高考数学理科二轮复习课件:专题6 第二讲 椭圆双曲线抛物线

合集下载

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大.圆锥曲线的定义、标准方程与几何性质|x|≤a,|y|≤b |x|≥a x≥0热点一 圆锥曲线的定义与标准方程例1 若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( )A .30°B .60°C .120°D .150°(2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-12的一个焦点重合,且在抛物线上有一动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y .根据抛物线的定义可知m =|PF |-1,设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |.易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4|5-1=5-1.思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图.(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x答案 (1)D (2)C解析 (1)∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20. ∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知,|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠A 1AF =60°. 连接A 1F ,则△A 1AF 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则|NF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.热点二 圆锥曲线的几何性质例2 (1)已知离心率为e 的双曲线和离心率为22的椭圆有相同的焦点F 1,F 2,P 是两曲线的一个公共点,若∠F 1PF 2=π3,则e 等于( )A.52 B.52 C.62D .3 (2)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1思维启迪 (1)在△F 1F 2P 中利用余弦定理列方程,然后利用定义和已知条件消元;(2)可设点P 坐标为(a 2c ,y ),考察y 存在的条件.答案 (1)C (2)D解析 (1)设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,焦距为2c ,|PF 1|=m ,|PF 2|=n ,且不妨设m >n ,由m +n =2a 1,m -n =2a 2得m =a 1+a 2,n =a 1-a 2. 又∠F 1PF 2=π3,∴4c 2=m 2+n 2-mn =a 21+3a 22,∴a 21c 2+3a 22c 2=4,即1(22)2+3e 2=4,解得e =62,故选C. (2)设P ⎝⎛⎭⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y 2, 当2QF k 存在时,则1F P k =cy a 2+c 2,2QF k =cyb 2-2c 2, 由12F P QF k k ⋅=-1,得 y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当2QF k 不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1, 即所求的椭圆离心率的取值范围是⎣⎡⎭⎫33,1.思维升华 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3 C. 2 D. 3(2)(2014·课标全国Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3m D .3m 答案 (1)C (2)A解析 (1)设OF 的中点为C ,则 AO →+AF →=2AC →,由题意得, 2AC →·OF →=0,∴AC ⊥OF ,∴AO =AF , 又∠OAF =90°,∴∠AOF =45°, 即双曲线的渐近线的倾斜角为45°, ∴ba =tan 45°=1, 则双曲线的离心率e =1+(ba)2=2,故选C.(2)双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±33m x =±m mx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +31+m= 3.故选A.热点三 直线与圆锥曲线例3 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知AB →=613BC →.(1)求椭圆的离心率;(2)设动直线y =kx +m 与椭圆有且只有一个公共点P ,且与直线x =4相交于点Q ,若x 轴上存在一定点M (1,0),使得PM ⊥QM ,求椭圆的方程.思维启迪 (1)根据AB →=613BC →和点B 在椭圆上列关于a 、b 的方程;(2)联立直线y =kx +m 与椭圆方程,利用Δ=0,PM →·QM →=0求解.解 (1)∵A (-a,0),设直线方程为y =2(x +a ),B (x 1,y 1), 令x =0,则y =2a ,∴C (0,2a ), ∴AB →=(x 1+a ,y 1),BC →=(-x 1,2a -y 1),∵AB →=613BC →,∴x 1+a =613(-x 1),y 1=613(2a -y 1),整理得x 1=-1319a ,y 1=1219a ,∵点B 在椭圆上,∴(1319)2+(1219)2·a 2b 2=1,∴b 2a 2=34,∴a 2-c 2a 2=34,即1-e 2=34,∴e =12.(2)∵b 2a 2=34,可设b 2=3t ,a 2=4t ,∴椭圆的方程为3x 2+4y 2-12t =0,由⎩⎪⎨⎪⎧3x 2+4y 2-12t =0y =kx +m ,得 (3+4k 2)x 2+8kmx +4m 2-12t =0,∵动直线y =kx +m 与椭圆有且只有一个公共点P , ∴Δ=0,即64k 2m 2-4(3+4k 2)(4m 2-12t )=0, 整理得m 2=3t +4k 2t ,设P (x 1,y 1)则有x 1=-8km 2(3+4k 2)=-4km 3+4k 2, y 1=kx 1+m =3m 3+4k 2,∴P (-4km 3+4k 2,3m3+4k 2), 又M (1,0),Q (4,4k +m ),∵x 轴上存在一定点M (1,0),使得PM ⊥QM ,∴(1+4km 3+4k 2,-3m3+4k 2)·(-3,-(4k +m ))=0恒成立, 整理得3+4k 2=m 2.∴3+4k 2=3t +4k 2t 恒成立,故t =1. ∴椭圆的方程为x 24+y 23=1.思维升华 待定系数法是求圆锥曲线方程的基本方法;解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点(1,22),右焦点为F 2.设A ,B 是C 上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q 两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.解 (1)因为焦距为2,所以a 2-b 2=1.因为椭圆C 过点(1,22), 所以1a 2+12b 2=1.故a 2=2,b 2=1.所以椭圆C 的方程为x 22+y 2=1.(2)由题意,当直线AB 垂直于x 轴时,直线AB 的方程为x =-12,此时P (-2,0),Q (2,0), 得F 2P →·F 2Q →=-1.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M (-12,m )(m ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 212+y 21=1,x222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0,则-1+4mk =0,故4mk =1.此时,直线PQ 的斜率为k 1=-4m , 直线PQ 的方程为y -m =-4m (x +12).即y =-4mx -m .联立⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1消去y , 整理得(32m 2+1)x 2+16m 2x +2m 2-2=0. 设P (x 3,y 3),Q (x 4,y 4)所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1.于是F 2P →·F 2Q →=(x 3-1)(x 4-1)+y 3y 4=x 3x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1 =(4m 2-1)(-16m 2)32m 2+1+(1+16m 2)(2m 2-2)32m 2+1+1+m 2 =19m 2-132m 2+1. 由于M (-12,m )在椭圆的内部,故0<m 2<78,令t =32m 2+1,1<t <29,则F 2P →·F 2Q →=1932-5132t.又1<t <29,所以-1<F 2P →·F 2Q →<125232.综上,F 2P →·F 2Q →的取值范围为[-1,125232).1.对涉及圆锥曲线上点到焦点距离或焦点弦的问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2.椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3.求双曲线、椭圆的离心率的方法:(1)直接求出a ,c ,计算e =ca ;(2)根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5.抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24;(2)|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1|F A |+1|FB |为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.真题感悟1.(2014·湖北)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433B.233C .3D .2答案 A解析 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2, 由(2c )2=r 21+r 22-2r 1r 2cos π3, 得4c 2=r 21+r 22-r 1r 2.由⎩⎪⎨⎪⎧ r 1+r 2=2a 1,r 1-r 2=2a 2得⎩⎪⎨⎪⎧r 1=a 1+a 2,r 2=a 1-a 2,∴1e 1+1e 2=a 1+a 2c =r 1c. 令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+(r 2r 1)2-r 2r 1=4(r 2r 1-12)2+34,当r 2r 1=12时,m max =163, ∴(r 1c )max =433, 即1e 1+1e 2的最大值为433. 2.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限, 所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8), 所以直线BF 的斜率为43.押题精练1.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是_____________.答案264解析 如图所示,设双曲线的右焦点为H ,连接PH , 由题意可知|OE |=a4,由OE →=12(OF →+OP →),可知E 为FP 的中点.由双曲线的性质,可知O 为FH 的中点, 所以OE ∥PH ,且|OE |=12|PH |,故|PH |=2|OE |=a2.由双曲线的定义,可知|PF |-|PH |=2a (P 在双曲线的右支上), 所以|PF |=2a +|PH |=5a 2. 因为直线l 与圆相切,所以PF ⊥OE .又OE ∥PH ,所以PF ⊥PH .在△PFH 中,|FH |2=|PH |2+|PF |2, 即(2c )2=(a 2)2+(5a2)2,整理得c a =264,即e =264.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,O为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明:直线OP 的斜率k 满足|k |> 3. (1)解 设点P 的坐标为(x 0,y 0),y 0≠0.由题意,有x 20a 2+y 20b2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP · k BP =-12,可得x 20=a 2-2y 20, 代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)证明 方法一 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2,② 由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2, 代入②,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.方法二 依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b2=1. 因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.③ 由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2. 代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3, 所以|k |> 3.(推荐时间:60分钟)一、选择题1.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 答案 D解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b 2=1的离心率为( ) A .2或233B.6或233 C .2或 3 D.3或 6 答案 A解析 由题意,可知双曲线x 2a 2-y 2b 2=1的渐近线的倾斜角为30°或60°,则b a =33或 3. 则e =c a =c 2a 2= 1+(b a )2=233或2. 故选A. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 答案 B解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.故选B. 4.已知椭圆y 2a 2+x 2b2=1 (a >b >0),A (4,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC →=0,|OB →-OC →|=2|BC →-BA →|,则其焦距为( ) A.463B.433C.863D.233 答案 C解析 由题意,可知|OC →|=|OB →|=12|BC →|,且a =4, 又|OB →-OC →|=2|BC →-BA →|,所以,|BC →|=2|AC →|.故|OC →|=|AC →|.又AC →·BC →=0,所以AC →⊥BC →.故△OAC 为等腰直角三角形,|OC →|=|AC →|=2 2.不妨设点C 在第一象限,则点C 的坐标为(2,2),代入椭圆的方程,得2242+22b 2=1,解得b 2=163. 所以c 2=a 2-b 2=42-163=323,c =463. 故其焦距为2c =863. 5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0), 因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程,化简得4y 2-123y -9=0,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. 方法二 联立方程得x 2-212x +916=0, 故x A +x B =212. 根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94. 6.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且 PF →1·PF →2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12] B .[12,22] C .(22,1) D .[12,1) 答案 B解析 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12, 所以12≤e ≤22.故选B. 二、填空题7.(2014·北京)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案 x 23-y 212=1 y =±2x 解析 设双曲线C 的方程为y 24-x 2=λ, 将点(2,2)代入上式,得λ=-3,∴C 的方程为x 23-y 212=1, 其渐近线方程为y =±2x .8.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.答案 2解析 由抛物线的定义可得|MQ |=|MF |,F (p 2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p 4, 解得p =2,故答案为 2.9.抛物线C 的顶点在原点,焦点F 与双曲线x 23-y 26=1的右焦点重合,过点P (2,0)且斜率为1的直线l 与抛物线C 交于A ,B 两点,则弦AB 的中点到抛物线准线的距离为________. 答案 11解析 因为双曲线x 23-y 26=1的右焦点坐标是(3,0). 所以p 2=3,所以p =6. 即抛物线的标准方程为y 2=12x .设过点P (2,0)且斜率为1的直线l 的方程为y =x -2,联立y 2=12x 消去y 可得x 2-16x +4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16,所以弦AB 的中点到抛物线准线的距离为x 1+x 2+p 2=16+62=11.故填11. 10.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若|OA |= b ,则该双曲线的离心率为_______. 答案 2解析 延长F 2A 交PF 1于B 点,则|PB |=|PF 2|,依题意可得|BF 1|=|PF 1|-|PF 2|=2a .又因为点A 是BF 2的中点.所以得到|OA |=12|BF 1|,所以b =a . 所以c =2a .所以离心率为 2.三、解答题11.已知曲线C 上的动点P (x ,y )满足到定点A (-1,0)的距离与到定点B (1,0)的距离之比为 2.(1)求曲线C 的方程;(2)过点M (1,2)的直线l 与曲线C 交于两点M 、N ,若|MN |=4,求直线l 的方程.解 (1)由题意得|P A |=2|PB | 故(x +1)2+y 2=2(x -1)2+y 2化简得:x 2+y 2-6x +1=0(或(x -3)2+y 2=8)即为所求.(2)当直线l 的斜率不存在时,直线l 的方程为x =1.将x =1代入方程x 2+y 2-6x +1=0得y =±2,所以|MN |=4,满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -k +2,由圆心到直线的距离d =2=|3k -k +2|1+k 2, 解得k =0,此时直线l 的方程为y =2.综上所述,满足题意的直线l 的方程为x =1或y =2.12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程.解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,因为2|AB |=|AF 2|+|BF 2|,所以|AB |=43a . l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1, 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2].故43a =4ab 2a 2+b2,得a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1.13.(2013·北京)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点. (1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0) ∴线段OB 的垂直平分线x =1.在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32. ∴|AC |=|y A -y C |= 3.∴菱形的面积S =12|OB |·|AC |=12×2×3= 3. (2)假设四边形OABC 为菱形.∵点B 不是W 的顶点,且直线AC 不过原点,∴可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2, ∵M 为AC 和OB 交点,∴k OB =-14k. 又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.∴OABC 不是菱形,这与假设矛盾.综上,四边形OABC 不是菱形.。

高考数学二轮专题复习 专题五 第二讲 椭圆、双曲线、抛物线课件 新人教版

高考数学二轮专题复习 专题五 第二讲 椭圆、双曲线、抛物线课件 新人教版

(2,±2 2),|OM|= 22+8=2 3. 答案(dáàn):
B
第八页,共33页。
(2)已知双曲线的两条渐近线均和圆 C:(x-1)2+y2=51相切, 且双曲线的右焦点为抛物线 y2=4 5x 的焦点,则该双曲线的 标准方程为________. 解析:由题意可知双曲线的c= 5.设双曲线xa22-by22=1(a>0, b>0)的一条渐近线方程为kx-y=0,根据圆心(1,0)到该直线 的距离为半径 15,得k2=14,即ba22=14.又a2+b2=( 5)2,则a2 =答4案,:b2x4=2-1,y2=所1以所求双曲线的标准方程为x42-y2=1.
线与椭圆交于C,D两点.若 AC ·DB+ AD·CB=8,求k的值.
第二十页,共33页。
[解]
(1)设F(-c,0),由
c a

3 3
,知a=
3 c.过点F且与x
轴垂直的直线的方程为x=-c,代入椭圆方程有-a2c2+by22=
1,解得y=± 36b,于是2 36b=433,解得b= 2,又a2-c2=
6k2 2+3k2
,x1x2=
3k2-6 2+3k2
.
因为A(- 3,0),B( 3,0),所以 AC ·DB + AD ·CB =(x1+ 3,y1)·( 3-x2,-y2)+(x2+ 3,y2)·( 3-x1,-y1)
第二十二页,共33页。
=6-2x1x2-2y1y2 =6-2x1x2-2k2(x1+1)(x2+1) =6-(2+2k2)x1x2-2k2(x1+x2)-2k2 =6+22k+2+3k122. 由已知得6+22k+2+3k122=8,解得k=± 2.
(2)(2013·江西高考)已知点A(2,0),抛物线C:x2=4y的焦

高考数学二轮复习 专题六:第二讲《椭圆、双曲线、抛物线》 文 课件

高考数学二轮复习 专题六:第二讲《椭圆、双曲线、抛物线》 文 课件

(0,-a) (0,a) (1,+∞) a 2 b 2 2a 2b
3.实轴和虚轴
y=±x
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
D.(-4,0)
(2)(2010年湖南卷) 设抛物线y2=8x上一点P到y轴的距离
是4,则点P到该抛物线焦点的距离是( )
A.4
B.6
C.8
D.12
答案:(1)B (2)B
曲线的方程与方程的曲线
四、曲线的方程与方程的曲线 若二元方程f(x,y)=0是曲线C的方程,或曲线C是方程 f(x,y)=0的曲线,则必须满足以下两个条件: (1)曲线上点的坐标都是________(纯粹性). (2)以这个方程的解为坐标的点都是________(完备性).
即4k2-t2+1>0,即t2<4k2+1,且 x 1 + x 2 = - 1 + ,8 k 4 t k 2 x 1 x 2 = 1 4 + t 2 - 4 k 4 2

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
答案 6
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.

高考数学公开课优质课件精选椭圆双曲线抛物线复习课

高考数学公开课优质课件精选椭圆双曲线抛物线复习课

|3×0-4×b| 32+(-4)2

4 5



1≤b<2 , 所 以
e

c a

1-ba22 =
1-b42.因为 1≤b<2,所以 0<e≤ 23.
• 方法归纳 • 圆锥曲线性质的应用
• (1)分析圆锥曲线中a,b,c,e各量之间的关系是求
解问题的关键. • (2)确定椭圆和双曲线的离心率的值及范围,其关键
1.本例(1)中条件变为“一条渐近线过点(2, 3),且双曲线的一
个焦点在抛物线 y2=4 7x 的准线上”,则双曲线的方程为
___x_42_-__y3_2_=__1_______. 解析:由双曲线的渐近线 y=bax 过点(2, ①
3),可得
3=ba×2.
由双曲线的焦点(- a2+b2,0)在抛物线 y2=4 7x 的准线 x=-
[审题路线图] 审条件 (1) 条件 ―→ b,c的值 ―→ 椭圆C1的方程
(2)
设直线方程 为y=kx+m
―椭―圆→、
抛物线方程
转化为关于x的 一元二次方程
―相―切→
Δ=0
k、m的等式

→ k、m的值 ―→ 结果
[解] (1)因为椭圆 C1 的左焦点为 F1(-1,0),点 P(0,1)在 C1 上, 所以 c=1,b=1,所以 a2=b2+c2=2. 所以椭圆 C1 的方程为x22+y2=1.
求解.
(2)利用F→P=4F→Q转化长度关系,再利用抛物线定义求解.
[解析] (1)由双曲线的渐近线 y=±bax 与圆(x-2)2+y2=3 相切可
|±ba×2| = 3,

1+ba

高考数学二轮复习专题六第2讲椭圆双曲线抛物线.ppt

高考数学二轮复习专题六第2讲椭圆双曲线抛物线.ppt

几 何
圆于 P2,P1、P2 分别使|PA|+|PF|取得最大值和
下 页
最小值,且为 6+ 10和 6- 10.
要点知识整合 热点突破探究 高考动态聚焦
题型二 圆锥曲线的几何性质
专 题
例2
(1)(2010
年高


津卷
)


双曲
线
x2 a2

y2 b2


1(a>0,b>0)的一条渐近线方程是 y= 3x,它的一
又直线 AF 的斜率与 AE 的斜率互为相反数,在上式中 页
以-k
代替
k,可得
xF=432+3+k42k-2 12,yF=-kxF+23+k,
下 页
所以直线 EF 的斜率
kEF=xyFF--yxEE=-kxxEF+-xxFE+2k=12,
即直线 EF 的斜率为定值,其值为21.
要点知识整合 热点突破探究 高考动态聚焦
题型四 圆锥曲线中的参数范围

例4 如图,已知圆 C:(x+1)2+y2=8,定点

A(1,0),M 为圆上一动点,点 P 在 AM 上,点 N



在 CM 上,且满足A→M=2A→P,N→P·A→M=0,点 N


的轨迹为曲线 E.
几 何
(1)求曲线 E 的方程;
下 页
(2)若过定点 F(0,2)的直线交曲线 E 于不同的两点
321k2+1
λ
λ2 .8

专 题 六
∵k2>32,∴4<23k12+6 3<136.

解 析 几 何
∴4<λ+1λ+2<136,∴13<λ<3. 又∵0<λ<1,∴13<λ<1.

最新-2021届高考数学 专题六第2讲 椭圆、双曲线、抛物线复习课件 理 精品

最新-2021届高考数学 专题六第2讲 椭圆、双曲线、抛物线复习课件 理  精品

可得 a2=5b2,c2=a2+b2=6b2,e=ac=
30 5.
(2)联立yx=2-x5-y2c=,5b2, 得 4x2-10cx+35b2=0.
设 A(x1,y1),B(x2,y2),则xx11+x2=x2=3545b2c2.,

设O→C=(x3,y3),O→C=λO→A+O→B,
即xy33==λλyx11++yx22., 又 C 为双曲线上一点,即 x32 5 y32 5b2 ,
3.(2011·山东)已知双曲线ax22-by22=1(a>0,b>0)的两条渐近线均 和圆 C:x2+y2-6x+5=0 相切,且双曲线的右焦点为圆 C
的圆心,则该双曲线的方程为
()
A.x52-y42=1 C.x32-y62=1
B .x42-y52=1 D.x62-y32=1
解析 ∵双曲线ax22-by22=1 的渐近线方程为 y=±bax, 圆 C 的标准方程为(x-3)2+y2=4,
又|BC|=2|BF|,所以|BC|=2|BM|.
由 BM∥AQ 得,|AC|=2|AQ|=6,
|CF|=3. ∴|NF|=12|CF|=32. 即 p=32.抛物线方程为 y2=3x. 答案 (1)B (2)y2=3x
二、圆锥曲线的方程及应用 例 2 (2010·天津) 已知椭圆xa22+by22=1(a>b>0)的离心率 e=
=-21(+2-4k82k2)+1+6k4k2(1+4k4k2+1+6k4k2)=4(16(k14++41k52k)22-1)=4
整理得
7k2=2,故
k=±
714.所以
y0=±2
14 5.
综上,y0=±2
2或
y0=±2
14 5.

高考数学大二轮复习专题六解析几何第2讲椭圆双曲线抛物线课件理

高考数学大二轮复习专题六解析几何第2讲椭圆双曲线抛物线课件理

形.当涉及顶点、焦点、长轴、短轴等椭圆的基本量
时,要理清它们之间的关系,挖掘出它们之间的内在
联系.
2.解决椭圆和双曲线的离心率的求值及范围问题, 其关键就是确立一个关于 a, b,c的方程(组)或不等式 ( 组 ) ,再根据 a , b , c 的关系消掉 b 得到 a , c 的关系 式.建立关于 a , b , c 的方程 ( 组 ) 或不等式 ( 组 ) ,要充 分利用椭圆和双曲线的几何性质、点的坐标的范围
解析
x2 由双曲线的渐近线方程可设双曲线方程为 4
y2 x2 y2 x2 y2 - =k(k>0),即 - =1,∵双曲线与椭圆 + =1 5 4k 5 k 12 3 有公共焦点,∴4k+5k=12-3,解得 k=1, x2 y2 故双曲线 C 的方程为 - =1.故选 B. 4 5
答案
B
x2 2.(2018· 长春四模)设 F1,F2 分别是双曲线 C: 2 a y2 - 2=1(a>0,b>0)的左、右焦点,P 是 C 上一点,若 b |PF1|+|PF2|=6a, 且△PF1F2 最小内角的大小为 30°, 则双曲线 C 的渐近线方程为 A. 2x±y=0 C.x±2y=0 B.x± 2y=0 D.2x±y=0
等.
[突破练 1] x2 y 2 (1)(2018· 全国卷Ⅱ)已知 F1,F2 是椭圆 C: 2+ 2= a b 1(a>b>0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 3 且斜率为 的直线上,△PF1F2 为等腰三角形,∠F1F2P 6 =120°,则 C 的离心率为 2 A. 3 1 B. 2 1 C. 3 1 D. 4
答案
C
感悟高考
1.考查形式 题型:选择、填空题为主,有时解答题第 (1) 问;难 度:中档或偏下. 2.命题角度 (1) 考查圆锥曲线的方程求解、定义的应用.圆锥曲 线的几何性质,特别是离心率及双曲线的渐近线; (2) 一般以椭圆或抛物线为载体考查直线与圆锥曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所求定值为||MNFF||=
23=2 3
3 .
例 3 如图,动点 M 与两定点 A(-1,0),B(1,0)构成△MAB, 且直线 MA,MB 的斜率之积为 4,设动点 M 的轨迹为 C.
(1)求轨迹 C 的方程. (2)设直线 y=x+m(m>0)与 y 轴相交于点 P,与轨迹 C 相交于 点 Q,R,且|PQ|<|PR|,求||PPQR||的取值范围.
(2)由(1)知 a= 3,则直线 l 的方程为
x30x-y0y=1(y0≠0),即 y=x03xy-0 3.
因为直线 AF 的方程为 x=2,所以直线 l 与 AF 的交点 M(2,
2x30y-0 3);
直线 l 与直线 x=32的交点为 N32,32x30y-0 3.
(2x0-3)2

|MF|2 |NF|2
26
故 l 的斜率 k=
3 2
(1)求椭圆 C1 的方程; (2)平面上的点 N 满足M→N=M→F1+M→F2,直线 l∥MN,且与 C1 交于 A,B 两点,若O→A·O→B=0,求 l 的方程.
解析:(1)由 C2:y2=4x 知 F2(1,0). 设 M(x1,y1),M 在 C2 上, 因为|MF2|=53,所以 x1+1=53,
解析:(1)设 M 的坐标为(x,y),当 x=-1 时,直线 MA 的斜率 不存在;
当 x=1 时,直线 MB 的斜率不存在.于是 x≠1 且 x≠-1.此时, MA 的斜率为x+y 1,MB 的斜率为x-y 1.
由题意,有x+y 1·x-y 1=4. 化简可得,4x2-y2-4=0. 故动点 M 的轨迹 C 的方程为 4x2-y2-4=0(x≠±1).
随堂讲义
专题六 解析几何 第二讲 椭圆、双曲线、抛物线
对圆锥曲线的方程与性质的考查是高考的重点,一 般是综合题,常用到一元二次方程根与系数的关系、平 面向量等知识,该类试题多以直线与圆锥曲线为背景, 常与函数与方程、不等式、向量知识交汇,形成求方程、 求参数、求面积、定值的证明等综合题.
预测2016年高考多以解答题形式出现,考查学生利 用数学知识分析、解决问题的能力,考查论证、推理、 运算能力,考查数形结合的思想.
例 1 如图,F1、F2 分别是椭圆 C:xa22+by22=1(a>b>0) 的左、右焦点,A 是椭圆 C 的顶点,B 是直线 AF2 与椭圆 C 的另一个交点,∠F1AF2=60°.
(1)求椭圆 C 的离心率. (2)已知△AF1B 的面积为 40 3,求 a, b 的值.
解析:(1)由题意可知,△AF1F2 为等边三角形,a=2c,所以 e =12.
解析:(1)若∠F1AB=90°,则△AOF2 为等腰直角三角形,所
以有 OA=OF2,即 b=c.所以 a= 2c,
e=ac=
2 2.
(2)由题知 A(0,b),F1(-c,0),F2(c,0),
其中,c= a2-b2,设 B(x,y).
由A→F2=2F→2B,得(c,-b)=2(x-c,y),
(1)已知离心率,就是知道一个a,b,c的等式. (2)与焦点相关的问题注意运用圆锥曲线的定义求解.
1.如图,已知椭圆xa22+by22=1(a>b>0),F1,F2 分别为椭圆 的左、右焦点,A 为椭圆的上顶点,直线 AF2 交椭圆于另一点 B.
(1)若∠F1AB=90°,求椭圆的离心率; (2)若A→F2=2F→2B,A→F1·A→B=32,求椭圆的方程.
(2)由4yx=2-x+y2m-,4=0消去 y, 可得 3x2-2mx-m2-4=0.① 对于方程①,其判别式
Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,
而当 1 或-1 为方程①的根时,m 的值为-1 或 1. 结合题设(m>0)可知,m>0 且 m≠1. 设 Q,R 的坐标分别为(xQ,yQ),(xR,yR),则 xQ,xR 为方程① 的两根.
解得 x=32c,y=-b2,即 B(32c,-b2).
将 B 点坐标代入xa22+by22=1,得94ac22+bb422=1, 即49ac22+14=1,解得 a2=3c2.① 又由A→F1·A→B=(-c,-b)·(32c,-32b)=32,得 b2-c2=1,即有 a2-2c2=1.② 由①②解得 c2=1,a2=3,从而有 b2=2. 所以椭圆方程为x32+y22=1.
如图,设点 M,N 的坐标分别为(x1,y1),(x2,y2),线段 MN 的 中点为 G(x0,y0),
y=k(x+4),
由x82+y42=1,

(1+2k2)x2+16k2x+32k2-8=0.①
由Δ=(16k2)2-4(1+2k2)(32k2-8)>0,解得
- 22<k< 22.②
因为 x1,x2 是方程①的两根,所以 x1+x2=-11+6k2k2 2, 于是 x0=x1+2 x2=-1+8k22k2, y0=k(x0+4)=1+4k2k2. 因为 x0=-1+8k22k2≤0,所以点 G 不可能在 y 轴的右边, 又直线 F1B2,F1B1 方程分别为 y=x+2,y=-x-2, 所以点 G 在正方形 Q 内(包括边界)的充要条件为
所以 1<||PPQR||=xxRQ<3,且||PPQR||=xxRQ≠53 .
综上所述,||PPQR||的取值范围是1,53∪53,3.
2

1+m32-1
与圆锥曲线相关的参数问题是高考考查的热点问题.解决这类问 题常用以下方法:
(1)根据题意建立参数的不等关系式,通过解不等式求出范围. (2)用其他变量表示该参数,建立函数关系,然后利用求值域的 相关方法求解. (3)建立某变量的一元二次方程,利用判别式求该参数的范围. (4)研究该参数所对应的几何意义,利用数形结合法求解.
(1):设 F(c,0),因为 b=1,所以 c= a2+1,直线 OB 方程为 y=-1ax,直线 BF 的方程为 y=1a(x-c),解得 B(2c,-2ca).
又直线 OA 的方程为 y=1ax, 则 A(c,ac),kAB=ac-(c--2c2ca)=3a. 又因为 AB⊥OB,所以3a·(-1a)=-1,解得 a2=3, 故双曲线 C 的方程为x32-y2=1.

(3y0)2 41+((32x30y-0)3)2 2

(2x0-3)2 94y20+94(x0-2)2

43·3y20(+23x(0-x03-)22)2.
因为 P(x0,y0)是 C 上一点,则x320-y20=1,代入上式得 ||MNFF||22=43·x20-(3+2x30(-x30)-22)2=43·4(x202-x01-2x30)+29=43,
=40 3,解得 a=10,b=5 3.
解法二 设|AB|=t, 因为|AF2|=a,所以|BF2|=t-a, 由椭圆定义 |BF1|+|BF2|=2a 可知,|BF1|=3a-t. 再由余弦定理 (3a-t)2=a2+t2-2atcos 60°可得,t=58a. 由 S△AF1B=12a·85a· 23=2 5 3a2=40 3知, a=10,b=5 3.
因为|PQ|<|PR|,所以|xQ|<|xR|.
xQ=m-2
3m2+3,xR=m+2
m2+3
3
.
所以||PPQR||=xxQR
=2
2
1+m32+1 1+m32-1
=1+ 2
2 .
1+m32-1
此时 1+m32>1,且 1+m32≠2,所以 1<1+ 2
3,且 1+ 2
2
≠5 ,
1+m3yF).因为点 A1,23在椭圆上,所以 xE+1 =-4k(3+3-4k22k).
所以 xE=432-3+k42k-2 12, yE=kxE+32-k. 又直线 AF 的斜率与 AE 的斜率互为相反数,在上式中以-k 代 k,可得
xF=432+3+k42k-2 12, yF=-kxF+23+k. 所以直线 EF 的斜率 kEF=yxFF--xyEE =-k(xxFF+-xxEE)+2k =12. 即直线 EF 的斜率为定值,其值为12.
解析: (1)依题意,设椭圆 C 的方程为xa22+by22=1(a>b>0),焦 距为 2c,
由题设条件知,a2=8,b=c,所以 b2=12a2=4. 故椭圆 C 的方程为x82+y42=1. (2)椭圆 C 的左准线方程为 x=-4, 所以点 P(-4,0). 显然直线 l 的斜率 k 存在,所以直线 l 的方程为 y=k(x+4).
3.已知椭圆 C 的中心在原点,焦点在 x 轴上,以两个焦点和短 轴的两个端点为顶点的四边形是一个面积为 8 的正方形(记为 Q).
(1)求椭圆 C 的方程; (2)设点 P 是椭圆 C 的左准线与 x 轴的交点,过点 P 的直线 l 与 椭圆 C 相交于 M,N 两点,当线段 MN 的中点落在正方形 Q 内(包 括边界)时,求直线的斜率的取值范围.
(1)求双曲线 C 的方程; (2)过 C 上一点 P(x0,y0)(y0≠0)的直线 l:xa02x-y0y=1 与直线 AF 相交于点 M,与直线 x=32相交于点 N.证明:当点 P 在 C 上移动时, ||MNFF||恒为定值,并求此定值.
分析:(1)结合双曲线的几何性质,利用方程思想求解;(2)先确 定直线方程并求解相应的交点坐标,再代入化简求值.
解析几何中的最值问题涉及的知识面较广,解法灵活多 样,但最常用的方法有以下几种:
(1)利用函数,尤其是二次函数求最值; (2)利用三角函数,尤其是正、余弦函数的有界性求最 值; (3)利用不等式,尤其是均值不等式求最值; (4)利用判别式法求最值; (5)利用数形结合,尤其是切线的性质求最值.
2.(2014·江西卷)如图,已知双曲线 C:xa22-y2=1(a>0)的右焦 点为 F.点 A,B 分别在 C 的两条渐近线上,AF⊥x 轴,AB⊥OB, BF∥OA(O 为坐标原点).
相关文档
最新文档