2018年上海市普通高等学校春季招生统一文化考试数学试卷

合集下载

2018年上海市春考数学试卷(含答案)

2018年上海市春考数学试卷(含答案)

2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点到两个定点()0,1和()0,1-的距离之和等于4,则动点的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。

9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若是关于的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则的取值范围是__________;12、如图,在正方形ABCD 的边长为米,圆的半径为1米,圆心是正方形的中心,点、分别在线段AD 、上,若线段PQ 与圆有公共点,则称点在点的“盲区”中,已知点以1。

5米/秒的速度从出发向移动,同时,点以1米/秒的速度从出发向移动,则在点从移动到的过程中,点在点的盲区中的时长均为_____秒(精确到0。

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4(B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( )(A(B(C (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

2018年上海卷春季高考真题数学试卷-学生用卷

2018年上海卷春季高考真题数学试卷-学生用卷

2018年上海卷春季高考真题数学试卷-学生用卷一、填空题(1~6每小题4分,7~12每小题5分,共54分)1、【来源】 2018~2019学年10月上海闵行区上海市七宝中学高一上学期月考第1题2018年1月高考真题上海卷第1题4分不等式|x|>1的解集为.2、【来源】 2018年1月高考真题上海卷第2题4分计算:limn→∞3n−1n+2=.3、【来源】 2018年1月高考真题上海卷第3题4分设集合A={x|0<x<2},B={x|−1<x<1},则A∩B=.4、【来源】 2018年1月高考真题上海卷第4题4分若复数z=1+i(i是虚数单位),则z+2z=.5、【来源】 2018年1月高考真题上海卷第5题4分已知{a n}是等差数列,若a2+a8=10,则a3+a5+a7=.6、【来源】 2018年1月高考真题上海卷第6题4分已知平面上动点P到两个定点(1,0)和(−1,0)的距离之和等于4,则动点P的轨迹方程为.7、【来源】 2018年1月高考真题上海卷第7题5分如图,在长方体ABCD−A1B1C1D1中,AB=3,BC=4,AA1=5,O是A1C1的中点,则三棱锥A−A1OB1的体积为.8、【来源】 2018年1月高考真题上海卷第8题5分某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩.若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为.9、【来源】 2018年1月高考真题上海卷第9题5分设a∈R,若(x2+2x )9与(x+ax2)9的二项展开式中的常数项相等,则a=.10、【来源】 2020~2021学年上海徐汇区高一下学期期末第9题2018年1月高考真题上海卷第10题5分设m∈R,若z是关于x的方程x2+mx+m2−1=0的一个虚根,则|z|的取值范围是.11、【来源】 2018年1月高考真题上海卷第11题5分设a>0,函数f(x)=x+2(1−x)sin⁡(ax),x∈(0,1),若函数y=2x−1与y=f(x)的图象有且仅有两个不同的公共点,则a的取值范围是.12、【来源】 2018年1月高考真题上海卷第12题5分2019~2020学年12月上海闵行区上海市七宝中学高二上学期月考第12题5分如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心是正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中.已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约为秒.(精确到0.1)二、选择题(每小题5分,共20分)13、【来源】 2018年1月高考真题上海卷第13题5分下列函数中,为偶函数的是().A. y=x−2B. y=x13C. y=x−12D. y=x314、【来源】 2018年1月高考真题上海卷第14题5分2019~2020学年广东深圳罗湖区深圳市美术学校高一下学期开学考试第7题5分如图,在直三棱柱ABC−A1B1C1的棱所在的直线中,与直线BC1异面的直线条数为().A. 1B. 2C. 3D. 415、【来源】 2018~2019学年10月上海宝山区上海市吴淞中学高三上学期月考第15题5分 2018年1月高考真题上海卷第15题5分记S n 为数列{a n }的前n 项和.“{a n }是递增数列”是“{S n }为递增数列”的( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16、【来源】 2018年1月高考真题上海卷第16题5分已知A 、B 为平面上的两个定点,且|AB →|=2.该平面上的动线段PQ 的端点P 、Q ,满足|AP →|⩽5,AP →⋅AB →=6,AQ →=−2AP →,则动线段PQ 所形成图形的面积为( ).A. 36B. 60C. 81D. 108三、解答题(第17题14分,第18题14分,第19题14分,第20题16分,第21题18分)17、【来源】 2018年1月高考真题上海卷第17题14分2017~2018学年上海嘉定区高一下学期期末第18题8分已知y =cos⁡x .(1) 若f(α)=13,且α∈[0,π],求f(α−π3)的值. (2) 求函数y =f(2x)−2f(x)的最小值.18、【来源】 2018年1月高考真题上海卷第18题14分已知a ∈R ,双曲线Γ:x 2a 2−y 2=1.(1) 若点(2,1)在Γ上,求Γ的焦点坐标.(2) 若a=1,直线y=kx+1与Γ相交于A、B两点,且线段AB中点的横坐标为1,求实数k的值.19、【来源】 2018年1月高考真题上海卷第19题14分利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米.(1) 求抛物线的焦点到准线的距离.(2) 在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).20、【来源】 2020~2021学年上海杨浦区上海复旦大学附属中学高一上学期期末第20题16分2018年1月高考真题上海卷第20题16分设a>0,函数f(x)=11+a⋅2x.(1) 若a=1,求f(x)的反函数f−1(x).(2) 求函数y=f(x)⋅f(−x)的最大值(用a表示).(3) 设g(x)=f(x)−f(x−1).若对任意x∈(−∞,0],g(x)⩾g(0)恒成立,求a的取值范围.21、【来源】 2018年1月高考真题上海卷第21题18分若{c n}是递增数列,数列{a n}满足:对任意n∈N∗,存在m∈N∗,使得a m−c na m−c n+1⩽0,则称{an}是{c n}的“分隔数列”.(1) 设c n=2n,a n=n+1,证明:数列{a n}是{c n}的“分隔数列”.(2) 设c n=n−4,S n是{c n}的前n项和,d n=c3n−2,判断数列{S n}是否是数列{d n}的分隔数列,并说明理由.(3) 设c n=aq n−1,T n是{c n}的前n项和,若数列{T n}是{c n}的分隔数列,求实数a、q的取值范围.1 、【答案】(−∞,−1)∪(1,+∞);2 、【答案】3;3 、【答案】(0,1);4 、【答案】2;5 、【答案】15;6 、【答案】x24+y23=1;7 、【答案】5;8 、【答案】180;9 、【答案】4;10 、【答案】(√33,+∞) ;11 、【答案】(11π6,19π6];12 、【答案】4.4;13 、【答案】 A;14 、【答案】 C;15 、【答案】 D;16 、【答案】 B;17 、【答案】 (1) 1+2√66.;(2) −32.;18 、【答案】 (1) (±√3,0).;(2) √5−1.2;19 、【答案】 (1) 1米.4;(2) 9.59°.;(0<x<1).20 、【答案】 (1) f−1(x)=log21−xx;(2) 1.1+2a+a2;(3) (0,√2].;21 、【答案】 (1) 证明见解析.;(2) 不是,理由见解析.;(3) a>0且q⩾2.;。

2018年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案

2018年普通高等学校招生全国统一考试 数学(上海卷)word版  含答案

2018年普通高等学校招生全国统一考试(上海卷) 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分) 1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______ 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 10.设等比数列{错误!未找到引用源。

}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim 2n n a →∞+=,则q=____________ 11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________ 12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则2+2的最大值为__________ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2错误!未找到引用源。

2018年上海春季招生统一文化考试数学(含答案)

2018年上海春季招生统一文化考试数学(含答案)

C9k x9k
a2k x2k
C9k ak x93k ,k
3,
常数项为C93a3 a 4
10.设 m R ,若 z 是关于 x 的方程 x2 mx m2 1 0 的一个虚根,则 | z | 的取值范围
是__________.
答案:( 3 ,+) 3
解析:
法一:设z a bi,(b 0)代入方程得:(a bi)2 +m(a bi) m2 1 0,即 a2 b2 ma m2 1 0, 2ab mb 0
(B)60
(C)81
(D)108
本题考查向量的投影,因为 AP 5,所以P点在以A为圆心半径为5的圆面上, 又AP AB 6= AB AP cos ,所以 AP cos =3,根据题意作图如下:
三、解答题(本大题共有 5 题,满分 76 分,第 17~19 题每题 14 分,20 题 16 分, 21 题 18 分)
3/7
仅供学习交流、勿做商用!
答案:A
14.如图,在直三棱柱 ABC A1B1C1 的棱虽在的直线中,与直线 BC1
异面的直线条数为( )
(A)1
(B)2
(C)3
(D)4
答案:C
15.记 Sn 为数列{an}的前 n 项和.“{an}是递增数列”是“ Sn 为递增数列”的( )
(A)充分非必要条件
答案: C31C53P33 180
9.设 a R
,若

x2

2 x
9



x

a x2
9

的二项展开式中的常数项相等,则 a

2018--2019年上海市春季高考数学试卷(含答案)

2018--2019年上海市春季高考数学试卷(含答案)

2019年上海市普通高等学校春季招生考试数学试卷一.填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分1 •函数y =log2(x 2)的定义域是 __________________2•方程2x=8的解是____________________3 •抛物线y2 =8x的准线方程是_________________4•函数y=2sin x的最小正周期是__________________5•已知向量a =(1,k) , b =(9, k-6)。

若a//b,则实数k 二__________________6.函数y =4sinx 3cos x的最大值是____________________7•复数2 3i ( i是虚数单位)的模是 _____________________&在ABC中,角A、B、C所对边长分别为a、b c,若a =5, b =8, B =60 •,则b= _9•在如图所示的正方体ABCD-ABQ1D1中,异面直线A,B与B|C所成角的大小为 _________10•从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________________ (结果用数值表示)。

11 •若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n = _____________ 。

12・36的所有正约数之和可按如下方法得到:因为36=2 232,所以36的所有正约数之和为(1 3 32) (2 2 3 2 32) (2222 3 2232) =(1 2 22)(1 3 32) =91 参照上述方法,可求得2000的所有正约数之和为 ______________________________二•选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。

考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分13•展开式为ad-bc的行列式是()a ba ca db a(A)d c(B)b d (C)b c(D)d c14•设f -1(x)为函数f(X )—、.X 的反函数,下列结论正确的是( )1 1(A) f (2) =2 (B) f (2)=4(C) f ,⑷=2(D)f 」⑷=415.直线2x -3y -1 =0的一个方向向量是()116.函数f(x)的大致图像是()(A )1 1 (B)a bab :: b 2(C)_ab ::-a 2(D)1 118. 若复数召、z ,满足Z | =Z2,则 召、z 2在复数平面上对应的点 Z1、Z2()(A) 关于x 轴对称(B) 关于y 轴对称(C 关于原点对称 (D) 关于直线y - x 对称19. (1 X)10的二项展开式中的一项是 ()(A ) 45x(B ) 90x 2 (C ) 120x 3 (D ) 252x 420•既是偶函数又在区间(0,)上单调递减的函数是( )(A ) y 二 sin x ( B ) y 二 cos x (C ) y = sin 2 x (D ) y = cos 2 x21. 若两个球的表面积之比为 1: 4,则这两个球的体积之比为( ) (A ) 1: 2(B ) 1: 4(C ) 1:8( D ) 1:1622. 设全集U 二R ,下列集合运算结果为 R 的是( ) (A )Z e u N (B ) N e u N(C )痧(u -)(D ) q{0}(A)(2, -3)(B) (2,3) (C) (-3, 2)(D)(3, 2)17.如果a ::: b :::0,那么下列不等式成立的是( )23.已知a、b c己R , “ b2—4ac < 0 ”是“函数f (x) = ax2 +bx + c的图像恒在x轴上方” 的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件24 .已知A、B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N .若■ ■—2MN = AN NB,其中■为常数,则动点M的轨迹不可能是()(A)圆(B)椭圆(C)抛物线(D)双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤25. (本题满分7分)如图,在正三棱锥ABC-AB J G中,AA =6,异面直线BG与AA所成角的大小为,626. (本题满分7分)如图,某校有一块形如直角三角形ABC的空地,其中.B为直角,AB长40米,BC长50 米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积。

上海普通高等学校春季招生统一文化考试数学试卷

11.设 ,函数 , ,若函数 与 的图象有且仅有两个不同的公共点,则 的取值范围是__________.
12.如图,正方形 的边长为20米,圆 的半径为1米,圆心是正方形的中心,点 、 分别在线段 、 上,若线段 与圆 有公共点,则称点 在点 的“盲区”中.已知点 以1.5米/秒的速度从 出发向 移动,同时,点 以1米/秒的速度从 出发向 移动,则在点 从 移动到 的过程中,点 在点 的盲区中的时长约为__________秒(精确到0.1)
(3)设 , 的前 项和,若数列 是 的分隔数列,求实数 、 的取值范围.
二、选择题(本大题共有4题,满分20分,每题5分)
13.下列函数中,为偶函数的是( )
(A) (B)
(C) (D)
14.如图,在直三棱柱 的棱虽在的直线中,与直线
异面的直线条数为( )
(A)1(B)2
(C)3(D)4
15.记 为数列 的前 项和.“ 是递增数列”是“ 为递增数列”的( )
(A)充分非必要条件(B)必要非充分条件
上海普通高等学校春季招生统一文化考试数学试卷
2018年上海市普通高等学校春季招生统一,满分54分,第1~6题每题4分,第7~12题每题5分)
1.不等式 的解集为__________.
2.计算: __________.
3.设集合 , ,则 __________.
(C)充要条件(D)既非充分也非必要条件
16.已知 、 为平面上的两个定点,且 .该平面上的动线段 的端点 、 ,满足 , , ,则动线段 所形成图形的面积为( )
(A)36(B)60(C)81(D)108
三、解答题(本大题共有5题,满分76分,第17~19题每题14分,20题16分,21题18分)

最新上海市春考数学试卷(含答案)

2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(i 是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点P 到两个定点()0,1和()0,1-的距离之和等于4,则动点P 的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,O 是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。

9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若z 是关于x 的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则a 的取值范围是__________;12、如图,在正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长均为_____秒(精确到0.1). 二.选择题(20分)13. 下列函数中,为偶函数的是( )A 2-=x y B 31x y = C 21-=xy D 3x y =14. 如图,在直三棱柱111C B A ABC -的棱所在的直线中,与直线1BC 异面的直线的条数为( ) A 1 B 2 C 3 D 415. 若数列}{n a 的前n 项和,“}{n a 是递增数列”是“}{n S 是递增数列”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 即不充分也不必要条件16、已知A 、B 是平面内两个定点,且2=→AB ,该平面上的动线段PQ 的两个端点P 、Q 满足:5≤→AP ,6=⋅→→AB AP ,→→-=AP AQ 2,则动线段PQ 所围成的面积为( )A 、50B 、60C 、72D 、108三、解答题(14+14+14+16+18=76分) 17、已知x x f cos )(=(1).若31)(=αf ,且],0[πα∈,求)3(πα-f 的值; (2).求函数)(2)2(x f x f y -=的最小值;18、已知R a ∈,双曲线1:222=-Γy ax(1).若点)1,2(在Γ上,求Γ的焦点坐标;(2).若1=a ,直线1+=kx y 与Γ相交于B A ,两点,若线段AB 中点的横坐标为1,求k 的值;19.利用“平行与圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理;某公司用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2投影出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,AB OC ⊥于C ,3=AB 米,5.4=OC 米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到01.0).20.设0>a ,函数xa x f 211)(⋅+=(1).若1=a ,求)(x f 的反函数)(1x f -(2)求函数)()(x f x f y -⋅=的最大值,(用a 表示)(3)设=)(x g )1()(--x f x f ,若对任意)0()(],0,(g x g x ≥-∞∈恒成立,求a 的取值范围?21.若}{n c 是递增数列,数列}{n a 满足:对任意*,N m R n ∈∃∈,使得01≤--+n m nm c a a a ,则称}{n a 是}{n c 的“分隔数列”(1)设1,2+==n a n c n n ,证明:数列}{n a 是}{n c 的分隔数列;(2)设n n S n c ,4-=是}{n c 的前n 项和,23-=n n c d ,判断数列}{n S 是否是数列}{n d 的分隔数列,并说明理由;(3)设n n n T aq c ,1-=是}{n c 的前n 项和,若数列}{n T 是}{n C 的分隔数列,求实数q a ,的取值范围?2018年上海市普通高校春季招生统一文化考试数学试卷参考答案:一、填空题:1、()()+∞-∞-,11, ;2、3;3、()1,0;4、2;5、15;6、13422=+y x ;7、5;8、180; 9、4;10、⎪⎪⎭⎫⎝⎛∞+,33;11、⎥⎦⎤⎝⎛619611ππ,;12、4.4; 二、选择题:13、A ;14、C ;15、D ;16、B ; 三、解答题:17、(1)6621+;(2)23-; 18、(1)()()0,30,3-,;(2)215-; 19、(1)41;(2)59.9; 20、解析:(1)()()1,011log )(11log 112212∈⎪⎭⎫ ⎝⎛-=⇒⎪⎪⎭⎫ ⎝⎛-=⇒-=-x x x f y x y x ; (2)()()xx x x x a a a a y 2122211211⋅++=⋅+⋅⋅+=-,设02>=t x, 则()111222+++=+++=a taat at a at ty ,因为0>a ,所以a taat 2≥+,当且仅当1=t 时取等号,所以12122++≥+++a a a t a at ,即()⎥⎦⎤ ⎝⎛+∈211,0a y ; (3)()223222221122+⋅+⋅-=⋅+-⋅+=xx x x a t a a a a x g ,设t x=2,因为()0,∞-∈x , 所以()1,0∈t ,则()att a a t g 322++-=,若a t t t a 222=⇒=,1°当12≥a 时,即20≤<a ,a t t a y 322++=单调递减,所以()+∞++∈,232a a y , 则()⎪⎭⎫⎝⎛++-∈0,232a a a a g ,且()2302++-=a a a g ,故满足()()0g x g ≥,符合题意;2°当120<<a 时,即2>a ,则a a a aa t t a y 322322322+=+⋅≥++=, 则()()0,322-∈a g ,因为()()02log 2ming a g x g ≠⎪⎪⎭⎫⎝⎛=,故不符合题意,舍去; 综上:(]2,0∈a 。

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则22的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4 (B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A )3(B )3(C )3 (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。

高三数学-【数学】上海市普通高等学校2018年高三春季

上海市普通高等学校2018年高三春季招生考试数 学 试 题考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.函数)2lg(-=x y 的定义域为__________________。

2.若集合}4|{},1|{2≤≥=x x B x x A ,则B A ⋂=_____________。

3.在△ABC 中,32tan =A ,则A sin =_______________。

4.若行列式02142=x,则x =____________。

5.若]2,2[,31sin ππ-∈=x x ,则x =____________。

(结果用反三角函数表示) 6.6)1(xx +的二项展开式的常数项为_______。

7.两条直线023:1=+-y x l 与02:2=+-y x l 的夹角的大小是________。

8.若n S 为等比数列}{n a 的前n 项的和,0852=+a a ,则36S S =_________________。

9.若椭圆C 的焦点和顶点分别是双曲线14522=-y x 的顶点和焦点,则椭圆C 的方程是_____________。

10.若点O 和点F 分别为椭圆1222=+y x 的中心和左焦点,点P 为椭圆上的任意一点,则22||||PF OP +的最小值为___________。

11.根据如图所示的程序框图,输出结果i =___________。

12.2018年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为____________。

13.有一中多面体的饰品,其表面右6个正方形和8各正三角形组成(如图),AB 与CD 所成的角的大小是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市普通高等学校春季招生统一文化考试
数学试卷
一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)
1.不等式||1x >的解集为__________.
2.计算:31lim 2
n n n →∞-=+__________. 3.设集合{|02}A x x =<<,{|11}B x x =-<<,则A B = __________.
4.若复数z i i =+(i 是虚数单位),则2z z
+=__________. 5.已知{}n a 是等差数列,若2810a a +=,则357a a a ++=__________.
6.已知平面上动点P 到两个定点(1,0)和(1,0)-的距离之和等于4,则动点P 的轨迹为 __________.
7.如图,在长方形1111B ABC A C D D -中,3AB =,4BC =,15AA =, O 是11AC 的
中点,则三棱锥11A AOB -的体积为__________.
第7题图 第12题图
8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、 四辩.若其中学生 甲必须参赛且不担任四辩,则不同的安排方法种数为__________.
9.设a R ∈,若922x x ⎛⎫+ ⎪⎝
⎭与92a x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项相等,则a =__________. 10.设m R ∈,若z 是关于x 的方程22
10x mx m -+=+的一个虚根,则||z 的取值范围 是__________.
11.设0a >,函数()2(1)sin()f x x x ax =+-,(0,1)x ∈,若函数21y x =-与()
y f x =
的图象有且仅有两个不同的公共点,则a 的取值范围是__________.
12.如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点
P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲 区”中.已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度 从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约
为__________秒(精确到0.1)
二、选择题(本大题共有4题,满分20分,每题5分)
13.下列函数中,为偶函数的是( )
(A )2y x -= (B )13y x =
(C )1
2y x -
= (D )3y x = 14.如图,在直三棱柱111AB A B C C -的棱虽在的直线中,与直线1BC
异面的直线条数为( )
(A )1 (B )2 (C )3 (D )4
15.记n S 为数列{}n a 的前n 项和.“{}n a 是递增数列”是“n S 为递增数列”的( )
(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件
16.已知A 、B 为平面上的两个定点,且|2|AB = .该平面上的动线段PQ 的端点P 、Q ,
满足||5AP ≤ ,6AB AP ⋅= ,2AQ AP =- ,则动线段PQ 所形成图形的面积为( )
(A )36 (B )60 (C )81 (D )108
三、解答题(本大题共有5题,满分76分,第17~19题每题14分,20题16分,21题18分)
17.(本题满分14分,第1小题满分6分,第2小题满分8分)
已知cos y x =.
(1)若3(1)f α=,且[0,]απ∈,求()3f πα-的值;
(2)求函数(2)2()y f x f x =-的最小值.
18. (本题满分14分,第1小题满分6分,第2小题满分8分)
已知a R ∈,双曲线222:1x y a Γ-=.
(1)若点(2,1)在Γ上,求Γ的焦点坐标; (2)若1a =,直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.
19.(本题满分14分,第1小题满分7分,第2小题满分7分)
利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛
物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,
OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.
(1)求抛物线的焦点到准线的距离; (2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).
图1图2图3
20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设0a >,函数1()12x f x a =+⋅.
(1)若1a =,求()f x 的反函数1()f x -;
(2)求函数()()y f x f x ⋅-=的最大值(用a 表示); (3)设()()(1)g x f x f x =--.若对任意(,0]x ∈-∞,)(()0g x g ≥恒成立,求a 的取值范围.
21.(本题满分18分,第1小题满分3分,第2小题满分6分,第3小题满分9分) 若{}n c 是递增数列,数列{}n a 满足:对任意*n N ∈,存在*m N ∈,使得10m n m n a c a c +-≤-,则称{}n a 是{}n c 的“分隔数列”.
(1)设2n c n =,1n a n =+,证明:数列{}n a 是{}n c 的“分隔数列”; (2)设4n c n =-,n S 是{}n c 的前n 项和,31n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;
(3)设1n n c aq -=,n T {}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.
参考答案
一、填空题
1.(,1)(1,)-∞-+∞ 2.3 3.(0,1) 4.2 5.15
6.22
143
x y += 7.5 8.180 9.4 10.)+∞ 11.1119(
,]66ππ 12.4.4
二、选择题
13.A
14.C 15.D 16.B
三、解答题
17.(1)16
+;(2)32-
18.(1)(1,0),(1,0)-;(2. 19.(1)14
;(2)9.59︒. 20.(1)121()log (01)x f x x x --=<<;(2)2
112max y a a =++(0x =时取最值);
(3)
21.(1)证明略;(2)不是.反例:4n =时,m 无解;(3)02a q ≥>⎧⎨⎩
.。

相关文档
最新文档