珠光体马氏体和贝氏体的比较
马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体马氏体(martensite)是黑色金属材料的一种组织名称。
马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。
其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。
马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。
是碳在γ-Fe中形成的间隙固溶体。
奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。
不具有铁磁性。
因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。
古代铁匠打铁时烧红的铁块即处于奥氏体状态。
另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。
珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。
得名自其珍珠般(pearl-like)的光泽。
其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。
用符号P表示,含碳量为ωc=%。
在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。
珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。
铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。
亚共析成分的奥氏体通过先共析析出形成铁素体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。
铁素体的强度、硬度不高,但具有良好的塑性与韧性。
珠光体、马氏体和贝氏体的比较

珠光体组织形态:主要为片状珠光体,即是由一片铁素体和一片渗碳体交替堆叠而成。
片层方向大致相同的区域构成“珠光体团”。
一个原奥氏体晶粒内部往往有多个“珠光体团”,同一“珠光体团”内片层取向基本相同。
在珠光体形成的温度区间内,过冷度越大,则珠光体片层间距越小。
位相关系:。
马氏体组织形态:主要分为板条状马氏体和片状马氏体。
(1)板条状马氏体显微组织可用图4-13描述从大到小分为原奥氏体晶粒、马氏体板条束、马氏体板条块、马氏体板条、亚结构(高密度位错)。
(2)片状马氏体显微组织如图4-17其空间形态呈双凸透镜片状,显微组织特征为片间不相互平行,其亚结构主要为孪晶。
片状马氏体片的大小完全取决于奥氏体晶粒大小,片间不相互平行,且片中有明显的中脊。
贝氏体组织形态:主要分为上贝氏体和下贝氏体。
(1)上贝氏体为成簇分布的条状铁素体和夹于条间的断续条状或杆状渗碳体的混合物。
(2)下贝氏体呈暗黑色针状或片状,而且各个针状物之间都有一定的交角,在铁素体片内部有规律的分布着不连续的细片状或粒状碳化物,而在铁素体片边界上也可能有少量的渗碳体形成。
珠光体晶体结构:其是由体心立方结构的铁素体和复杂单斜结构的渗碳体组成。
马氏体晶体结构:马氏体中铁原子本来以体心立方结构排列,加入碳原子后其转变为体心四方结构,且晶体常数随碳原子含量的改变而改变。
贝氏体晶体结构:由体心立方的铁素体和复杂晶体结构的渗碳体组成。
珠光体的相组成:由铁素体和渗碳体两相组成。
铁素体和渗碳体都是片状的,一般铁素体层较渗碳体层厚。
铁素体和渗碳体层交替分布,均匀分布在珠光体中。
同一“珠光体团”内片层取向基本平行了。
铁素体位错密度较小,渗碳体中密度更小,但两相交界处的位错密度较高。
马氏体的相组成:由铁素体组成,但铁素体中的碳含量较高(高于%)铁素体呈板条状或片状。
板条状马氏体多个板条(小角度晶界)形成板条块,板条块之间形成大角度晶界。
C原子在体心立方的八面体间隙处分布,且优先占据第三类亚点阵。
贝氏体转变和马氏体转变和珠光体转变的区别

贝氏体转变和马氏体转变和珠光体转变的区别
贝氏体转变、马氏体转变和珠光体转变是金属材料中常见的组织变化,在工程制造和材料科学中都有重要的应用。
贝氏体转变指的是钢材在加热过程中的组织转变,由低温的铁素体转变为高温的贝氏体。
在从铁素体到贝氏体的转变过程中,钢材的微观组织形态发生了重大改变。
钢材的晶粒也随着组织的转变而发生了明显的变化。
钢材在加热过程中晶粒逐渐增大,直到达到最终贝氏体组织。
马氏体转变是一种金属材料的组织转变,由奥氏体向马氏体的转变。
这种组织转变是钢材经过淬火后的过程。
钢材处于高温状态时,铁素体通过加快冷却速度,形成奥氏体,进一步经过淬火、冷却速度更快,就可能形成马氏体。
马氏体对强度和硬度的提升有很大作用。
珠光体转变是一种金属材料的组织转变,由马氏体向珠光体的转变。
当金属材料处于温度较高的状态时,马氏体会缓慢地向珠光体转变。
珠光体的晶粒比马氏体的晶粒要细小得多,这就意味着珠光体的强度和韧性会高于马氏体。
三种转变的区别可以总结如下:
1. 贝氏体转变和马氏体转变是由不同的原因导致的。
贝氏体转变是由温度的变化引起的,而马氏体转变是由冷却速度的变化引起的。
2. 贝氏体和马氏体都是高强度金属材料,但它们的应用场合不同。
贝氏体主要应用于高温下的场合,马氏体主要应用于低温、高应力下的场合。
3. 珠光体转变需要温度较高,速度较缓慢,才能发生。
珠光体对材料的强度和韧性会有很大提升,但需要注意的是,珠光体转变并不能在所有材料中应用。
珠光体、贝氏体、马氏体转变对比

一、组织形态1、珠光体的组织形态共析碳钢加热到均匀的的奥氏体化状态后缓慢冷却,稍低于温度将形成珠光体组织,为铁素体和渗碳体的机械混合物,其典型形态呈片状或层状。
片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成。
片状珠光体组织中,一对铁素体和渗碳体片的总厚度,称为“珠光体片层间距”。
工业上所谓的片状珠光体,是指在光学显微镜下能够明显看出铁素体与渗碳体呈层状分布的组织形态,其片层间距约在0.150.45之间。
透射电镜观察表明,在退火状态下,珠光体中的铁素体位错密度小,渗碳体中的位错密度更小,片状珠光体中铁素体与渗碳体两相交界处的为错密度高,在每一片铁素体中还有亚晶界,构成许多亚晶粒。
工业用钢中,也可以见到铁素体基体上分布着粒状渗碳体组织,称为“粒状珠光体”或“球状珠光体”,一般是经球化退火处理后获得的。
2、马氏体的组织形态a、板条状马氏体板条状马氏体是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型的马氏体组织。
因其显微组织是由许多成群的板条组成,故称为板条状马氏体。
又因为这种马氏体的亚结构主要为位错,通常也称它为位错型马氏体。
板条状马氏体的显微组织(如图所示),其中A为板条束,成不规则形状,尺寸约为20—35μm,是由若干单个马氏体板条所组成。
一个板条束又可分成几个平行的像图中B那样的区域,呈块状。
块界长尺寸方向与板条马氏体边界平行,块间成大角晶界。
每个块由若干板条组成,每一个板条为一个单晶体。
板条具有平直的界面,并接近于奥氏体的,为其惯习面,相同惯习面的变体平行排列构成板条束。
现已确定这些稠密的板条被连续的高度变形的残余奥氏体薄膜()所隔开。
相邻板条一般以小角晶界相间,也可成孪晶关系,成孪晶关系时条间无残余奥氏体。
透射电镜观察证明,板条马氏体有高密度位错。
有时也会有部分相变孪晶存在,但为局部的,数量不多。
板条状马氏体的显微组织构成随钢和合金的成分变化而改变。
在碳钢中,当碳含量小于0.3%时,原始奥氏体晶粒板条束及束中块均很清楚;碳含量在0.30.5%,板条束清楚,块不清楚;碳含量升高到0.60.8时,板条混杂生成的倾向性很强,无法辨识束和块。
金属学第七章第九章答案

9-4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。
答:贝氏体转变:是在珠光体转变温度以下马氏体转变温度以上过冷奥氏体所发生的中温转变。
与珠光体转变的异同点:相同点:相变都有碳的扩散现象;相变产物都是铁素体+碳化物的机械混合物不同点:贝氏体相变奥氏体晶格向铁素体晶格改组是通过切变完成的,珠光体相变是通过扩散完成的。
与马氏体转变的异同点(可扩展):相同点:晶格改组都是通过切变完成的;新相和母相之间存在一定的晶体学位相关系。
不同点:贝氏体是两相组织,马氏体是单相组织;贝氏体相变有扩散现象,可以发生碳化物沉淀,而马氏体相变无碳的扩散现象。
9-5 简述钢中板条马氏体和片状马氏体的形貌特征和亚结构,并说明它们在性能上的差异。
答:板条马氏体的形貌特征:其显微组织是由成群的板条组成。
一个奥氏体晶粒可以形成几个位向不同的板条群,板条群由板条束组成,而一个板条束内包含很多近乎平行排列的细长的马氏体板条。
每一个板条马氏体为一个单晶体,其立体形态为扁条状。
在这些密集的板条之间通常由含碳量较高的残余奥氏体分割开。
板条马氏体的亚结构:高密度的位错,这些位错分布不均匀,形成胞状亚结构,称为位错胞。
片状马氏体的形貌特征:片状马氏体的空间形态呈凸透镜状,由于试样磨面与其相截,因此在光学显微镜下呈针状或竹叶状,而且马氏体片互相不平行,大小不一,越是后形成的马氏体片尺寸越小。
片状马氏体周围通常存在残留奥氏体。
片状马氏体的亚结构:主要为孪晶,分布在马氏体片的中部,在马氏体片边缘区的亚结构为高密度的位错。
板条马氏体与片状马氏体性能上的差异: 马氏体的强度取决于马氏体板条或马氏体片的尺寸,尺寸越小,强度越高,这是由于相界面阻碍位错运动造成的。
马氏体的硬度主要取决于其含碳量。
马氏体的塑性和韧性主要取决于马氏体的亚结构。
差异性:片状马氏体强度高、塑性韧性差,其性能特点是硬而脆。
板条马氏体同时具有较高的强度和良好的塑韧性,并且具有韧脆转变温度低、缺口敏感性和过载敏感性小等优点。
【热处理原理与工艺】比较贝氏体转变、珠光体转变和马氏体转变

H a r b i n I n s t i t u t e o f T e c h n o l o g y热处理工艺与原理课程名称:热处理工艺与原理题目:比较贝氏体转变、珠光体转变和马氏体转变的异同院系:材料科学与工程班级:1219001班设计者:缪克松学号:1121900133设计时间:2015.04.20哈尔滨工业大学一、产物组成与晶体结构在三种相中都由铁素体与渗碳体组成,其中铁素体为体心立方结构,渗碳体为复杂斜方结构。
马氏体相中由于碳原子的分布使铁原子排布成体心正方结构(要求碳含量大于0.25%)。
在三种相中,碳化物含量:珠光体>贝氏体>马氏体。
二、分类依据组织形貌每种相中有不同的划分,珠光体可分为珠光体、贝氏体、屈氏体。
贝氏体可分为上贝氏体、下贝氏体、粒状贝氏体、无碳化物贝氏体、柱状贝氏体、反常贝氏体、BⅢ贝氏体等。
马氏体可分为板条状马氏体、片状马氏体、蝶状马氏体、薄片状马氏体、ε马氏体等。
三、转变类型及温度珠光体转变是扩散型转变,马氏体转变是非扩散型转变,贝氏体转变既有扩散型相变特点,又有非扩散型相变特点。
珠光体转变温度最高,此温度下碳原子和铁原子都能够发生扩散。
贝氏体转变温度其次,此温度下碳原子可以扩散,铁原子不可以扩散。
马氏体转变温度最低,此温度下碳原子和铁原子都不能扩散。
四、热力学条件在三种转变之中,相变的驱动力都是体系自由能的下降。
珠光体转变是准平衡相变,其过程可以用铁碳平衡相图来分析,阻力并不明显。
马氏体转变是非平衡相变,转变阻力包括界面能和界面弹性应变能,由于过程为共格切变,界面能很小。
由于新相和母相共格,同时具有体积效应,导致具有极大的界面弹性应变能。
因此马氏体相变需要很大的过冷度来提高体系自由能差从而克服阻力。
贝氏体相变介于马氏体相变和珠光体相变之间,一方面,在贝氏体相变时,碳在奥氏体中发生预先扩散,重新分布。
由于碳的扩散,降低了形成贝氏体中铁素体的碳含量,使铁素体的自由能降低,增大了新旧两相的自由能差,提高了相变驱动力。
马氏体 奥氏体 珠光体 贝氏体 的区别

马氏体奥氏体珠光体贝氏体马氏体(martensite)是黑色金属材料的一种组织名称。
马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。
其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。
马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。
是碳在γ-Fe中形成的间隙固溶体。
奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。
不具有铁磁性。
因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。
古代铁匠打铁时烧红的铁块即处于奥氏体状态。
另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。
珠光体 pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。
得名自其珍珠般(pearl-like)的光泽。
其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。
用符号P表示,含碳量为ωc=0.77%。
在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。
珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。
铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。
亚共析成分的奥氏体通过先共析析出形成铁素体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。
铁素体的强度、硬度不高,但具有良好的塑性与韧性。
比较贝氏体转变与珠光体转变和马氏体转变的异同

试比较贝氏体转变与珠光体转变与马氏体转变得异同一.组织形态:1.珠光体:珠光体得组织形态特征:珠光体得典型组织特征就是由一层铁素体与一层渗碳体交替平行堆叠而形成得双相组织。
根据片层间距得不同,可将珠光体分为三种:珠光体:S0=450-150nm,形成温度为A1—650℃,普通光学显微镜可以分辨、索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。
屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。
铁素体基体上分布着粒状渗碳体得组织为粒状珠光体。
这种组织一般就是通过球化退火或淬火后高温回火得到得。
在珠光体转变过程中,所形成得珠光体中得铁素体与母相奥氏体具有一定得晶体学位向关系。
珠光体中,铁素体与渗碳体之间存在一定得晶体学位向关系。
2。
马氏体:马氏体得组织形态:○1。
板条马氏体就是低、中碳钢中形成得一种典型马氏体组织,其形貌特征可描述如下: 在一个原奥氏体晶粒内部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束内有若干个相互平行得板条块,块间就是大角晶界;在一个板条块内就是若干个相互平行得马氏体板条,板条间就是小角晶界。
马氏体板条内存在大量得位错,所以板条马氏体得亚结构就是高密度得位错与位错缠结。
板条状马氏体也称为位错型马氏体、错误!、片状马氏体就是中、高碳钢中形成得一种典型马氏体组织,其形貌特征可描述如下: 在一个原奥氏体晶粒内部有许多相互有一定角度得马氏体片。
马氏体片得空间形态为双凸透镜状,横截面为针状或竹叶状、在原奥氏体晶粒中首先形成得马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成得马氏体片越来越小,所以马氏体片得尺寸取决于原始奥氏体晶粒得尺寸。
片状马氏体得形成温度较低,在马氏体片得周围往往存在着残余奥氏体。
片状马氏体得内部亚结构主要就是孪晶。
当碳含量较高时,在马氏体片中可以瞧到中脊,中脊面就是密度很高得微孪晶区。
马氏体片形成时得相互撞击,马氏体片中存在大量得纤维裂纹、3、贝氏体:贝氏体得组织形态:错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
珠光体组织形态:主要为片状珠光体,即是由一片铁素体和一片渗碳体交替堆叠而成。
片层方向大致相同的区域构成“珠光体团"。
一个原奥氏体晶粒内部往往有多个“珠光体团”,同一“珠光体团"内片层取向基本相同。
在珠光体形成的温度区间内,过冷度越大,则珠光体片层间距越小。
位相关系:。
..
马氏体组织形态:主要分为板条状马氏体和片状马氏体.
(1)板条状马氏体显微组织可用图4—13描述
从大到小分为原奥氏体晶粒、马氏体板条束、马氏体板条块、马氏体板
条、亚结构(高密度位错).
(2)片状马氏体显微组织如图4—17
其空间形态呈双凸透镜片状,显微组织特征为片间不相互平行,其亚结
构主要为孪晶。
片状马氏体片的大小完全取决于奥氏体晶粒大小,片间不
相互平行,且片中有明显的中脊。
贝氏体组织形态:主要分为上贝氏体和下贝氏体。
(1)上贝氏体为成簇分布的条状铁素体和夹于条间的断续条状或杆状
渗碳体的混合物。
(2)下贝氏体呈暗黑色针状或片状,而且各个针状物之间都有一定的
交角,在铁素体片内部有规律的分布着不连续的细片状或粒状碳
化物,而在铁素体片边界上也可能有少量的渗碳体形成。
珠光体晶体结构:其是由体心立方结构的铁素体和复杂单斜结构的渗碳体组成。
马氏体晶体结构:马氏体中铁原子本来以体心立方结构排列,加入碳原子后其转变为体心四方结构,且晶体常数随碳原子含量的改变而改变。
贝氏体晶体结构:由体心立方的铁素体和复杂晶体结构的渗碳体组成。
珠光体的相组成:由铁素体和渗碳体两相组成。
铁素体和渗碳体都是片状的,一般铁素体层较渗碳体层厚。
铁素体和渗碳体层交替分布,均匀分布在珠光体中。
同一“珠光体团”内片层取向基本平行了。
铁素体位错密度较小,渗碳体中密度更小,但两相交界处的位错密度较高。
马氏体的相组成:由铁素体组成,但铁素体中的碳含量较高(高于0.0218%)
铁素体呈板条状或片状。
板条状马氏体多个板条(小角度晶界)形成板条块,板条块之间形成大角度晶界。
C原子在体心立方的八面体间隙处分布,且优先占据第三类亚点阵。
贝氏体的相组成:由铁素体和渗碳体组成(一般还夹杂有残余奥氏体,珠光体和马氏体)
上贝氏体中,铁素体为条状,成簇分布且相互平行。
渗碳体为断续的条状或杆状,分布在铁素体条间。
下贝氏体中,铁素体为针状或片状,各针状物之间不平行,渗碳体为细片状或粒状,分布在铁素体内,少量分布在铁素体边界上.
惯习面:
成分:三者皆为Fe和C组成物质,可能含有其他少量合金元素。
形成温度:图,一般形成温度珠光体高于贝氏体高于马氏体。
形成方式:珠光体通过Fe原子和C原子的扩散形成,马氏体通过切变形成,贝氏体二者兼有. 形成速度:珠光体的形成为扩散型相变,相变速度慢,马氏体的形成为切变,只要达到驱动所
需的过冷度,相变瞬时完成,贝氏体两种类型相变都有,因此相变速度主要取决于较慢的扩散型相变。
形成所需降温速度:珠光体为缓慢降温,贝氏体为正常速度降温,马氏体为快速降温。
相变的孕育期:珠光体和贝氏体形成有孕育期,马氏体没有孕育期,只要一满足所需过冷度立即发生相变.
形核处:三种多在奥氏体晶界和缺陷处形核。
机械性能:
珠光体:韧性较大,珠光体团直径和片层间距越小,强度越高,塑性也大。
而亚晶粒越细,晶体点阵畸变越大,则所得珠光体强度越高。
“派敦处理",就是使高碳钢获得细珠光体,在经过深度冷拔,获得高强度钢丝,主要是因为塑性变形引起位错密度增大和亚晶粒细化。
马氏体:高强度、高硬度,其硬度在一定范围内随C含量的增加而升高。
产生原因:相变强化:切变特性造成晶体内产生大量微观缺陷。
时效强化:C原子扩散偏聚钉扎位错引起。
形变强化:外力作用下因塑性形变而急剧加工硬化。
相对而言,位错型马氏体(板条型马氏体)具有较好的韧性,因此板条状马氏体相对片状马氏体机械综合性能好.
贝氏体:韧性、强度和硬度介于珠光体和马氏体之间,下贝氏体综合性能更好,因为下贝氏体中,较小的碳化物不易形成裂纹,即使形成,其扩展也将受到大量弥散碳化物和位错的阻止。
贝氏体适用于强度要求不太高又需要有一定韧性的场合.。