德国西门子直流调速装置的工作原理
直流调速原理

直流调速原理直流调速是指通过改变直流电机的电压、电流或者电机的磁通量来实现电机的转速调节。
直流电机是一种常见的电动机,广泛应用于工业生产、交通运输、家用电器等领域。
直流调速原理是通过改变电机的输入电压、电流或者磁通量来控制电机的转速,以满足不同工况下的需求。
直流调速的原理主要包括电压调速、电流调速和磁通量调速三种方式。
电压调速是通过改变电机的输入电压来控制电机的转速,电流调速是通过改变电机的输入电流来实现调速,而磁通量调速则是通过改变电机的磁通量来控制电机的转速。
这三种方式可以单独使用,也可以组合使用,以实现更精确的调速效果。
在直流调速系统中,控制电机的转速需要通过调节电机的输入电压、电流或者磁通量来实现。
其中,电压调速是最常见的一种方式。
通过改变电机的输入电压,可以改变电机的转矩和转速,从而实现对电机的调速。
电流调速则是通过改变电机的输入电流来实现调速,通过控制电机的电流大小,可以改变电机的输出转矩和转速。
而磁通量调速则是通过改变电机的磁通量来控制电机的转速,通过改变电机的磁场强度,可以改变电机的输出转矩和转速。
直流调速系统通常由控制器、功率电子器件和电机三部分组成。
控制器用于接收输入信号,并根据设定的转速要求来控制功率电子器件的开关,从而改变电机的输入电压、电流或者磁通量。
功率电子器件则用于实现对电机的电压、电流或者磁通量的调节,通常包括可控硅、晶闸管、IGBT等。
电机作为被控对象,根据控制器和功率电子器件的控制信号来实现对转速的调节。
在实际应用中,直流调速系统通常需要考虑到电机的动态特性、负载变化、系统稳定性等因素。
为了实现更精确的调速效果,通常需要采用闭环控制方式,即通过反馈电机的转速、电流等信息,来实时调节控制器的输出信号,以实现对电机的精确控制。
闭环控制系统通常包括传感器、编码器等用于反馈电机状态信息的装置,以及用于处理反馈信号并调节控制器输出的控制算法。
总的来说,直流调速原理是通过改变电机的输入电压、电流或者磁通量来实现对电机转速的调节。
西门子直流控制器6RA70简介

西门子直流控制器6RA70简介目前,随着交流调速技术的发展,交流传动得到了迅猛的发展,但直流传动调速在诸多场合仍有着大量的应用。
随着计算机技术的发展,过去的模拟控制系统正在被数字控制系统所代替。
在带有微机的通用全数字直流调速装置中,在不改变硬件或改动很少的情况下,依靠软件支持,就可以方便地实现各种调节和控制功能,因而,通用全数字直流调速装置的可靠性和应用的灵活性明显优于模拟控制系统。
目前,以德国SIEMENS 公司的6RA70系列通用全数字直流调速装置在中国的应用最为广泛。
1.1结构及工作方式SIMOREG 6RA70系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于可调速直流电机电枢和励磁供电,装置额定电枢电流范围为15至2000A,额定励磁3到85A,并可通过并联SIMOREG整流装置进行扩展,并联后输出额定电枢电流可达到12000A。
6RA70直流控制器已经广泛应用与各行业,控制器器的核心器件上已经在国内外得到可靠实例的证实,可靠性、安全方面较有保障。
根据不同的应用场合,可选择单象限或四象限工作的装置,装置本身带有参数设定单元,不需要其它的任何阻力。
设备即可完成参数的设定。
所有的控制、调节、监视及附加功能都由微处理器来实现。
可选择给定值和反馈值为数字量或模拟量。
SIMOREG 6RA70系列整流装置特点为体积小,结构紧凑。
装置的门内装有一个电子箱,箱内装入调节板,电子箱内可装用于技术扩展和串行接口的附加板。
各个单元很容易拆装使装置维修服务变得简单、易行。
外部信号连接的开关量输入/输出,模拟量输入、输出,脉冲发生器等,通过插接端子排实现。
装置软件存放闪(Flash)-EPPOM,使用基本装置的串行接口通过写入可以方便地更换。
1.2功率部分:电枢和励磁回路电枢回路为三相桥式电路:(1)单象限工作装置的功率部分电路为三相全控桥B6C。
(2)四象限工作装置的功率部分为两个三相全控桥(B6)A(B6)C。
直流调速原理

直流调速原理
直流调速是一种通过改变直流电机电源电压或电流的方式,来实现对电机转速的控制。
其原理是利用电机自身的特性,当电机负载变化时,电机所需的励磁电压或电流也会相应变化,进而改变电机的转速。
具体而言,直流调速可以通过以下几个步骤实现:
1. 感应负载变化:当电机负载发生变化时,例如增加了外部阻力,电机需要提供更大的转矩。
2. 检测负载变化:通过传感器或其他装置,检测电机输出转矩或转速的变化。
这些检测信号经过放大和处理后,可以用于调节电机的驱动电压或电流。
3. 控制电源输出:根据上一步得到的检测信号,控制电源输出电压或电流的大小。
一种常用的方法是通过改变电源中的可控硅器件或晶闸管的导通角度来改变输出电压或电流。
4. 调节电机转速:随着电源输出的变化,电机得到的励磁电压或电流也相应变化。
根据电机的特性曲线,电机转速随着励磁电压或电流的改变而调节,从而实现对电机转速的控制。
总的来说,直流调速原理是通过改变电机的励磁电压或电流,来实现对电机转速的控制。
这种调速方式具有响应速度快、控制精度高等优点,因此在许多自动化控制系统中得到广泛应用。
直流调速器的工作原理

直流调速器的工作原理直流调速器是一种用来控制电动机转速的装置,它可以通过调整输入电压、电流或者改变电机绕组的接线方式来实现电机的调速。
直流调速器广泛应用于各个领域,包括工业控制、机械设备、交通运输等。
直流调速器的工作原理可以简单地描述为通过改变电机终端的电压和电流,来改变电机的转速。
这一过程通过控制电源电压和电流以及电机绕组的接线方式来实现。
在直流调速器中,控制电源一般为直流电源供应。
控制电源可以通过变压器或者其他装置来获得所需的电压和电流。
调速器通过控制电源的输出来改变电机的输入电压和电流,从而实现调速的目的。
直流调速器可以通过不同的方式来改变电机终端的电压和电流。
其中一种常见的方式是通过采用可变阻尼调速器,也即通过改变绕组接线方式来改变电机的速度。
可变阻尼调速器中,电机的绕组通常由串联、并联或者混合接线方式来实现不同的速度调节。
另外一种常见的方式是通过PWM(脉宽调制)技术来实现调速。
PWM技术是一种调制技术,通过改变一个周期内高电平与低电平的时间比例来改变电源输出的电压和电流。
在直流调速器中,PWM控制器可以根据所需的转速设置一个合适的占空比,从而控制输出电压和电流的大小。
此外,直流调速器还可以利用其他的控制技术,例如PID控制技术、闭环控制等来实现更精确的调速效果。
PID控制技术是一种常见的比例-积分-微分控制技术,它通过根据输入和输出之间的误差来实时调整控制器的参数,从而使得系统稳定在所需的转速范围内。
总的来说,直流调速器是通过控制电源输出的电压和电流以及改变电机绕组的接线方式来实现电机调速的装置。
不同的调速器采用不同的原理和技术,但它们的目标都是在不同的工况下实现电机的可靠调速。
通过正确选择和使用直流调速器,可以实现电机的高效运行和精确控制,从而满足各种应用需求。
直流调速器的工作原理

直流调速器的工作原理直流调速器是一种能够按照需求改变直流电源输出电压和电流的电路装置。
它具有广泛的应用领域,例如电动机控制、电能调节、电动车辆和风力发电等。
其工作原理是通过控制开关器件的导通和断开,实现直流电压的调节。
下面将详细介绍直流调速器的工作原理。
直流调速器的主要组成部分包括整流器、滤波器、功率开关器件、控制电路、逆变器和环境监控电路。
整流器将交流电源转换成直流电源,滤波器用于去除直流电源中的脉动,功率开关器件负责控制电流的输入和输出,控制电路实现对功率开关器件的控制,逆变器将直流电源转换为交流电源,以满足不同的负载要求,环境监控电路用于监测和控制器件的工作温度和电流等。
直流调速器的工作过程可以分为整流和逆变两个阶段。
首先,在整流阶段,交流电源经过整流器转换成直流电源。
整流器通常由采用可控硅作为开关器件的桥式整流电路构成。
当输入电压通过桥式整流电路时,低频变压器将交流电压转换为带有脉动的直流电压。
控制电路将调制信号与桥式整流电路中的可控硅触发电路相连接,控制可控硅导通和截止。
这样,整流电路会根据调制信号的不同,实现对交流电源的整流,从而改变输出电压和电流。
接下来,在逆变阶段,直流电源经过逆变器转换为交流电源。
逆变器通常由功率开关器件和滤波电路构成。
功率开关器件通常是晶体管或IGBT。
在逆变器的工作过程中,控制电路将调制信号与功率开关器件相连接,以控制开关器件的导通和断开。
当开关器件导通时,电流流经负载,实现能量的输出;当开关器件截止时,电流停止流动,实现能量的截止。
逆变器输出的交流电压的频率和幅值可以通过控制开关器件的导通时间和断开时间来调节,从而实现对交流电源输出电压和电流的调整。
除了上述基本的工作原理外,直流调速器还可以根据具体的应用需求进行一些改进和调整。
例如,在电动机控制方面,可以采用脉宽调制技术,通过改变开关器件的导通比例,使得电机的转速和转矩得以控制。
在故障保护方面,可以使用环境监控电路来监测功率开关器件的温度和电流等参数,以实时检测设备的运行状态,并采取相应的措施以保护设备。
西门子直流调速装置6RA70在轧钢方面的应用

西门子直流调速装置6RA70在轧钢方面的应用[摘要]:本文系统地介绍了西门子的直流调速装置6ra70系统的基本原理以及其在轧钢公司金工部的具体应用。
深入了解了相关技术的改进对企业生产到来的巨大效益,对设备维护及改造有了很大的启发作用。
[关键词]:西门子6ra70装置直流调速相关参数设定设备的维护及改造中图分类号:th703.61 文献标识码:th 文章编号:1009-914x(2012)29- 0302 -01如今轧钢公司生产部使用的车床的直流调速系统是由交流电动机(异步机)拖动直流发电机实现交变,再由厂区相关的直流发电机给目标调速的直流电动机供电。
整个系统不合理也不科学,为了给厂区直流发电机和相应直流电动机提供足够的激励电源,生产部必须专门设有一台直流激励发电机。
以保证电源的供应不中断,还记得当时由这种机组供电的直流调速系统在1960年以前应用的非常广泛。
大部分生产工厂都按这一方案进行生产,但是现如今由于该设备过于成就落后,生产效率过于低下,生产时的故障频繁,这种设备一直处于半淘汰的状态。
为了提高生产设备的生产能力,目前我们对这种系统进行了一些相关技术的改造。
以适应公司生产的需要,研究改进的设备的直流电动机的直流调速系统采用了当今领先设备生产商西门子直流调速装置。
1西门子直流调速系统工作基本原理随着现代科技的进步以及设备商对设备的不断改进,电力传动装置已经广泛应用与现代工业生产中,然而生产部门对其生产工艺的要求也是不断提高,这就使得我们对现代调速系统的要求也越来越高。
交流调速技术的发展促进了交流传动技术广泛应用,但是目前直流传动调速的方式在某些领域仍还保留着一席之地。
况且计算机技术的快速发展,现代的数字控制系统代替了过去的模拟控制系统。
目前的直流调速系统大部分采用在双闭环ii型调速系统,电动机、晶闸管整流装置、触发装置,按照负载的工艺要求设计和选择,目前直流调速系统大部分采用电路串联校正的方案。
直流调速器的工作原理

直流调速器的工作原理
直流调速器是一种控制电机转速的仪表装置,它能够通过改变电机的电源电压大小来改变电机的转速。
当一个直流电动机作为一个负载时,直流调速器的工作原理如下:
首先,调速器会将电源电压转换成直流电压,并将直流电压输出给电机。
由于电机内部的发热量,电机会逐渐升温,发热量产生的热量会随着电机转速的变化而变化,当电机转速超过一定值时,该发热量会大大增加,对电机造成损坏。
因此,为了保护电机不受损害,调速器会根据电机的负载情况和电机的温度变化,调整电机的电源电压,以保持电机的运行在一个安全的温度范围内。
此外,调速器还可以根据电机的需要调节电机的转速,调速器会根据负载的变化和电机的额定电压,来调整电机的转速。
当负载增大时,电机转速会减慢,此时调速器会逐渐增大电机的电源电压,以保持电机的转速不变;当负载减小时,电机转速会加快,此时调速器会逐渐减小电机的电源电压,以保持电机的转速不变。
总之,直流调速器的工作原理是:通过改变电机的电源电压大小,来改变电机的转速,以保护电机不受损害,
同时根据负载的变化和电机的额定电压,来调节电机的转速,以保持电机的转速不变。
直流调速工作原理

直流调速工作原理
直流调速工作原理是基于电动机的转速和转矩特性来实现的。
直流调速系统主要由直流电源、整流器、调速器和电动机组成。
首先,直流电源将交流电转换为直流电,提供给整流器。
整流器负责将直流电源输出的电流进行整流,将其转换为单向的直流电流。
调速器是直流调速系统的核心部分,它通过调节输入到电动机的电压和电流来控制电动机的转速和转矩。
调速器通常采用脉宽调制(PWM)技术,即通过控制开关器件的开关时间比例
来改变电源向电动机供电的电压和电流。
当调速器调节电动机的电压和电流,电动机的转速和转矩也会相应改变。
这是因为电动机的转矩与电流成正比,转速与电压成正比。
通过改变调速器的控制信号,可以实现对电动机转速和转矩的精确控制。
直流调速系统的优点是具有较好的响应性能和可靠性,能够实现较宽范围的转速和转矩调节。
它广泛应用于需要精确调速和转矩控制的领域,如各种机械设备、风电、电动车等。
同时,也可以通过增加反馈控制回路,进一步提高调速系统的稳定性和精确度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国西门子直流调速装置的工作原理
直流调速器的工作原理
直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。
同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。
调速方案一般有下列3种方式
1、改变电枢电压;(最长用的一种方案)
2、改变激磁绕组电压;
3、改变电枢回路电阻。
直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。
转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用
调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速
弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。
缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。
直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。
该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。
直流电动机的工作原理图。
(1)构成:
磁场:图中 N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。
励磁绕组;--; 容量较小的发电机是用磁铁做磁极的。
容量较大的发电机的磁场是
由直流电流通过绕在磁极铁心上的绕组产生的。
用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。
电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。
换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片;--;换向片上,组成一个换向器。
换向器上压着固定不动的炭质电刷。
电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。
电动机向负载输出机械功率的同时,却向电动机输入电功率,电动机起着将电能转换为机械能的作用。
直流电机的励磁方式
按励磁方式不同,电机可分为
(一)他励直流电机电枢和励磁绕组由两个独立的直流电源供电。
(二)并励直流电机电枢和励磁绕组并联后由一个独立的直流电源供电。
(三)串励直流电机电枢和励磁绕组串联后由一个独立的直流电源
供电
(四)复励直流电机复励电机有两个绕组,一个并励绕组,一个串励
绕组,并励绕组和电枢并联,和串励绕组串联后由
一个独立的直流电源供电。