教师通过动画演示,让学生感受同一平面内两条直线的位置关系,不重合的两条直线位置关系:相交和平行.【总结归纳】在同一平面内,不相交的两条直线叫做平行线.平行线的定义包含三层含义:①“在同一平面内”,是前提条件.②“不相交”,就是没有交点.③平行线指的是“两条直线”,而不是两条射线或线段.【小试牛刀】判断下列说法是否正确:(1)两条不相交的直线叫平行线. ×(2)没有公共点的两条直线是平行线. ×(3)在同一平面内,不相交的两条线段是平行线. ×解析:(1)、(2)忽略了“在同一平面内”这个前提.(3)没有弄清两条线段的平行是指它们所在的直线平行.教师设置抢答环节,学生主动回答问题,巩固对平行线概念的理解.【合作探究】转动木条a的过程中,有几个位置使得直线a与直线b平行?答:有且只有一个通过教师引导,归纳平行线的概念学生思考并抢答问题学生观看动画,并思考举手回答与学生一起归纳总结得到两直线位置关系只有平行和相交.深入理解平行线概念,培养学生抽象概括能力.巩固平行线的概念.引导学生探究同一平面内两直线的平行的情形只有一种.教师演示动画,学生观察、思考,作答.如何过直线外一点,画已知直线的平行线呢?能画几条?教师提出问题,引出过直线外一点,画已知直线平行线的画法.如图,过点B画直线a的平行线,能画出几条?答:有且只有一条让学生分组动手操作,尝试画出过点B的平行线,教师巡视检查,各小组完成情况,对于有困难的学生进行提示,最终讲师在黑板演示画图过程,并总结归纳画平行线的步骤.总结过已知直线外一点画直线的平行线的步骤:①“一重合”:三角板的一边与已知直线重合;②“二靠紧”:把直尺靠紧三角板的另一边;③“三移动”:沿直尺移动三角板,使三角板与直线重合的边过已知点;④“四画线”:沿三角板过已知点的边画直线如图,再过点C画直线a的平行线,能画出几条?答:有且只有一条平行公理:经过直线外一点,有且只有一条直线与这条直线平行.让学生动手操作画过点C的平行线,通过画过点C 与过点B的平行线,让学生感受平行公理,最后教师给出平行公理的文字语言.直线b与直线c平行吗?教师引导让学生观察出直线b、c的平行关系,从而引出平行公理的推论如果两条直线都与第三条直线平行,那么这两条直先分小组操作,并交流派代表发言或展示动手操作,思考回答问题与老师一起总结学生经历动手操作、观察、思考,总结出画平行线的方法.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.通过动手操作感受平行公理,并得出公理,并将文字语言转化为数学语言即符号语言.线也互相平行.几何语言:如果b//a,c//a,那么b//c.【典型例题】例1:如图,CD∥AB,CE∥AB,试说明C、D、E三点共线.解:因为CD∥AB,CE∥AB所以CD∥CE∥ABCD和CE在同一条直线上.(平行公理)C、D、E三点共线【教学建议】教师适当引导,学生自主完成.【课堂练习】1.在同一平面内,两条直线的位置关系是()A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交答案:B2.经过一点A画已知直线a的平行线,能画()A.0条B.1条C.2条D.0条或1条答案:D如图所示,AD∥BC,E为AB的中点,(1)过点E作EF∥BC,交CD于点F;(2)EF和AD平行吗?说明理由;(3)用测量法比较DF和CF的大小.解:(1)如图.(2)平行.因为AD∥BC,EF∥BC,所以EF∥AD(平行公理的推论)(3)DF=CF【教学建议】教师给出练习,随时观察学生完成情况并给与指导,根据学生完成情况适当分析讲解.思考并积极回答.自主完成练习通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线.2.平行公理及其推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.3.例题讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下平行线教学设计
[课时目标] 理解平行线的概念,正确地表示平行线,掌握两直线平行的判定方法和平行线的性质能综合运用平行线的性质和判定证明和计算。
教师讲课要求
知识要点:请学生看一下准备上课
1. 平行线的概念
在同一平面内,不相交的两条直线叫做平行线。
注意:
(1)在平行线的定义中,“在同一平面内”是个重要前提;
(2)必须是两条直线;
(3)同一平面内两条直线的位置关系是:相交或平行,两条互相重合的直线视为同一条直线。
两条直线的位置关系是以这两条直线是否在同一平面内以及它们的公共点个数m进行
2. 平行线的表示方法
图7 D
C B
A
平行用“∥”表示,如图7所示,直线AB与直线CD平行,记作AB∥CD,读作AB 平行于CD。
3. 平行线的画法
4. 平行线的基本性质
(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
(2)平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
5. 平行线的判定方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(4)两条直线都和第三条直线平行,那么这两条直线平行。
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。
6. 平行线的性质:
(1)两条平行线被第三条直线所截,同位角相等。
简记:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
简记:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
简记:两直线平行,同旁内角互补。
范例1如图,已知∠AMF=∠BNG=75°,∠CMA=55°,求∠MPN 的大小
P
N
M A
B
E
F
G
H
C
D
答案:50°
解析:因为∠AMF=∠BNG=75°,又因为∠BNG=∠MNP ,所以∠AMF=∠MNP ,所以EF ∥GH ,所以∠MPN=∠CME ,又因为∠AMF=75°,∠CMA=55°,所以∠AMF+∠CMA=130°,即∠CMF=130°,所以∠CME=180°-130°=50°,所以∠MPN=50°
范例2如图,∠1与∠3为余角,∠2与∠3的余角互补,∠4=115°,CP 平分∠ACM ,求∠PCM
答案:57.5°
解析:因为∠1+∠3=90°,∠2+(90°-∠3)=180°,所以∠2+∠1=180°,所以AB
∥DE ,所以∠BCN=∠4=115°,所以∠ACM=115°,又因为CP 平分∠ACM ,所以∠PCM=1
2∠ACM=1
2×115°=57.5°,所以∠PCM=57.5°
范例3如图,已知:∠1+∠2=180°,∠3=78°,求∠4的大小
答案:102°
解析:因为∠2=∠CDB ,又因为∠1+∠2=180°,所以∠1+∠CDB=180°,所以得到AB ∥CD ,所以∠3+∠4=180°,又因为∠3=78°,所以∠4=102°
范例4如图,已知:∠BAP 与∠APD 互补,∠1=∠2,说明:∠E=∠F
解析:因为∠BAP与∠APD 互补,所以AB∥CD,所以∠BAP=∠CPA,又因为∠1=∠2,所以∠BAP-∠1=∠CPA-∠2,即∠EAP=∠FPA,所以EA∥PF,所以∠E=∠F
范例5如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明
答案:∠HOP=∠AGF-∠HPO
解析:过O作CD的平行线MN,因为AB∥CD,且CD∥MN,所以AB∥MN,所以∠AGF=∠MOF=∠HON,因为CD∥MN,∠HPO=∠PON,所以∠HOP=∠HON-∠PON=∠HON-∠HPO,所以∠HOP=∠AGF-∠HPO
范例6 如图,已知AB∥CD,说明:∠B+∠BED+∠D=360°
A B A B
E F E
C D C D
分析:因为已知AB∥CD,所以在∠BED的内部过点E作AB的平行线,将∠B+∠BED+∠D的和转化成对平行线的同旁内角来求。
解:过点E作EF∥AB,则
∠B+∠BEF=180°(两直线平行,同旁内角互补)
∵AB∥CD(已知)
EF∥AB(作图)
∴EF∥CD(平行于同一条直线的两直线平行)
∴∠D+∠DEF=180°(两直线平行,同旁内角互补)
∴∠B+∠BEF+∠D+∠DEF=360°
∵∠B+∠BED+∠D=∠B+∠BEF+∠D+∠DEF
∴∠B+∠BED+∠D=360°
范例7. 小张从家(图中A处)出发,向南偏东40°方向走到学校(图中B处),再从学校出发,向北偏西75°的方向走到小明家(图中C处),试问∠ABC为多少度?说明你的理由。
解:∵AE∥BD(已知)
∴∠BAE=∠DBA(两直线平行,内错角相等)
∵∠BAE=40°(已知)
∴∠ABD=40°(等量代换)
∵∠CBD=∠ABC+∠ABD(已知)
∴∠ABC=∠CBD-∠ABD(等式性质)
∵∠ABD=40°(已知)
∴∠ABC=75°-40°=35°
范例8如图,∠ADC=∠ABC,∠1+∠2=180°,AD为∠FDB的平分线,说明:BC 为∠DBE的平分线。
分析:从图形上看,AE应与CF平行,AD应与BC平行,不妨假设它们都平行,这时欲证BC为∠DBE的平分线,只须证∠3=∠4,而∠3=∠C=∠6 ,∠4=∠5,由AD为∠FDB 的平分线知∠5=∠6,这样问题就转化为证AE∥CF,且AD∥BC了,由已知条件∠1+∠2=180°不难证明AE∥CF,利用它的平行及∠ADC=∠ABC的条件,不难推证AD∥BC。
证明:∵∠1+∠2=180°(已知)
∠2+∠7=180°(补角定义)
∴∠1=∠7(同角的补角相等)
∴AE∥CF (同位角相等,两直线平行)
∴∠ABC+∠C=180°(两直线平行,同旁内角互补)
又∠ADC=∠ABC(已知),CF∥AB(已证)
∴∠ADC+∠C=180°(等量代换)
∴AD∥BC(同旁内角互补,两直线平行)
∴∠6=∠C,∠4=∠5(两直线平行,同位角相等,内错角相等)
又∠3=∠C(两直线平行,内错角相等)
∴∠3=∠6(等量代换)
又AD为∠BDF的平分线
∴∠5=∠6
∴∠3=∠4(等量代换)
∴BC为∠DBE的平分线
范例9 如图,DE,BE 分别为∠BDC,∠DBA的平分线,∠DEB=∠1+∠2
(1)说明:AB∥CD
(2)说明:∠DEB=90°
分析:(1)欲证平行,就找角相等与互补,但就本题,直接证∠CDB与∠ABD互补比较困难,而∠1+∠2=∠DEB,若以E为顶点,DE为一边,在∠DEB内部作∠DEF=∠2,再由DE,EB分别为∠CDB,∠DBA的平分线,就不难证明AB∥CD了,(2)由(1)证
得AB∥CD后,由同旁内角互补,易证∠1+∠2=90°,进而证得∠DEB=90°
证明:(1)以E为顶点,ED为一边用量角器和直尺在∠DEB的内部作∠DEF=∠2 ∵DE为∠BDC的平分线(已知)
∴∠2=∠EDC(角平分线定义)
∴∠FED=∠EDC(等量代换)
∴EF∥DC(内错角相等,两直线平行)
∵∠DEB=∠1+∠2(已知)
∵∠FEB=∠1(等量代换),∠EBA=∠EBF=∠1(角平分线定义)
∴∠FEB=∠EBA(等量代换)
∴FE∥BA(内错角相等,两直线平行)
又EF∥DC
∴BA∥DC(平行的传递性)
(2)∵AB∥DC(已证)
∴∠BDC+∠DBA=180°(两直线平行,同旁内角互补)
又∠1=1
2∠DBA,∠2=
1
2∠BDC(角平分线定义)
∴∠1+∠2=90°
又∠1+∠2=∠DEB ∴∠DEB=90°。