中考化简求值专题复习1

合集下载

中考分式化简求值专项练习与答案(可编辑修改word版)

中考分式化简求值专项练习与答案(可编辑修改word版)

,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)

完整word版)中考数学化简求值专项训练

完整word版)中考数学化简求值专项训练

完整word版)中考数学化简求值专项训练中考数学化简求值专项训练注意:此类题目的要求是化简之后再代入求值,直接代入求值不得分。

考点包括分式的加减乘除运算(注意去括号,添括号时要变号,分子相减时要看做整体)、因式分解(十字相乘法、完全平方式、平方差公式、提公因式)以及二次根式的简单计算(分母有理化,一定要是最简根式)。

类型一:化简之后直接带值,有两种基本形式:1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式。

例如,化简并求值:$\frac{m^2-2m+1}{m-1-\frac{1}{m+1}}$,其中$m=3$。

解:先化简分母,得到$\frac{m^2-1}{m^2-1}$,然后将分子分母同时化简,得到$\frac{(m-1)^2}{m}$。

代入$m=3$,得到$\frac{4}{3}$。

2.常规形,不含根式,化简之后直接带值。

例如,化简并求值:$\frac{x^3-6x^2+9x-1}{x^2-3x}$,其中$x=-6$。

解:先化简,得到$\frac{(x-3)^2}{x(x-3)}$。

代入$x=-6$,得到$\frac{1}{6}$。

3.化简并求值:$\frac{11+2x}{x-y}$,其中$x=1$,$y=-2$。

解:先化简,得到$\frac{11+2x}{x-y}=\frac{13}{3}$。

代入$x=1$,$y=-2$,得到$\frac{13}{3}$。

4.化简并求值:$\frac{x^2-2x}{2x-4}+\frac{2}{x+2}$,其中$x=0.5$。

解:先化简,得到$\frac{x(x-2)}{2(x-2)}+\frac{2}{x+2}=\frac{x}{2}+\frac{1}{x+2}$。

代入$x=0.5$,得到$\frac{5}{4}$。

5.化简并求值:$\frac{1-x}{2x}+\frac{2x}{x^2-4x+3}$,其中$x=2$。

解:先化简,得到$\frac{1}{2}-\frac{2x-3}{x-1}\cdot\frac{1}{x-3}=\frac{5}{6}$。

整式化简求值(1)

整式化简求值(1)

整式化简求值专项训练1.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3x =-,2y =-2.先化简,再求值:()222222245a b a b a b ab ab ⎡⎤---+-⎣⎦,其中2a =-,12b =3先化简,再求值:22113122323m m n m n ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,其中2m =,3n =-.4先化简,再求值:2(5a 2-6ab +9b 2)-3(4a 2-2ab +3b 2),其中a =-1,b =-23.5.先化简,再求值:3(2x 2-xy )-2(3x 2-2xy ),其中x =-2,y =-3;6.先化简,再求值:2x 2+3x +5+[4x 2-(5x 2-x +1)],其中x =3.7.先化简,再求值:()()()2332x y x y x y x +-+-⎤⎦÷⎡⎣,其中2x =,12y =-.8.先化简,再求值:22211()2(2)(361)33x x x x x x x --++-+-,其中x=-3.9.先化简,再求值:22222(3)22(2)x xy y x xy y -+--+,其中x =1,y =32-10关于,x y 的多项式22224mx nxy x xy x y +++-++不含二次项,求6212m n --的值.11.已知整式2122A x xy y =++-,2221B x xy x =-+-,求:2A B -12.已知A =3x 2-x +2,B =x +1,C =14x 2-49,求3A +2B -36C 的值,其中x =-6.13.先化简,再求值:()()222234x y xyz x y xyz x y +---,已知x 、y 满足:2302|()|y x ++-=,z 是最大的负整数,14.已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--的值.15.先化简,再求值.3x 2y-[2xy-2(xy-32x 2y)-xy],其中3x -+(y+13)2=016.先化简,再求值:()()222253431a b ab ab a b ---++,其中a 、b 满足2(2)|3|0a b ++-=.17.先化简,再求值:3(﹣5xy +x 2)﹣[5x 2﹣4(3xy ﹣x 2)﹣xy ],其中x ,y 满足|x ﹣2|+|y +3|=0.18.已知x +y =﹣2,xy =﹣1,求代数式﹣6(x +y )+(x ﹣2y )+(xy +3y )的值.19.已知A =x 2﹣3xy ﹣y ,B =﹣x 2+xy ﹣3y .(1)求A ﹣B ;(2)当x =﹣2,y =﹣1时,求5A ﹣(2A ﹣6B )的值.20.先化简,再求值:4a 2﹣4ab +2b 2﹣2(a 2﹣ab +3b 2),其中a 2+ab =5,b 2+ab =3.21.已知3a =,225b =,且0a b +<,求-a b 的值.22.先化简,再求值:()2237432x x x x ⎡⎤----⎣⎦,其中12x =-.23.已知a ,b ,x ,y 满足3a b x y +=+=,7ax by +=,求()()2222a b xy ab x y +++的值.24.已知210x x +-=,求322002200120032007x x x +--的值.25.先化简,再求值:()()()22225x y x y x y xy +--+-,其中x=2024,y=—1.26.先化简,再求值:14(﹣4x 2+2x ﹣8)﹣(12x ﹣2),其中x =12.27.先化简,再求值:已知a 2﹣a ﹣4=0,求a 2﹣2(a 2﹣a+3)﹣12(a 2﹣a ﹣4)﹣a 的值.28.先化简,再求值:2222223276543x y xy xy y xy xy ⎡⎤⎛⎫--+-- ⎪⎢⎥⎝⎭⎣⎦,其中x=2,y=-1.29.如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,求代数式3232122(3)4a b a b ---的值.30.先化简,再求值:7a 2b +(-4a 2b +5ab 2)-2(2a 2b -3ab 2),其中(a -2)2+|b +12|=0.31.先化简,再求值:()2222153a b 2ab 2ab a b 2⎛⎫--- ⎪⎝⎭,其中:1a 2=-,1b 3=.32.先化简再求值:(2a 2-2b 2)-3(a 2b 2+a 2)+3(a 2b 2+b 2),其中,a=-1,b=233.先化简再求值:3W −[−4B +B²−(6W −5B²)]+8B ,其中a 是最大的负整数,b 的相反数是-3.34.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.35.先化简,再求值:(3a 2+2ab-2b 2)-(-a 2+2b 2+2ab)+(2a 2-3ab-b 2),其中a=-12,b=15.36.先化简,再求值:2263(31)(93)x x x x -+---+,其中13x =-.37.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--,当2x =,15y =-时,求2B A -的值.38.关于x ,y 的多项式6mx 2+4nxy +2x +2xy -x 2+y +4不含二次项,求多项式2m 2n +10m -4n +2-2m 2n -4m +2n 的值.39.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.40.先化简,再求值:5(3a 2b-ab 2)-3(ab 2+5a 2b ),其中a=13,b=-12;41.已知代数式2x 2+ax-y+6-2bx 2+3x-5y-1的值与x 的取值无关,请求出代数式13a 3-2b 2-19a 2+3b 2的值.42.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0.求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值.43.先化简再求值:(5x+y )﹣2(3x ﹣4y ),其中X=1,y=3.44.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.45.先化简,再求值:3(2x 2y -xy 2)-(5x 2y +2xy 2),其中|x +5|+(y -2)2=0.46.求多项式[[8X −6W −3−W +X +2B +5]+−5X −−3W −6B 的值,其中m=1,n=2,有一位同学把m=1抄成了m=2,把n=2抄成了n=1,但是结果也是正确的,为什么?47.若2(24)40a b -++=,求多项式22222232(42)3(2)2a b ab a b ab ab a b ⎛⎫+---- ⎪⎝⎭的值.48.先化简再求值:已知:()()32223232y xy x y xy y -+---,其中1x =,2y =-.49.先化简,再求值:-2(xy -y 2-[5y 2-(3xy +x 2)+2xy ],其中x =-2,y =12.50.先化简,再求值:﹣3(x 2﹣2x )+2(231x -2x-22),其中x=451.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值.52.若“ω”是新规定的某种运算符号,设aωb=3a ﹣2b ,(1)计算:(x2+y )ω(x2﹣y )(2)若x=﹣2,y=2,求出(x2+y )ω(x2﹣y )的值.53.已知|a ﹣2|+(b +1)2=0,求5ab 2﹣|2a 2b ﹣(4ab 2﹣2a 2b )|的值.54.先化简,再求值:351112()()33x y x y --+-+,其中x =﹣23,y =﹣1.55.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.56.先化简,再求值:2(a 2b+ab 2)-2(a 2b-1)-3(ab 2+1),其中a=-2,b=2.57.先化简,再求值:22222222(22)[(33)(33)]x y xy x y x y x y xy ---++-,其中1,2x y =-=58.先化简,再求值:当x =-52,y =25时,求22xy y ++()()22232x xy y x xy ----的值;59.已知:关于x 、y 的多项式2x ax y b +-+与多项式2363bx x y -+-的和的值与字母x 的取值无关,求代数式22222133(2)42()22a ab b a a ab b ⎡⎤-+--+-⎢⎥⎣⎦的值.60.小明同学在写作业时,不小心将一滴墨水滴在卷子上,遮住了数轴上134-和94之间的数据(如图),设遮住的最大整数是a ,最小整数是b .(1)求23b a -的值.(2)若211132m a a =--,211423n b b =-++,求()()2222352mn m m mn m mn ⎡⎤-----+⎣⎦的值.61.若=W −B +2s =B²+4−8+9,若多项式2A+B 的值与字母x 的取值无关,求多项式32W −5B +W −5B +3+1的值.62.已知化简式子X +B²−1−2B³−W +的结果中不含a²和a³项.(1)求m,n 的值;(2)先化简,再求值:22−B +1−32−2mn+4).63.(中考新考法·过程纠错)小琪在学了整式化简求值后,给同桌小马出了这样一道题“已知W−W=23,求出整式6B+W−W−W−W+6B的值.”下面是小马做这道题的过程:解:6B+W−W−W−W+6B=6B+W−W−W+W−6B①=2W−W②=2×23③=46④(1)上述过程中步骤①的依据是;(2)老师告诉小马的解题过程有误,请指出是从第步开始出现了错误,错误的原因是,请在右边方框中写出正确的解题过程;(3)请根据平时的学习经验就整式化简的注意事项提出一条建议。

(完整版)中考数学化简求值专项练习试题(较高难度)

(完整版)中考数学化简求值专项练习试题(较高难度)

中考数学化简求值专项练习(较高难度)一. 已知条件不化简,所给代数式化简 例1.先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-=例2. 已知x y =+=-2222,,求()yxy y xxy x xy x y x yx y++-÷+⋅-+的值。

例3. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。

例4. 已知条件和所给代数式都要化简例4.若x x+=13,则x x x 2421++的值是( ) A. 18 B. 110 C. 12D.14例5. 已知a b +<0,且满足a ab b a b 2222++--=,求a b ab3313+-的值。

中考数学化简求值专项练习解析卷一. 已知条件不化简,所给代数式化简 例1.先化简,再求值:()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-= 解:()a a a a a a a a -+--++÷-+221444222=-+--+÷-+=-+--+÷-+[()()][()()()]a a a a a a a a a a a a a a a a 2212424212422222=-++⨯+-=+4224122a a a a a a a ()()=+122a a由已知a a 2210+-= 可得a a 221+=,把它代入原式: 所以原式=+=1212a a 例2. 已知x y =+=-2222,,求()yxy y xxy xxy x y x yx y++-÷+⋅-+的值。

解:()yxy y xxy x xy x y x yx y++-÷+⋅-+=++-⨯+⋅-+()y x yxy x x y xy x yx y=-++-⋅-=-+y xy x xy y x x yxyy x xy当x y =+=-2222,时 原式=-++-+-=-222222222()()二. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。

中考数学必考点提分专练01实数混合运算与代数式的化简求值含解析

中考数学必考点提分专练01实数混合运算与代数式的化简求值含解析

|类型1| 实数的运算1.[2019·南充]计算:(1-π)0+|√2−√3|-√12+1√2-1. 解:原式=1+√3−√2-2√3+√2=1-√3.2.[2019·广安]计算:(-1)4-|1-√3|+6tan30°-(3-√27)0.解:原式=1-(√3-1)+6×√33-1=1-√3+1+2√3-1=1+√3.3.[2019·遂宁]计算:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|.解:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|=-1+14+1-4×√32+2√3-2=-74.4.[2018·陕西] 计算:(-√3)×(-√6)+|√2-1|+(5-2π)0.解:(-√3)×(-√6)+|√2-1|+(5-2π)0=√18+√2-1+1=3√2+√2=4√2.|类型2| 整式的化简求值5.[2019·常州]如果a -b -2=0,那么代数式1+2a -2b 的值是 5 .6.[2019·常德]若x 2+x=1,则3x 4+3x 3+3x+1的值为 4 .解:3x 4+3x 3+3x +1=3x 2(x 2+x )+3x +1=3x 2+3x +1=3(x 2+x )+1=4.7.[2019·淮安]计算:ab (3a -2b )+2ab 2.解:ab (3a -2b )+2ab 2=3a 2b -2ab 2+2ab 2=3a 2b .8.[2019·吉林] 先化简,再求值:(a -1)2+a (a+2),其中a=√2.解:原式=a 2-2a +1+a 2+2a=2a 2+1,当a=√2时,原式=2×(√2)2+1=2×2+1=5.实数混合运算与代数式的化简求值 提分专练019.若x+y=3,且(x+3)(y+3)=20.(1)求xy 的值;(2)求x 2+3xy+y 2的值.解:(1)∵(x +3)(y +3)=20,∴xy +3x +3y +9=20,即xy +3(x +y )=11.将x +y=3代入得xy +9=11,∴xy=2.(2)当xy=2,x +y=3时,原式=(x +y )2+xy=32+2=9+2=11.|类型3| 分式的化简求值10.[2019·淮安]先化简,再求值:a 2-4a ÷(1-2a ),其中a=5. 解:a 2-4a ÷(1-2a )=a 2-4a ÷a -2a =a 2-4a ·a a -2=(a+2)(a -2)a ·aa -2=a +2. 当a=5时,原式=5+2=7.11.[2019·黄石]先化简,再求值:(3x+2+x -2)÷x 2-2x+1x+2,其中|x|=2. 解:原式=x 2-1x+2÷(x -1)2x+2=(x+1)(x -1)x+2·x+2(x -1)2=x+1x -1. ∵|x|=2,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.12.[2019·菏泽]先化简,再求值:1x -y ·(2y x+y -1)÷1y 2-x 2,其中x=y+2019.解:1x -y ·(2y x+y -1)÷1y 2-x 2=1x -y ·2y -(x+y )x+y ·(y +x )(y -x )=-(2y -x -y )=x -y .∵x=y +2019,∴原式=y +2019-y=2019.13.[2019·天水]先化简,再求值:(x x 2+x -1)÷x 2-1x 2+2x+1,其中x 的值从不等式组{-x ≤1,2x -1<5的整数解中选取.解:原式=x -x 2-x x (x+1)·x+1x -1=-x x+1·x+1x -1=x1-x .解不等式组{-x ≤1,2x -1<5得-1≤x<3,则不等式组的整数解为-1,0,1,2. ∵x ≠±1,x ≠0,∴x=2,原式=21-2=-2.14.[2019·荆门]先化简,再求值:(a+b a -b )2·2a -2b 3a+3b −4a 2a 2-b 2÷3a b ,其中a=√3,b=√2.解:原式=2(a+b )3(a -b )−4ab 3(a+b )(a -b )=2(a+b )2-4ab 3(a+b )(a -b )=2(a 2+b 2)3(a+b )(a -b ).当a=√3,b=√2时,原式=3(3+2)(3-2)=103. 15.[2019·长沙]先化简,再求值:⎝ ⎛⎭⎪⎫a +3a -1-1a -1÷a 2+4a +4a 2-a ,其中a =3.解:原式=a +2a -1·a (a -1)(a +2)2=a a +2,当a =3时,原式=33+2=35.16.[2019·成都]先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6,其中x =2+1.解:原式=⎝ ⎛⎭⎪⎫x +3x +3-4x +3×2(x +3)(x -1)2=x -1x +3×2(x +3)(x -1)2=2x -1.将x =2+1代入,原式=22+1-1=2. 17.[2019·遂宁]先化简,再求值:a 2-2ab+b 2a 2-b 2÷a 2-aba −2a+b ,其中a ,b 满足(a -2)2+√b +1=0.解:原式=(a -b )2(a+b )(a -b )÷a (a -b )a −2a+b =a -b a+b ·1a -b −2a+b =-1a+b .∵(a -2)2+√b +1=0,∴a=2,b=-1,∴原式=-1.。

江苏省中考数学复习专题1计算与化简求值解答题30题专项提分计划原卷版

江苏省中考数学复习专题1计算与化简求值解答题30题专项提分计划原卷版

【大题精编】2023届江苏省中考数学复习专题1 计算与化简求值解答题30题专项提分计划(江苏省通用)1.(2022·江苏盐城·校考三模)计算:2sin 602︒2.(2022·江苏盐城·校考三模)计算:2143-⎛⎫- ⎪⎝⎭.3.(2022·江苏盐城·校考一模)先化简,再求值:(1)(3)(3)a a a a +--+,其中2a =. 4.(2022·江苏苏州·模拟预测)计算:32260()(2022)x y x π----÷-5.(2022·江苏盐城·11sin 45tan 452-⎛⎫︒-︒+- ⎪⎝⎭.6.(2022·江苏淮安·淮阴中学新城校区校联考二模)(1)计算()222sin 60-+︒ (2)解不等式组()3281522x x x x ⎧--≤⎪⎨->⎪⎩.7.(2022·江苏镇江·统考一模)(1)计算:(032sin 451π--︒+; (2)化简: ()2111x x x ⎛⎫--÷- ⎪⎝⎭.8.(2022·江苏盐城·校考三模)先化简,再求值:2521144x x x x -+⎛⎫-÷⎪++⎝⎭,其中x 满足2120x x +-=.9.(2022·江苏苏州·苏州市振华中学校校考模拟预测)先化简,再求值:524223m m m m -⎛⎫++⋅⎪--⎝⎭,其中m10.(2022·江苏扬州·校考三模)先化简,再求值:2221133a ab b a b a b -+⎛⎫÷- ⎪-⎝⎭,其中1a,1b =.11.(2022·江苏无锡·模拟预测)求值或化简. (1)计算:()234sin60--⨯+︒ (2)化简:244222a aa a a++---.12.(2022·江苏淮安·模拟预测)先化简再求值:21211x x x x -+⎛⎫-÷ ⎪⎝⎭,其中x13.(2022·江苏淮安·模拟预测)按要求解答(1)0213(2021)()3π---+;(2)解方程:542332x x x+=--. 14.(2022·江苏盐城·盐城市第四中学(盐城市艺术高级中学、盐城市逸夫中学)校考模拟预测)化简求值:()()()3222484x y x y xy x y xy +-+-÷,其中11x y ==-,.15.(2022·江苏无锡·无锡市天一实验学校校考模拟预测)计算: (1)2cos 30tan 45sin30︒+︒︒;(2)()2012014sin 6023π-⎛⎫+-+︒ ⎪⎝⎭;(3)若α是锐角,()sin 15α+︒=()1014cos 3.14tan 3απα-⎛⎫--++ ⎪⎝⎭的值.16.(2022·江苏盐城·盐城市第四中学(盐城市艺术高级中学、盐城市逸夫中学)校考模拟预测)计算:(1)201()(2022)23π-+-17.(2022·江苏无锡·校考二模)计算与化简(1)计算:02cos 45(3)π+-;(2)化简:2(3)(1)(2)x x x --+-. 18.(2022·江苏常州·校考二模)计算 (1) ()()2212324-⎛⎫-+⨯-- ⎪⎝⎭(2)化简,再求值()()()2222x x x -+--+,其中3x =.19.(2022·江苏扬州·校考二模)(1)计算:0112|2020()2sin 603-+--+︒ (2)化简:32(1)11a a a a --+÷++20.(2022·江苏苏州·校考一模)先化简再求值: 22241x x x x x---÷+,其中2x =.21.(2021·江苏泰州·统考模拟预测)先化简,再求值:2222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b 0b =.22.(2022·江苏扬州·校联考三模)先化简,再求值:2344111a a a a a -+⎛⎫--÷ ⎪--⎝⎭,其中a 是4的平方根23.(2022·江苏南京·南京市花园中学校考模拟预测)分式化简:2273423933a a a a a a a ⎛⎫+-++-÷ ⎪-+-⎝⎭. 24.(2022·江苏苏州·苏州市平江中学校校联考二模)先化简,再求值:2131()111a a a a --÷+-+,其中1a =. 25.(2022·江苏南通·统考二模)(1)解方程:1242x x =--; (2)先化简,再求值:()()()32248422ab a b ab a b a b -÷++-,其中2a =,1b.26.(2021·江苏扬州·校考一模)(1)计算:2sin600(13)2;(2)先化简,再求值:(m +2-52m -)·243m m--,其中m =-12. 27.(2022·江苏淮安·统考一模)化简并求值:22211ab a b a b a b ⎛⎫-÷ ⎪-+-⎝⎭,其中11a b ==,.28.(2022·江苏扬州·统考二模)先化简,再求值:22169211a a a a a +-+⎛⎫-÷⎪--⎝⎭,其中3a =. 29.(2022·江苏苏州·模拟预测)先化简再求值:21221121a a a a a a a -+-⎛⎫-÷⎪+++⎝⎭,其中12a =-. 30.(2022·江苏盐城·滨海县第一初级中学校考三模)先化简,再求值:2321442x x x x ⎛⎫÷+ ⎪-+-⎝⎭,其中tan602x =︒+.。

2023年中考九年级数学一轮复习 分式化简求值

2023年中考九年级数学一轮复习   分式化简求值

2023年中考九年级数学一轮复习 --分式化简求值1.先化简,再求代数式aa+2−1a−1÷a+2a2−2a+1的值,其中a=6tan60∘−22.先化简,再求值:(1x−3+1x+3)·9−3x2x,其中x= √3-3.3.先化简,再求值:x 2−6x+9x2−9÷x−32,其中x=√2﹣3.4.先化简,再求值:a2−1b2−2b+1÷ a+1b−1+1b−1,其中a= √3,b= √3+1.5.先化简,再求值:(1﹣1a+1)×a2+2a+12,其中a=√2.6.先化简(2x+11−x﹣1)÷x1−x2,然后从﹣2≤x<2的范围内选取一个合适的整数作为x的值代入求值.7.先化简,再求值:(1−1a+1)÷aa2+2a+1,其中a=√3−1.8.先化简,再求值:(1﹣2x)÷ x 2−4x+4x2−4﹣x+4x+2,其中x2+2x﹣8=0.9.先化简,再请你用喜爱的数代入求值(x+2x2−2x −x−1x2−4x+4)÷x+2x3−4x10.先化简,后求值.(aa+1﹣aa2−1)÷aa+1﹣a+1a−1,其中a= √3+1.11.先化简,再求值:(1x−y+1x+y)÷xyx2−y2,其中x=2014,y=﹣2.12.先化简,再求值:x−2x2−1÷(1﹣3x+1),其中x= √3+1.13.先化简,再求代数式aa+2−1a−1÷a+2a2−2a+1的值,其中a=6tan30°−2.14.先化简,再求值:(m+2+52−m)⋅2m−43−m,其中m=12.15.先化简,再求值:(x 2−1x2−2x+1−1)÷x x−1,其中x=3−1×6.16.先化简,再求值:a+1a2−2a+1÷(1+2a−1),其中a=3.答案解析部分1.【答案】解:原式= a a+2−1a−1·(a−1)2a+2= a a+2−a−1a+2 = 1a+2 当a=6× √33﹣2=2 √3 ﹣2时, 原式= 12√3−2+2=12√3= √362.【答案】解:原式= x+3+x−3(x+3)(x−3) • 3(3−x )2x =﹣ 3x+3 当x= √3 ﹣3时,原式=﹣ √3 .3.【答案】解:原式=(x−3)2(x+3)(x−3)•2x−3=2x+3, 当x=√2﹣3时,原式=√2.4.【答案】解:原式= (a−1)(a+1)(b−1)2 • b−1a+1 + 1b−1 = a−1b−1 + 1b−1= a b−1 ,当a= √3 ,b= √3 +1时,原式= √3√3+1−1 =1.5.【答案】解:原式 =a a+1×(a+1)22 =a(a+1)2 . 当a =√2 时,原式 =√2(√2+1)2=2+√22 . 6.【答案】解:( 2x+11−x ﹣1)÷ x 1−x 2= 2x+1−(1−x)1−x ⋅(1+x)(1−x)x= 2x+1−1+x 1−x ⋅(1+x)(1−x)x= 3x 1−x ⋅(1+x)(1−x)x=3(1+x )=3+3x ,∵﹣2≤x <2且x 为整数,∴当x=﹣2时,原式=3+3×(﹣2)=3+(﹣6)=﹣3.7.【答案】解:原式= a+1−1a+1÷a(a+1)2=a a+1·(a+1)2a=a+1。

中考复习专题(化简求值)

中考复习专题(化简求值)
LOGO
中考复习专题 — 化简求值
一、题型特点
1 代数式或等式的变形; 2 对基本技能的考察.
二、; 3 因式分解; 4 实数运算; 5 方程根的概念.
三、主要解题思路
1 先化简比较复杂的代数式;
2 ①如果条件是字母的取值,就直接代入化 简结果求值; ②如果条件和化简结果中含字母的部分有 倍数关系,就整体代入化简结果求值; ③如果题目中所含字母较多,就多元归一, 代入求值;
值等于
.(2009,烟台)
练习
(1)已知m是方程 x2x10的一个根,
4 则代数式 m2 m 的值等于_____.
(2)已知
5
x
y
a, b
是方程组
2x 2 x
y y
3, 1
的解,
求4 a (a b ) b (4 a b ) 5 的值.
(2012海淀一模16) 方程解的概念.
LOGO
(2011北京中考)
5
条件和化简结果之间有某种联系, 就同时变形,从中找到切合点,再代值转化.
练习
(1)已知
1 1 1 ab 2
ab
,求代数式
ab
4 的值.(2011江苏苏州)
m2 n2 (2)设m>n>0,m2+n2=4mn,则 m n
5 的值等于_____(2011江苏南通,10)
ab (3)设a>b>0 ,a2+b2-6ab=0,则 b a 的
已知条件是字母的取值,
直接代入化简结果求值 .
练习
(1)已知x=2012,求代数式 x6xx913x 4 的值.(2012顺义一模)
(2)先化简,再求值: (1a11)a2a2a1,
其5中a=sin60°.(2011•鸡西) (3)先化简,再求值:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考化简求值专题
一、考点分析
1、分式的化简
2、分式的混合运算
3、分式的求值
4、不等式的解法
5、二次根式的化简
(注意:此类要求的题目,如果没有化简,直接代入求值一分也不得。


二、解题基本方法
1、分解因式:
(1)提公因式法:
(2)公式法: 1)平方差公式:
2)完全平方公式:
2、分式的通分:异分母的分式相加减关键在于找最简公分母再通分。

(温馨提醒:有时候通分需要把其中两项看成整体要简单一些)
3、不等式的解法:利用数轴和口诀法确定不等式的解集
4、二次根式的化简:将结果化成最简二次根式
三、解题技巧:
1、要善于观察题目的特征,若分子,分母是多项式则应先将其分解因式,再把除法转化为乘法,再约分化简。

2、注意规范解题格式:
如“解:原式=”和“当......时,原式=”的写出等,中考注重过程评价,通常算对一个就给一个的分。

四、例题讲解 例1、先化简,再求值:
其中a ,b 满足 答案:
)
(c b a m mc mb ma ++=++)
)((22b a b a b a -+=-2
222)(b ab a b a +±=±⎩⎨⎧=-=+2
4b a b a a b a b a b ab a b ab a 12252962222----÷-+-)(a b a b a b a b a b b a a b a 12)2)(2(25)2()3(22-⎥⎦⎤⎢⎣⎡-+---÷--=解:原式a
b a a b b a a b a 129)2()3(222
---÷--=
变式练习1: 先化简,再求值:
其中 是不等式 的负整数解。

答案:
变式练习2:先化简,再求值:
,其中x 是不等式组的整数解.
a a
b a b b a b a a b a 1)3)(3(2)2()3(2-+--•--=a a b a b a 1)3()3(-+--=b a b a a a a b a a b a b a b a 32)3(2)3(3)3()3(+-=+-=++-+--=⎩⎨⎧=-=+24b a b a ⎩⎨⎧==∴13b a 31-1332-13=⨯+=⎩⎨⎧==∴时,原式当b a 4442122+--÷⎪⎭⎫ ⎝⎛---+x x x x x x x x 173>+x 4)2()2(4222--•-+--=x x x x x x x 4)2()2(42
--•--=x x x x x x x 2-=1-=∴x 2->x 解得1
73>+x 由444)2()1()2)(2(2-+-•---+-=x x x x x x x x x 解:原式是不等式的负整数解,又x 31-2-1-1==-=时,原式当x
2)
1(2)1)(1()1(2)1)(1(43-+÷⎥⎦⎤⎢⎣⎡-++--++=x x x x x x x x 解:原式 2
)1()1)(1(22
+-•+-+=x x x x x 1
1+-=x x ⎩
⎨⎧<->+15204x x 解不等式组,24-<<-x 得 3,-=∴x x 为整数
21
3133=+---=-=时,原式当x 课后作业:
1.先化简,再求值:4
12)211(22-++÷+-x x x x ,其中3-=x
2.先化简,再求值:22122 121x x x x x
x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2-x-1=0.
3.先化简,再求值:
,其中x 是不等式3(x+4)﹣6≥0的负整数解.
4.先化简,再求值:
,其中x 是不等式组⎩⎨⎧+≤->-1
)1(201x x x 的整数解.
5.先化简分式:11339692
222---+-÷++-a a a a a a a a ,然后在0,1,2,3中选一个你
认为合适的a 的值,代入求值。

相关文档
最新文档