实现图的邻接矩阵和邻接表存储

合集下载

图的邻接矩阵和邻接表相互转换

图的邻接矩阵和邻接表相互转换

图的邻接矩阵和邻接表相互转换图的邻接矩阵存储方法具有如下几个特征:1)无向图的邻接矩阵一定是一个对称矩阵。

2)对于无向图的邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的度()i v TD 。

3)对于有向图,邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的出度()i v OD (或入度()i v ID )。

4)用邻接矩阵方法存储图,很容易确定图中任意两个顶点之间是否有边相连;但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所发费得时间代价大。

邻接表是图的一种顺序存储与链式存储相结合的存储方法。

若无向图中有n 个顶点、e 条边,则它的邻接表需n 个头结点和2e 个表结点。

显然,在边稀疏的情况下,用邻接表表示图比邻接矩阵存储空间。

在无向图的邻接表中,顶点i v 的度恰好是第i 个链表中的结点数,而在有向图中,第i 个链表中结点个数是顶点i v 的出度。

在建立邻接表或邻逆接表时,若输入的顶点信息即为顶点的编号,则建立临接表的时间复杂度是)(e n O +;否则,需要通过查找才能得到顶点在图中位置,则时间复杂度为)*(e n O 。

在邻接表上容易找到任意一顶点的第一个邻接点和下一个邻接点,但要判断任意两个顶点之间是否有边或弧,则需要搜索第i 个或第j 个链表,因此,不及邻接矩阵方便。

邻接矩阵和邻接表相互转换程序代码如下:#include<iostream.h>#define MAX 20//图的邻接表存储表示typedef struct ArcNode{int adjvex; //弧的邻接定点 char info; //邻接点值struct ArcNode *nextarc; //指向下一条弧的指针}ArcNode;typedef struct Vnode{ //节点信息char data;ArcNode *link;}Vnode,AdjList[MAX];typedef struct{AdjList vertices;int vexnum; //节点数int arcnum; //边数}ALGraph;//图的邻接矩阵存储表示typedef struct{int n; //顶点个数char vexs[MAX]; //定点信息int arcs[MAX][MAX]; //边信息矩阵}AdjMatrix;/***_____________________________________________________***///函数名:AdjListToMatrix(AdjList g1,AdjListMatrix &gm,int n)//参数:(传入)AdjList g1图的邻接表,(传入)int n顶点个数,(传出)AdjMatrix gm图的邻接矩阵//功能:把图的邻接表表示转换成图的邻接矩阵表示void AdjListToAdjMatrix(ALGraph gl,AdjMatrix &gm){int i,j,k;ArcNode *p;gm.n=gl.vexnum;for(k=0;k<gl.vexnum;k++)gm.vexs[k]=gl.vertices[k].data;for(i=0;i<MAX;i++)for(j=0;j<MAX;j++)gm.arcs[i][j]=0;for(i=0;i<gl.vexnum;i++){p=gl.vertices[i].link; //取第一个邻接顶点while(p!=NULL){ //取下一个邻接顶点gm.arcs[i][p->adjvex]=1;p=p->nextarc;}}}/***________________________________________________***///函数名:AdjMatrixToAdjListvoid AdjMatrixToAdjList(AdjMatrix gm,ALGraph &gl){int i,j,k,choice;ArcNode *p;k=0;gl.vexnum=gm.n;cout<<"请选择所建立的图形是无向图或是有向图:";cin>>choice;for(i=0;i<gm.n;i++){gl.vertices[i].data=gm.vexs[i];gl.vertices[i].link=NULL;}for(i=0;i<gm.n;i++)for(j=0;j<gm.n;j++)if(gm.arcs[i][j]==1){k++;p=new ArcNode;p->adjvex=j;p->info=gm.vexs[j];p->nextarc=gl.vertices[i].link;gl.vertices[i].link=p;}if(choice==1)k=k/2;gl.arcnum=k;}void CreateAdjList(ALGraph &G){int i,s,d,choice;ArcNode *p;cout<<"请选择所建立的图形是有向图或是无向图:";cin>>choice;cout<<"请输入节点数和边数:"<<endl;cin>>G.vexnum>>G.arcnum;for(i=0;i<G.vexnum;i++){cout<<"第"<<i<<"个节点的信息:";cin>>G.vertices[i].data;G.vertices[i].link=NULL;}if(choice==1){for(i=0;i<2*(G.vexnum);i++){cout<<"边----起点序号,终点序号:";cin>>s>>d;p=new ArcNode;p->adjvex=d;p->info=G.vertices[d].data;p->nextarc=G.vertices[s].link;G.vertices[s].link=p;}}else{for(i=0;i<G.vexnum;i++){cout<<"边----起点序号,终点序号:";cin>>s>>d;p=new ArcNode;p->adjvex=d;p->info=G.vertices[d].data;p->nextarc=G.vertices[s].link;G.vertices[s].link=p;}}}void CreateAdjMatrix(AdjMatrix &M){int i,j,k,choice;cout<<"请输入顶点个数:";cin>>M.n;cout<<"请输入如顶点信息:"<<endl;for(k=0;k<M.n;k++)cin>>M.vexs[k];cout<<"请选择所建立的图形是无向图或是有向图:";cin>>choice;cout<<"请输入边信息:"<<endl;for(i=0;i<M.n;i++)for(j=0;j<M.n;j++)M.arcs[i][j]=0;switch(choice){case 1:{for(k=0;k<M.n;k++){cin>>i>>j;M.arcs[i][j]=M.arcs[j][i]=1;}};break;case 2:{for(k=0;k<M.n;k++){cin>>i>>j;M.arcs[i][j]=1;}};break;}}void OutPutAdjList(ALGraph &G){int i;ArcNode *p;cout<<"图的邻接表如下:"<<endl;for(i=0;i<G.vexnum;i++){cout<<G.vertices[i].data;p=G.vertices[i].link;while(p!=NULL){cout<<"---->("<<p->adjvex<<" "<<p->info<<")";p=p->nextarc;}cout<<endl;}}void OutPutAdjMatrix(AdjMatrix gm){cout<<"图的邻接矩阵如下:"<<endl;for(int i=0;i<gm.n;i++){。

...统计有向图中每个顶点的出度和入度(以邻接矩阵和邻接表两种方式实现...

...统计有向图中每个顶点的出度和入度(以邻接矩阵和邻接表两种方式实现...

数据结构—统计有向图中每个顶点的出度和⼊度(以邻接矩阵和邻接表两种⼊式实现)⼊、邻接矩阵实现假设不带权有向图采⼊邻接矩阵 g 存储,设计实现以下功能的算法:(1)求出图中每个顶点的⼊度。

(2)求出图中每个顶点的出度。

(3)求出图中出度为 0 的顶点数。

#include#include#includeusing namespace std;#define INFINITY 65535#define MAX_VERTEX_NUM 100typedef char VertexType;typedef struct {VertexType vexs[MAX_VERTEX_NUM];顶点 //数组int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM];邻接矩 //阵int v, e; 图顶点//和边的数量} MGraph;int num=0;全局变量负责统计出度为 0 的顶点个数void CreateMGraph(MGraph &G){int i,j,k,w;printf("输⼊顶点数和边数:\n");scanf("%d%d",&G.v,&G.e);//for(i=0;iG.arcs[i][j]=INFINITY;初始化邻接//矩阵for(k=0;k{printf("输⼊边(i,j)上的下标 i,j 和权 w\n");scanf("%d%d%d",&i,&j,&w);G.arcs[i][j]=w;}}void indu(MGraph G){int n=0;printf("⼊度:\n");for(int i=0;i//scanf("%c",G.vexs[i]);for(i=0;i{for(int j=0;j} if(n==0) num++; printf("%d ",n); n=0; } } int main() { MGraph G; CreateMGraph(G); { indu(G); if(G.arcs[j][i]!=INFINITY) printf("\n"); n++; outdu(G); } printf("\n"); printf("%d ",n); printf("出度为 0 的顶点个数:%d",num); n=0; return 0; } } } #include#include#includeusing namespace std;#define INFINITY 65535#define MAX_VERTEX_NUM 100typedef int VertexType;int num=0;n++;⼊、邻接表void outdu(MGraph G) 要 不 //要加引⼊,有时候需要仔细考虑⼊下 { 假设不带权有向图采⼊邻接表 G 存储,设计实现以下功能的算法: int n=0;(1) 求出图中每个顶点的⼊度。

《数据结构》实验指导书

《数据结构》实验指导书
四、实验说明
1.单链表的类型定义
#include <stdio.h>
typedef int ElemType;//单链表结点类型
typedef struct LNode
{ElemType data;
struct LNode *next;
2.明确栈、队列均是特殊的线性表。
3.栈、队列的算法是后续实验的基础(广义表、树、图、查找、排序等)。
六、实验报告
根据实验情况和结果撰写并递交实验报告。
实验四 串
一、预备知识
1.字符串的基本概念
2.字符串的模式匹配算法
二、实验目的
1.理解字符串的模式匹配算法(包括KMP算法)
typedef struct
{ElemType *base;
int front,rear;
} SqQueue;
4.单链队列的类型定义
typedef struct QNode
{QElemType data;
typedef struct list
{ElemType elem[MAXSIZE];//静态线性表
int length; //顺序表的实际长度
} SqList;//顺序表的类型名
五、注意问题
1.插入、删除时元素的移动原因、方向及先后顺序。
4.三元组表是线性表的一种应用,通过它可以更好地理解线性表的存储结构。同时矩阵又是图的重要的存储方式,所以这个实验对更好地掌握线性表对将来对图的理解都有极大的帮助。
六、实验报告
根据实验情况和结果撰写并递交实验报告。
实验六 树和二叉树
一、预备知识
1.二叉树的二叉链表存储结构

数据结构-实验6图的存储和遍历

数据结构-实验6图的存储和遍历

实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。

二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。

(2)由有向图G的邻接矩阵产生邻接表,并输出。

(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。

6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。

(5)利用非递归算法重解任务(4)。

(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。

三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。

邻接表 和邻接矩阵

邻接表 和邻接矩阵

邻接表和邻接矩阵
邻接表和邻接矩阵是表示图的两种常用数据结构,它们用于描述图中各个顶点之间的连接关系。

具体分析如下:
- 邻接表:邻接表是一种链表数组,其中每个数组元素对应一个顶点,并且包含一个链表,链表中的每个节点代表与该顶点相邻的顶点。

这种结构特别适合于表示稀疏图,即边的数量远小于顶点数量的平方的图。

在邻接表中,对于每个顶点,只需要存储与其直接相连的顶点,因此可以节省空间。

当图的顶点较多,且图为稀疏图时,邻接表通常是更合适的选择。

- 邻接矩阵:邻接矩阵是一种二维数组,其中行和列都代表图中的顶点。

如果两个顶点之间存在边,则相应的矩阵元素值为1(或者边的权重,如果是带权图),否则为0。

邻接矩阵适用于表示稠密图,即边的数量接近顶点数量的平方的图。

邻接矩阵的优点是可以快速地判断任意两个顶点之间是否存在边,但是当图非常稀疏时,它会占用较多的内存空间。

总的来说,邻接表和邻接矩阵各有优势,选择哪种数据结构取决于具体的应用场景。

如果图是稀疏的,并且需要节省存储空间,邻接表通常更合适;如果需要快速查询任意两点之间的关系,而图又相对稠密,邻接矩阵可能是更好的选择。

数据结构实训总结

数据结构实训总结

数据结构实训总结1. 引言数据结构是计算机科学中最基础、最重要的课程之一。

通过实训课程的学习和实践,我对数据结构的理论知识有了更深入的了解,并且在实际项目中应用这些知识,提高了我的编程能力和问题解决能力。

本文将总结我在数据结构实训中的学习经验和收获。

2. 实训内容2.1 实训目标本次数据结构实训的目标是通过实践掌握常见的数据结构,包括线性表、栈、队列、树和图等,并能够灵便运用这些数据结构解决实际问题。

2.2 实训任务在实训过程中,我们完成为了以下任务:- 实现线性表的顺序存储结构和链式存储结构,并比较它们的优缺点。

- 实现栈和队列的顺序存储结构和链式存储结构,并掌握它们的应用场景。

- 实现二叉树的链式存储结构和遍历算法,包括前序遍历、中序遍历和后序遍历。

- 实现图的邻接矩阵表示和邻接表表示,并掌握图的遍历算法,如深度优先搜索和广度优先搜索。

3. 实训经验和收获3.1 理论知识与实践结合通过实训课程,我深刻体味到理论知识与实践的结合是学习数据结构的有效途径。

在实际项目中应用数据结构,我更加理解了数据结构的本质和作用,加深了对数据结构的理解。

3.2 问题解决能力的提升在实训过程中,我们遇到了许多问题,如算法设计、数据结构选择和程序调试等。

通过解决这些问题,我提高了自己的问题解决能力和调试技巧,学会了从多个角度思量和分析问题,并找到最优的解决方案。

3.3 团队合作意识的培养在实训项目中,我们需要与同学合作完成任务,包括代码编写、测试和调试等。

通过团队合作,我学会了与他人沟通、协调和分工合作,培养了团队合作意识和能力。

4. 实训成果展示在实训过程中,我完成为了以下成果:- 实现了线性表的顺序存储结构和链式存储结构,并比较了它们的优缺点。

- 实现了栈和队列的顺序存储结构和链式存储结构,并了解了它们的应用场景。

- 实现了二叉树的链式存储结构和遍历算法,包括前序遍历、中序遍历和后序遍历。

- 实现了图的邻接矩阵表示和邻接表表示,并掌握了图的遍历算法,如深度优先搜索和广度优先搜索。

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告课程设计题目:图的算法实现专业班级:信息与计算科学1002班目录摘要 (1)1、引言 (1)2、需求分析 (1)3、概要设计 (2)4、详细设计 (4)5、程序设计 (10)6、运行结果 (18)7、总结体会 (19)摘要(题目): 图的算法实现实验内容图的算法实现问题描述:(1)将图的信息建立文件;(2)从文件读入图的信息,建立邻接矩阵和邻接表;(3)实现Prim、Kruskal、Dijkstra和拓扑排序算法。

关键字:邻接矩阵、Dijkstra和拓扑排序算法1.引言本次数据结构课程设计共完成图的存储结构的建立、Prim、Kruskal、Dijkstra 和拓扑排序算法等问题。

通过本次课程设计,可以巩固和加深对数据结构的理解,通过上机和程序调试,加深对课本知识的理解和熟练实践操作。

(1)通过本课程的学习,能够熟练掌握数据结构中图的几种基本操作;(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。

使用语言:CPrim算法思想:从连通网N={V,E}中的某一顶点v0出发,选择与它关联的具有最小权值的边(v0,v),将其顶点加入到生成树的顶点集合V中。

以后每一步从一个顶点在V中,而另一个顶点不在V中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合V中。

如此继续下去,直到网中的所有顶点都加入到生成树顶点集合V中为止。

拓扑排序算法思想:1、从有向图中选取一个没有前驱的顶点,并输出之;2、从有向图中删去此顶点以及所有以它为尾的弧;重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。

没有前驱-- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。

2.需求分析1、通过键盘输入建立一个新的有向带权图,建立相应的文件;2、对建立的有向带权图进行处理,要求具有如下功能:(1)用邻接矩阵和邻接表的存储结构输出该有向带权图,并生成相应的输出结果;(2)用Prim、Kruskal算法实现对图的最小生成树的求解,并输出相应的输出结果;(3)用Dijkstra算法实现对图中从某个源点到其余各顶点的最短路径的求解,并输出相应的输出结果;(4)实现该图的拓扑排序算法。

分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构,给出连通图的深度优先遍历的递归算法算法思想:(1)访问出发点vi,并将其标记为已访问过。

(2)遍历vi的的每一个邻接点vj,若vi未曾访问过,则以vi为新的出发点继续进行深度优先遍历。

算法实现:Boolean visited[max]; // 访问标志数void DFS(Graph G, int v){ // 算法7.5从第v个顶点出发递归地深度优先遍历图Gint w;visited[v] = TRUE; printf("%d ",v); // 访问第v个顶点for (w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) if (!visited[w]) // 对v的尚未访问的邻接顶点w递归调用DFS DFS(G, w);}/*****************************************************/ /*以邻接矩阵作为存储结构*/DFS1(MGraph G,int i){int j;visited[i]=1;printf("%c",G.vexs[i]);for(j=1;j<=G.vexnum;j++)if(!visited[j]&&G.arcs[i][j]==1) DFS1(G,j);}/*以邻接表作为存储结构*/DFS2(ALGraph G,int i){int j;ArcPtr p;visited[i]=1;printf("%c",G.vertices[i].data);for(p=G.vertices[i].firstarc;p!=NULL;p=p->nextarc){j=p->adjvex;if(!visited[j]) DFS2(j);}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初始条件:图G存在
操作结果:销毁图G
InsertVex(&G,v)
初始条件:图G存在,v和图中顶点有相同特征
操作结果:在图G中增添新顶点v
……
InsertArc(&G,v,w)
初始条件:图G存在,v和w是G中两个顶点
操作结果:在G中增添弧<v,w>,若G是无向的则还增添对称弧<w,v>
……
DFSTraverse(G,Visit())
数据关系R:
R={VR}
VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧,
谓词P(v,w)定义了弧<v,w>的意义或信息}
基本操作P:
CreatGraph(&G,V,VR)
初始条件:V是图的顶点集,VR是图中弧的集合
操作结果:按V和VR的定义构造图G
DestroyGraph(&G)
void PrintDN(ALGraph G){
ArcNode *firstarc;//指向第一条依附该顶点的弧的指针
}VNode,AdjList[MAX_VERTEX_NUM];
typedef struct{
AdjList vertices;
int vexnum,arcnum;//图的当前顶点数和弧数
int kind;//图的种类标志
}ALGraph;
VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;
//对带权图则为权值类型
InfoType *info;//该弧相关信息的指针
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct{
VertexType vexs[MAX_VERTEX_NUM];//顶点向量
实现图的邻接矩阵和邻接表存储
1.需求分析
对于下图所示的有向图G,编写一个程序完成如下功能:
1.建立G的邻接矩阵并输出之
2.由G的邻接矩阵产生邻接表并输出之
3.再由2的邻接表产生对应的邻接矩阵并输出之
2.系统设计
1.图的抽象数据类型定义:
ADTGraph{
数据对象V:V是具有相同特性的数据元素的集合,称为顶点集
typedef struct ArcNode{
int adjvex;//该弧所指向的顶点在数组中的下标
struct ArcNode *nextarc;
InfoType *info;//该弧相关信息的指针
}ArcNode;
typedef struct VNode{
VertexType data;//顶点信息
#define MAX_VERTEX_NUM 20
typedef int VRType;
typedef int InfoType;
typedef int VertexType;
typedef enum{DG,DN,向图,无向网}
typedef struct ArcCell{
scanf("%d",&M.arcs[i][j].adj);
printf("输入相应权值:\n");
for(i=0;i<M.vexnum;i++)
for(j=0;j<M.vexnum;j++)
if(M.arcs[i][j].adj){
scanf("%d",&M.arcs[i][j].info);
}
}
3.函数关系调用图:
3.调试分析
(1)在MGraph的定义中有枚举类型
typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网}
赋值语句G.kind(int)=M.kind(GraphKind);是正确的,而反过来M.kind=G.kind则是错误的,
初始条件:图G存在,Visit是顶点的应用函数
操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败
BFSTraverse(G,Visit())
初始条件:图G存在,Visit是顶点的应用函数
操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败
要加上那个强制转换M.kind=GraphKind(G.kind);枚举类型enum{DG,DN,UDG,UDN}
会自动赋值DG=0;DN=1,UDG=2,UDN=3;可以自动从GraphKind类型转换到int型,但不会自动从int型转换到GraphKind类型
(2)算法的时间复杂度分析:
CreateMG、CreateMGtoDN、CreateDNtoMG、PrintMatrix、PrintDN的时间复杂度均为O(n2)
printf("输入弧数:");
scanf("%d",&M.arcnum);
printf("输入顶点:\n");
for(i=0;i<M.vexnum;i++)
scanf("%d",&M.vexs[i]);
printf("建立邻接矩阵:\n");
for(i=0;i<M.vexnum;i++)
for(j=0;j<M.vexnum;j++)
n为图的顶点数,所以main:T(n)=O(n2)
4.测试结果
用需求分析中的测试数据
输入:
输出:
5、用户手册
(1)输入顶点数和弧数;
(2)输入顶点内容;
(3)按行序输入邻接矩阵,输入各弧相应权值
(4)回车输出邻接矩阵M、邻接表G和邻接矩阵N
6、附录
源程序:
#include <stdio.h>
#include <stdlib.h>
AdjMatrix arcs;//邻接矩阵
int vexnum,arcnum;//图的当前顶点数和弧数
GraphKind kind;//图的种类标志
}MGraph;
void CreateMG(MGraph &M){
int i,j;
M.kind=DN;
printf("输入顶点数:");
scanf("%d",&M.vexnum);
}ADTGraph
2.主程序的流程:
调用CreateMG函数创建邻接矩阵M;
调用PrintMatrix函数输出邻接矩阵M
调用CreateMGtoDN函数,由邻接矩阵M创建邻接表G
调用PrintDN函数输出邻接表G
调用CreateDNtoMG函数,由邻接表M创建邻接矩阵N
调用PrintMatrix函数输出邻接矩阵N
相关文档
最新文档