上海中考数学各区二模卷填空18题

合集下载

2023年上海市青浦区九年级中考二模数学试卷(含答案解析)

2023年上海市青浦区九年级中考二模数学试卷(含答案解析)

2023年上海市青浦区九年级中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题平面直角坐标系xOy 内,点P 在第二象限的概率为____.12.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.13.已知点2()1,M -和点N 都在抛物线22y x x c =-+上,如果MN x ∥轴,那么点N 的坐标为____.14.已知点G 为ABC 的重心,AB a=,AC b = ,那么= AG __.(用a 、b 表示)15.如图,图中反映轿车剩余油量q (升)与行驶路径s (千米)的函数关系,那么q 与s 的函数解析式为____.16.水平放置的圆柱形油槽的圆形截面如图2所示,如果该截面油的最大深度为2分米,油面宽度为8分米,那么该圆柱形油槽的内半径为____分米.17.如图3,在平面直角坐标系xOy 内,已知点(3,1)G -,(1,3)A -,(4,0)B -,如果C 是以线段AB 为直径的圆,那么点G 与C 的最短距离为____.三、解答题18.如图,在Rt ABC △中,90610C BC AB ∠=︒==,,,点D 是边AB 的中点,点M 在边AC 上,将ADM △沿DM 所在的直线翻折,点A 落在点E 处,如果EC AB ,那么CE =____.111 (1)求边AB的长;(2)已知点D在AB边上,且13ADBD=,连接22.某中学初三年级在“阳光体育”活动中,参加各项球类运动的数据信息制作成了扇形统计图,如图所示.已知参加乒乓球运动的人数有题.(1)求参加篮球和足球运动的总人数;(2)学校为本次活动购买了一些体育器材,数每人一只配备的,购买篮球的费用是单价比足球的单价便宜10元多少人?23.如图,在平行四边形ABCDBD于点F,且2AB BF BD=⋅(1)求证:点F 在边AB 的垂直平分线上;(2)求证:AD AE BE BD = .24.如图,已知抛物线214y x bx c =-++为点A .(1)求抛物线的解析式及点A 的坐标;(2)将该抛物线向右平移m 个单位(0m >求m 的值;(3)在(2)的条件下,设新抛物线的顶点为于点F ,求点C 到直线GF 的距离.25.如图,半圆O 的直径10AB =点D 是弧AC 上一点.(1)若点D 是弧AB 的中点,求tan DOC ∠(2)连接BD 交半径OC 于点E ,交CH 于点①用含m 的代数式表示线段CF 的长;②分别以点O 为圆心OE 为半径、点C m 取值范围.参考答案:故选:C .【点睛】本题考查了菱形的判定方法,熟知菱形的判定方法是解题的关键.6.D【分析】根据所给函数的性质逐一判断即可.【详解】解:A.对于y x =-,当x =-二、四象限;当0x >时,y 随x 的增大而减小.故选项B.对于4y x =+,当2x =-时,2y =三象限;当0x >时,y 随x 的增大而增大.故选项1【点睛】本题考查了中线的性质,15.1508q s =-+【分析】根据图象,通过待定系数法,即可解答.【详解】解:根据图象,可得函数与坐标轴的交点为设函数解析式为q ks b =+,将()050,,()4000,代入函数解析式得:解得1850k b ⎧=-⎪⎨⎪=⎩,故q 与s 的函数解析式为18q =-故答案为:1508q s =-+.【点睛】本题考查了待定系数法求一次函数,熟练运用待定系数法是解题的关键.【点睛】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.17.2【分析】首先根据题意画图,可求得直线据两点间距离公式,即可求解.【详解】解:根据题意画图如下:=设直线AB的解析式为y kx【详解】解:如图,过点D 作EC 的垂线段,交EC 于点F ,过点90610BC AB ︒==,,,226810+=,是边AB 的中点,152AD BD AB ===,ADM 沿DM 所在的直线翻折,点A 落在点E 处,5DA DC ==,在Rt ACH 中,45C ∠=︒.∴45HAC C ∠=∠=︒,即AH CH =.在Rt ABH △中,1tan 2AH B BH ==.∴2BH AH =.设AH x =,那么CH x =,2BH x =.∵AH BC ⊥,∴90DGC AHC ∠=∠=︒.∴DG AH ∥,即BD BG AB BH =.由13AD BD =得34BD AB =.∵8BH =,∴34BG BH =,即6BG =.∴6BG CG ==,即DG 是线段BC 的垂直平分线.∴BD CD =,∴BCD B ∠=∠.原抛物线21(2)44y x =--+向右平移132∴1742G ⎛⎫ ⎪⎝⎭,,2502F ⎛⎫ ⎪⎝⎭,,1702P ⎛⎫ ⎪⎝⎭,.4GP PF ==,∴GPF 是等腰直角三角形,GFP ∠在Rt MOF △中,OMF OFM ∠=∠=∴192CM OM OC =-=.∵点D 是弧AB 的中点,AB 是直径,∴OD AB ⊥.∴90CHB DOB ∠=∠=︒,∴OD CH ∥,∴DOC OCH ∠=∠.过点O 作OM BC ⊥,垂足为点M .由垂径定理,在Rt BOM △中,34BM OM OB ==,,在Rt BCH △中,sin CH BC OBC =⋅∠=)HG OC ∥交BD 于点G .,,HGB OEB GHB EOB =∠∠=∠,HGB OEB ∽1855BH BO ==,1825m =.HG OC∥,,CEF HGF ECF FHG =∠∠=∠,CEF HGF ∽CE GH=,51825CF m CF m -=-.6001201257m m-=-.o OE m ==,6001201257c m r CF m -==-,d OC =当两圆内切时,60012051257m m m --=.【点睛】本题属于圆综合题,考查了圆与圆的位置关系,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,需要利用参数解决问题,属于中考压轴题.答案第17页,共17页。

2024年上海市中考数学徐汇区二模卷和参考答案

2024年上海市中考数学徐汇区二模卷和参考答案

2023学年第二学期徐汇区学习能力诊断卷初三数学 试卷 2024.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列实数中,有理数是(A )3; (B )4; (C )5; (D )6. 2.下列单项式中,与单项式322b a 是同类项的是(A )4ab −; (B )232b a ; (C )233a b ; (D )c b a 222−. 3.已知一次函数b kx y +=的图像经过第一、二、四象限,那么直线k bx y +=经过 (A )第二、三、四象限; (B )第一、二、三象限; (C )第一、二、四象限; (D )第一、三、四象限.4.如表1,记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 (A )甲; (B )乙; (C )丙; (D )丁. 5.如图,□ABCD 的对角线AC 、BD 相交于点O ,如果添加一个条件使得□ABCD 是矩形,那么下列添加的条件中正确的是 (A )︒=∠+∠90ADO DAO ; (B )ACD DAC ∠=∠; (C )BAC DAC ∠=∠; (D )ABC DAB ∠=∠. 6.如图,一个半径为cm 9的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了︒120,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是 (A )π5 cm ; (B )π6 cm ; (C )π7cm ; (D )π8cm .表1 甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差统计表BOACD(第5题图)(第6题图)二、填空题(本大题共12题,每题4分,满分48分) 7.方程012=−−x x 的根是___▲___. 8.不等式组⎩⎨⎧>−−>−1)3(23,312x x x 的解集是___▲___.9.方程组⎩⎨⎧=−=+02,522y x y x 的解是____▲____.10.关于x 的一元二次方程012=−−mx x 根的情况是:原方程__▲___实数根.11.如果二次函数1422+−=x x y 的图像的一部分是上升的,那么x 的取值范围是▲_.12.如果反比例函数xy 4−=的图像经过点)2,(t t A −,那么t 的值是____▲_____. 13.如果从长度分别为2、4、6、7的四条线段中任意取出三条,那么取出的三条线段能构成三角形的概率是__▲__.14.小杰沿着坡比4.2:1=i 的斜坡,从坡底向上步行了130米,那么他上升的高度是▲米. 15.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查, 每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有2000名学生,那么可以估计该校对手机持“严格管理”态度的家长有__▲__人.16.如图,梯形ABCD 中,AD BC //,CD AB =,AC 平分BAD ∠,如果AB AD 2=,a AB=,b AD =,那么AC 是_▲_(用向量a 、b 表示). 17.如图,在ABC ∆中,6==AC AB ,4=BC . 已知点D 是边AC 的中点,将ABC ∆沿直线BD 翻折,点C 落在点E 处,联结AE ,那么AE 的长是_▲__. 18.如图,点A 是函数)0(8<−=x x y 图像上一点,联结OA 交函数)0(1<−=x xy 图像于 点B ,点C 是x 轴负半轴上一点,且AO AC =,联结BC ,那么ABC ∆的面积是_▲_.(第16题图)D AB C(第17题图)AB C (第15题图1)不管询问 管理(第15题图2) 25℅ 从来 不管 严格 管理稍加 询问三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:212218−+−−π.20.(本题满分10分)解方程:21416222+=−−−+x x x x . 21.(本题满分10分)如图,⊙1O 和⊙2O 相交于点A 、B ,联结AB 、21O O 、2AO ,已知48=AB ,5021=O O ,302=AO .(1)求⊙1O 的半径长;(2)试判断以21O O 为直径的⊙P 是否经过点B ,并说明理由. 22.(本题满分10分)A 市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送8名学生到比赛场地参加运动会,每辆小汽车限坐4人(不包括司机),其中一辆小汽车在距离比赛场地15千米的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时60千米,人步行的平均速度是每小时5千米(上、下车时间忽略不计).(1)如果该小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由. 23.(本题满分12分) 如图,在菱形ABCD 中,点E 、G 、H 、F 分别在边AB 、BC 、CD 、DA 上,AF AE =,CH CG =,AE CG ≠. (1)求证:GH EF //; (2)分别联结EG 、FH ,求证:四边形EGHF 是等腰梯形.(第23题图)E A B C DFGH (第21题图)AB1O 2O24.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线)0(442>+−=a ax ax y 与x 轴交于点)0,1(A 和点B ,与y 轴交于点C .(1)求该抛物线的表达式及点B 的坐标;(2)已知点),0(m M ,联结BC ,过点M 作BC MG ⊥,垂足为G ,点D 是x 轴上的动点,分别联结GD 、MD ,以GD 、MD 为边作平行四边形GDMN .① 当23=m 时,且□GDMN 的顶点N 正好落在y 轴上,求点D 的坐标; ② 当0≥m 时,且点D 在运动过程中存在唯一的位置,使得□GDMN 是矩形,求m 的值.25.(本题满分14分)如图,在扇形OAB 中, 26==OB OA ,︒=∠90AOB ,点C 、D 是弧AB 上的动点(点C 在点D 的上方,点C 不与点A 重合,点D 不与点B 重合),且︒=∠45COD . (1)①请直接写出弧AC 、弧CD 和弧BD 之间的数量关系;②分别联结AC 、CD 和BD ,试比较BD AC +和CD 的大小关系,并证明你的结论; (2)联结AB 分别交OC 、OD 于点M 、N .①当点C 在弧AB 上运动过程中, BM AN ⋅的值是否变化,若变化请说明理由;若不变,请求BM AN ⋅的值;②当5=MN 时,求圆心角DOB ∠的正切值.(第25题图)BA CDO2023学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.A ; 5.D ; 6.B . 二.填空题:(本大题共12题,满分48分) 7.1=x ; 8.2>x ; 9.⎩⎨⎧==1,2y x 或⎩⎨⎧−=−=1,2y x ; 10.有两个不相等的;11.1≥x ; 12.2±; 13.21; 14.50; 15.400;16.b a21+; 17.171710; 18.228−.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式21)12(22−+−−=1122++−=2=.20.解:去分母,得216)2(2−=−+x x ;化简,得01032=−+x x ; 解得 51−=x ,22=x ; 经检验,2=x 是原方程的增根;所以,原方程的根是5−=x .21.解:(1)联结1AO ,设21O O 与AB 的交点为C . ∵⊙1O 和⊙2O 相交于点A 、B ,∴2421==AB AC ,AB O O ⊥21; 在2ACO Rt ∆中,︒=∠902ACO ,∴182430222222=−=−=AC AO CO ;∴3218502211=−=−=CO O O CO ;在1ACO Rt ∆中,︒=∠901ACO , ∴402432222211=+=+=AC CO AO ;即⊙1O 的半径长为40.(2)以21O O 为直径的⊙P 经过点B .∵535030212==O O AO ,53301822==AO CO ; ∴22212AO CO O O AO =,又A O O C AO 212∠=∠; ∴21O AO ∆∽2ACO ∆;∴︒=∠=∠90221ACO AO O ; 取21O O 的中点P ,联结AP 、BP .∴1PO AP =; 又21O O 垂直平分AB ,1PO AP BP ==; ∴以21O O 为直径的⊙P 经过点B .22.解:(1)他们不能在截止进场的时刻前到达比赛场地.∵单程送达比赛场地的时间是:)(15)(25.06015分钟小时==÷; ∴送完另4名学生的时间是:)(42)(45315分钟分钟>=⨯:∴他们不能在截止进场的时刻前到达比赛场地. (2)方案不唯一.如:先将4名学生用车送达比赛场地,另外4名学生同时步行前往比赛场地, 汽车到比赛场地后返回到与另外4名学生的相遇处再载他们到比赛场地.(用 这种方案送这8名学生到达比赛场地共需时间约为4.40分钟).理由如下:先将4名学生用车送达比赛场地的时间是:)(15)(25.06015分钟小时==÷ 此时另外4名学生步行路程是:25,125,05=⨯(千米);设汽车与另外4名学生相遇所用时间为t 小时.则25.115605−=+t t ;解得5211=t (小时)13165=(分钟); 从相遇处返回比赛场地所需的时间也是13165(分钟);所以,送这8名学生到达比赛场地共需时间为:4.4021316515≈⨯+(分钟); 又424.40<;所以,用这种方案送这8名学生能在截止进场的时刻前到达比赛场地.23.证明:(1)联结BD .∵四边形ABCD 是菱形, ∴CD BC AD AB ===;又AF AE =,CH CG =,∴AD AF AB AE =,CDCHCB CG =; ∴BD EF //,BD GH //; ∴GH EF //.(2)∵BD EF //,∴AB AEBD EF =; ∵BD GH //,∴BCCGBD GH =;又AE CG ≠,∴GH EF ≠; 又GH EF //,∴四边形EGHF 是梯形; ∵AF AD AE AB −=−,即DF BE =; 又CH CD CG BC −=−,即DH BG =; ∵四边形ABCD 是菱形,∴D B ∠=∠; ∴DHF BGE ∆≅∆;∴FH EG =; ∴梯形EGHF 是等腰梯形.24.解:(1)由题意,得044=+−a a ;解得34=a ;∴抛物线的表达式为4316342+−=x x y ; ∵抛物线的对称轴是直线2=x ,∴点)0,3(B . (2)①由题意,得)4,0(C 、)23,0(M ,∴25=CM ; ∵四边形GDMN 是平行四边形,∴NM GD //; 又点N 在y 轴上,∴OD NM ⊥;∴OD GD ⊥; 在BOC Rt ∆中。

2024届上海市静安区初三二模数学试卷(含答案)

2024届上海市静安区初三二模数学试卷(含答案)

2024届上海市静安区初三二模数学试卷(满分150 分,100 分钟完成)2024.04一、选择题:(本大题共 6 题,每题4 分,满分24 分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂] 1.下列各数中,是无理数的为( )A B C 0πD .172.下列运算正确的是( )A .231a a a−÷=B a=C .()325aa =D .336a a a+=3.下列图形中,对称轴条数最多的是( )A .等腰直角三角形B .等腰梯形C .正方形D .正三角形 4.一次函数y kx b =+中,如果0,0k b <≥,那么该函数的图像一定不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断菱形ABCD 是正方形的为( )第5题图A .AOB AOD ∠=∠ B .ABO ADO ∠=∠C .BAO DAO ∠=∠D .ABC BCD ∠=∠6.对于命题:①如果两条弧相等,那么它们所对的圆心角相等; ②如果两个圆心角相等,那么它们所对的弧相等.下列判断正确的是( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①、②都是真命题D .①、②都是假命题二、填空题:(本大题共 12 题,每题4 分,满分48 分) [在答题纸相应题号后的空格内直接填写答案]7.计算:1−=______. 8.函数()11f x x =+的定义域是______.11.如果关于x 的一元二次方程2210ax x ++=有实数根,那么a 的取值范围是______.12.反比例函数21m y x+=(其中m 为任意实数)的图像在第______象限.13.将一枚硬币连续抛两次,两次都是正面朝上的概率是______.14.一位短跑选手10次100米赛跑的成绩如下:2次12"3,1次12"1,3次12"7,4次12"5,那么这10个数据的中位数是______.15.在ABC △中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,设,DE a DF b ==,那么向量AB 用向量a b 、表示为______.16.如图,在平面直角坐标系中,已知直线1l 与直线2l 交于点()0,1C ,它们的夹角为90°.直线1l 交x 负半轴于点A ,直线2l 与x 正半轴交于点()2,0B ,那么点A 的坐标是______.第16题图17.如果半径分别为r 和2的两个圆内含,圆心距3d =,那么r 的取值范围是______.18.如图,矩形ABCD 中,8,17AB BC ==,将该矩形绕着点A 旋转,得到四边形111AB C D ,使点D 在直线11B C 上,那么线段1BB 的长度是______.第18题图三、解答题:(本大题共 7 题,满分78 分)9.方程(x − 0 的根为______.10.如果一个正多边形的内角和是720°,那么它的中心角是______度.先化简,再求值:22424412x x xx x x x−+÷−−++−,其中x=.20.(本题满分10分)解不等式组3043326xxx−≥⎧⎪⎨+>−⎪⎩,并写出它的整数解.21.(本题满分10分)已知:如图,CD是⊙O的直径,AC、AB、BD是⊙O的弦,AB CD∥.第21题图(1)求证:AC BD=;(2)如果弦AB长为8,它与劣弧AB组成的弓形高为2,求CD的长.某区连续几年的GDP (国民生产总值)情况,如下表所示:我们将这些数据,在平面直角坐标系内,用坐标形式表示出来,它们分别为点:A (1,10.0)、B (2,11.0)、C (3,12.4)、D (4,13.5).如果运用函数与统计等知识预测该区下一年的GDP ,可以尝试选择直线AB 、直线AC 等函数模型来进行分析.(1)根据点A 、B 的坐标,可得直线AB 的表达式为9y x =+.请根据点A 、C 坐标,求出直线AC 的表达式;(2)假设经济发展环境和条件不变,要预测该区第五年的GDP 情况,可以参考方差等相关知识,分析选用哪一函数模型进行预测较为合适.(说明:在计算与绘图时,当实际数据绘制的点与模型上对应的点位置越接近时,模型越适宜.我们可通过计算一组GDP 所有实际值偏离图像上对应点纵坐标值的程度,即偏离方差,来进行模型分析,一般偏离方差越小越适宜.)请依据以上方式,求出关于直线AC 的偏离方差值:2AC S =______;问题:你认为在选用直线AB 与直线AC 进行预测的两个方案中,相对哪个较为合适? 请写出所选直线的表达式:______;根据此函数模型,预估该区第五年的GDP 约为______百亿元.23.(本题满分12分)己知:如图,直线EF 经过矩形ABCD 顶点D ,分别过顶点A 、C 作EF 的垂线,垂足分别为点E 和点F ,且DE DF =,联结AC .(1)求证:2AD AE AC =⋅;(2)联结BE 和BF ,求证:BE BF =.如图,在平面直角坐标系xOy 中,已知抛物线关于直线52x =对称,且经过点A (0,3)和点B (3,0),横坐标为4的点C 在此抛物线上.(1)求该抛物线的表达式;(2)联结AB 、BC 、AC ,求tan BAC ∠的值;(3)如果点P 在对称轴右方的抛物线上,且45PAC ∠=︒,过点P 作PQ y ⊥轴,垂足为Q ,请说明APQ BAC ∠=∠,并求点P 的坐标.25.(本题满分14分)如图1,ABC △中,已知6,9,AB BC B ==∠为锐角,1cos 3ABC ∠=. (1)求sin C 的值;(2)如图2,点P 在边AB 上,点Q 是边BC 的中点,P 经过点A ,P 与Q 外切,且Q 的直径不大于BC ,设P 的半径为x ,Q 的半径为y ,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题条件下,联结PQ ,如果BPQ △是等腰三角形,求AP 的长.参考答案一、选择题1.B2. A3. C4. C5. D6. A 二、填空题7.1 8. 1x ≠− 9. 2x = 10. 60 11. 1a ≤且0a ≠ 12. 一、三 13.1414.12"515.22b a − 16.1,02⎛⎫−⎪⎝⎭17.r >518.三、解答题19.化简为12x −,代入后值为22−20.13x −<≤,整数解0,1,2,3x =21.(1)证明略 (2)1022.(1) 1.28.8y x =+(2)0.0125;应选 1.28.8y x =+;14.8 23.(1)证明略 (2)证明略 24.(1)215322y x x =−+ (2)13(3)1744,39P ⎛⎫⎪⎝⎭25.(1)9(2)17124y x x ⎛⎫=−≤< ⎪⎝⎭ (3)32或3。

2022年上海市黄浦区中考数学二模试卷及答案解析

2022年上海市黄浦区中考数学二模试卷及答案解析

2022年上海市黄浦区中考数学二模试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列二次根式中,最简二次根式是( ) A. √8B. √12C. √6D. √0.22. 将抛物线y =(x −2)2+1向上平移3个单位,得到的新抛物线的顶点坐标是( ) A. (2,−2)B. (2,4)C. (5,1)D. (−1,1)3. 关于x 的一元二次方程kx 2−4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A. k >4B. k <4C. k <4且k ≠0D. k ≤4且k ≠04. 下列各统计量中,表示一组数据波动程度的量是( ) A. 方差B. 众数C. 平均数D. 频数5. 已知三角形两边的长分别是4和9,则此三角形第三边的长可以是( ) A. 4B. 5C. 10D. 156. 已知⊙O 的半径OA 长为3,点B 在线段OA 上,且OB =2,如果⊙B 与⊙O 有公共点,那么⊙B 的半径r 的取值范围是( )A. r ≥1B. r ≤5C. 1<r <5D. 1≤r ≤5二、填空题(本大题共12小题,共48.0分)7. 计算:a(a +1)=______.8. 函数:y =√x −2的自变量的取值范围是______. 9. 方程组{x +2y =3x 2−y 2=0的解是______ .10. 一个正多边形的一个外角等于30°,则这个正多边形的边数为______.11. 如果抛物线y =(m +1)x 2的最高点是坐标轴的原点,那么m 的取值范围是______ . 12. 观察反比例函数y =2x 的图象,当0<x <1时,y 的取值范围是______ . 13. 从29,√2,π这三个数中任选一个数,选出的这个数是有理数的概率为______ . 14. 某传送带与地面所成斜坡的坡度i =1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为______米.15. 如图,点G 是△ABC 的重心,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BG ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量DC ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______ .16. 如图,在半径为2的⊙O中,弦AB与弦CD相交于点M,如果AB=CD=2√3,∠AMC= 120°,那么OM的长为______ .17. 在△ABC中,∠C=90°,AC=3,将△ABC绕着点A旋转,点C恰好落在AB的中点上,设点B旋转后的对应点为点D,则CD的长为______ .18. 如图,在△ABC中,AD是BC边上的中线,∠ADC=60°,BC=3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么CEBE的值为______ .三、解答题(本大题共7小题,共78.0分。

2023年上海市16区数学中考二模专题汇编5 图形的平移、旋转、翻折、新定义(18题)含详解

2023年上海市16区数学中考二模专题汇编5 图形的平移、旋转、翻折、新定义(18题)含详解

专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形二、填空题5.(2023·上海黄浦A的对应点是点6.(2023·上海静安处,点A落在点7.(2023·上海金山·统考二模)已知线段AC上,如果点E关于直线8.(2023·上海闵行三角形为特征三角形.9.(2023·上海浦东新·于点F.如果2AD AB=10.(2023·上海徐汇·统考二模)如图,抛物线“月牙线”,抛物线1C和抛物线=,那么抛物线果BD CD11.(2023·上海宝山·统考二模)13.(2023·上海闵行·统考二模)如图,在菱形ABCD 中,6AB =,80A ∠=︒,如果将菱形ABCD 绕着点D 逆时针旋转后,点A 恰好落在菱形ABCD 的初始边AB 上的点E 处,那么点E 到直线BD 的距离为___________.14.(2023·上海嘉定·统考二模)如图,在Rt ABC 中,90C ∠=︒,4AC =,2BC =,点D 、E 分别是边BC 、BA 的中点,连接DE .将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点1D 、1E .如果点1E 落在线段AC 上,那么线段1CD =____.三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的表达式;(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.17.(2023·上海徐汇·统考二模)如图,已知抛物线2y x bx c =++经过点()2,7A -,与x 轴交于点B 、()5,0C .(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将BCE 沿直线BE 翻折,如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当CPQ 为等边三角形时,求直线BQ 的表达式.18.(2023·上海松江·统考二模)在平面直角坐标系xOy 中(如图),已知直线2y x =-+与y 轴交于点A ,抛物线()21(0)y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90︒,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线2y x =-+交于点D ,且点D 位于x 轴上方,如果45BOD ∠=︒,求t 的值.专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆【答案】D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D.【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形【答案】C【分析】根据轴对称图形的定义、中心对称图形的定义逐项判断即可.【详解】A选项:等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B选项:等腰梯形是轴对称图形,不是中心对称图形.故本选项不合题意;C选项:矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D选项:正五边形是轴对称图形,不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查轴对称图形、中心对称图形,理解定义,会根据定义判断轴对称图形和中心对称图形是解答的关键.二、填空题在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.116OG BG BC ===⨯=在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.∴11622OG BG BC ===⨯【答案】20【分析】根据旋转可得根据AA B '∠【详解】解:∵∴180ACB ∠=∵将ABC 绕点∴30B A C BAC ∠=∠=''︒,∴(11802CAA CA A ''∠=∠=︒∴AA B CA A B A C '''''∠=∠-∠故答案为:20︒.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,掌握旋转的性质是关键.A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.【答案】()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.(2023·上海静安·统考二模)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是______.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,【点睛】本题考查解直角三角形,轴对称的性质,掌握垂线段最短是解题的关键.8.(2023·上海闵行·统考二模)阅读理解:如果一个三角形中有两个内角三角形为特征三角形.问题解决:如图,在ABC 中,【答案】253【分析】由题意可分:,A B βα∠=∠=,过点∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,【答案】35【分析】通过证明AEF △得出边之间的关系,即可求解.【详解】解:∵2=AD AB ∴设,2AB a AD a ==,【点睛】本题主要考查了矩形的折叠问题,以及解直角三角形的方法和步骤.10.(2023·上海徐汇·统考二模)如图,抛物线则tan tan DAC ∠=∠∴t n a CD DAC AC ∠==∴165CD =∴1695BD =-=;作DE AB ⊥于E ,则∵AD AD =,∴Rt △∵,90ACB ∠=︒,设BD x =,则CD DE =【答案】3372-【分析】利用含30度角的直角三角形的性质,分别求出出90DBE ∠=︒,在Rt【答案】3【分析】如图,旋转、菱形的性质可知,180ADE DEA ∠=︒-∠-∠由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】355【分析】根据勾股定理求得AB ,根据旋转的性质得出根据相似三角形的性质即可求解.设旋转角为α,∴11ABE CBD ∠=∠,旋转,∴115,1BE BE BD BD ====,三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点(1)求直线BC 的表达式;(2)如果以P 为顶点的新抛物线经过原点,且与①求新抛物线的表达式(用含②过点P 向x 轴作垂线,交原抛物线于点【答案】(1)3y x =-+(2)①()2233m y x m m m-=--+,【分析】(1)先利用待定系数法求出抛物线解析式,进而求出点式即可;(2)①先求出()3P m m -+,,设新抛物线解析式为抛物线解析式,再根据点P 在线段称时,当四边形AEDP 关于PE 【详解】(1)解:把()1,0A 、B ∴13a c =⎧⎨=⎩,∴抛物线解析式为24y x x =-+在243y x x =-+中,令0x =,则∴()0,3C ;设直线BC 的解析式为y kx b =+∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线BC 的解析式为y x =-+(2)解:①∵点P 在线段BC【点睛】本题主要考查了待定系数法求二次函数解析式,轴对称的性质,求一次函数解析式等等,灵活运用所学知识是解题的关键.16.(2023·上海松江·统考二模)如图,(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.【答案】(1)见解析(2)24(3)97OF =或95OF =.【分析】(1)如图:连接,OC O C ',先根据圆的性质和对称的性质说明OAO ' 是等边三角形,明60COO BOC '∠=∠=︒即可证明结论;(2)设圆O 的半径为2a ,则2O A OA a '==,如图:作ON AD ⊥于N ;先根据对称的性质和等腰三角形的性质可得,30120ODA OAD AOD ︒︒∠=∠=∠=,然后解直角三角形可得()232O D a '=-、EF OE ==∵点O '恰好落在半圆O 上,∴OO OA '=,∵点O '与点O 关于直线AC 对称∴AO OA CO CO ==='',O AC '∠∵,30OA OD OAD =∠=︒,∴,30120ODA OAD AOD ︒∠=∠=∠=在Rt AON △中,sin 30ON OA =⋅︒∵ON AD ⊥,∴FN FM=∴1212AFD OFA AD FM S AD S AO AO FN ⨯==⨯ ,又∵AFD S DF S OF = ,∴FN FM =,∴1212AFD OFA AD FM S AD S AO AO FN ∆∆⨯==⨯,又∵AFD OFA S DF S OF ∆∆=,(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点式.【答案】(1)245y x x =--,顶点坐标为:(2)点E 的坐标为()2,3;(3)直线BQ 的函数表达式为【分析】(1)利用待定系数法求解抛物线的解析式,再化为顶点式,即可得到顶点坐标;(2)先求解抛物线与x 轴交于轴与x 轴交于点H ,则H 点的坐标为2233FH FB BH =-=,(3)连接CF ,证明FCB 于点K ,可得点K 的坐标为【详解】(1)解:∵抛物线∵抛物线与x 轴交于(1,0B -∴6BC =,抛物线的对称轴为直线设抛物线的对称轴与x 轴交于点由翻折得6CB FB ==,由勾股定理,得FH FB =∴点F 的坐标为()2,33,∴60FBH ∠=︒,∴CP CQ =,CB CF =,∠∴FCP BCQ ∠=∠,∴BCQ FCP ≌,∴CBQ CFH ∠=∠,∵BCF △为等边三角形,∴30CFH CBQ ∠=︒=∠,设BP 与x 轴相交于点K ,∴3tan 303OK OB =︒= .(1)若抛物线经过点A ,求抛物线解析式;∵旋转,∴,90OB OC OBC =∠=∴BEO OBC BDC ∠=∠=∠∴90OBE CBD ∠=︒-∠由2y x =-+,令0y =,得∴2OA OH ==,AH =∴OAH △是等腰直角三角形∵BD y ∥轴,。

中考数学二模第18题精选练习25题

中考数学二模第18题精选练习25题

中考数学二模第 18 题精选练习 25 题题1:如图,在△ABC 中,∠ACB=90°,sin B=,将△ABC 绕顶点C 顺时针旋转,得到△A1B1C,点A、B 分别与点A1、B1 对应,边A1B1 分别交边AB、BC 于点D、E,如果点E 是边A1B1 的中点,那么=.题2:定义:如果P 是圆O 所在平面内的一点,Q 是射线OP 上一点,且线段OP、OQ 的比例中项等于圆O 的半径,那么我们称点P 与点Q 为这个圆的一对反演点.已知点M、N 为圆O 的一对反演点,且点M、N 到圆心O 的距离分别为4 和9,那么圆O 上任意一点到点M、N 的距离之=.题3:一个正多边形的对称轴共有10 条,且该正多边形的半径等于4,那么该正多边形的边长等于.题4:如图,在△ABC 中,已知AB=AC,∠BAC=30°,将△ABC 绕着点A 逆时针旋转30°,记点C 的对应点为点D,AD、BC 的延长线相交于点E.如果线段DE 的长,那么边AB 的长为.题5:如图,点M 的坐标为(3,2),动点P 从点O 出发,沿y 轴以每秒1 个单位的速度向上移动,且过点P 的直线l:y=﹣x+b 也随之移动,若点M 关于l 的对称点落在坐标轴上,设点P 的移动时间为t,则t 的值是.题6:如图,在△ABC 中,AB=AC=5,BC=8,将△ABC 绕着点C 旋转,点A、B 的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.题7:如图,在△ABC 中,AB=AC=5,BC=2,D为边AC 上一点(点D与点A、C 不重合).将△AB D 沿直线BD 翻折,使点A 落在点E 处,连接CE.如果CE∥AB,那么AD:CD=.题8:如图,在平面直角坐标系xOy 中,已知,0),B(0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ.如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是.题9:如图,在矩形ABCD 中,AB=6,点E 在边AD 上且AE=4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A、B 的对应点A1、B1 与点C 在同一直线上,A1B1 与边AD 交于点G,如果DG =3,那么BF 的长为.题10:如图,已知Rt△ABC 中,∠ACB=90°,AC=8,BC=6.将△ABC 绕点 B 旋转得到△DBE,点A 的对应点D 落在射线BC 上.直线AC 交DE 于点F,那么CF 的长为.题11:如图,矩形ABCD,AD=a,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF,顶点A、D、C 分别与点E、F、G 对应(点D 与点F 不重合).如果点D、E、F 在同一条直线上,那么线段DF 的长是.(用含a 的代数式表示)题12:如图,在Rt△ABC 中,∠ACB=90°,AB=6,cos B=,先将△ACB 绕着顶点C 顺时针旋转90°,然后再将旋转后的三角形进行放大或缩小得到△A′CB(′点A′、C、B′的对应点分别是点A、C、B),连接A′A、B′B,如果△AA′B 和△AA′B′相似,那么A′C 的长是.题13:如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E,交边AD 于点F,已知AD=5,AE=2,AF=4.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是.题14:如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1 个单位的速度沿y 轴向上移动,同时过点P 的直线l 也随之上下平移,且直线l 与直线y=﹣x 平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值可以是.题15:我们把满足某种条件的所有点组成的图形,叫做符合这个条件的点的轨迹,如图,在Rt△ABC 中,∠C=90°,AC=8,BC=12,动点P 从点A 开始沿射线AC 方向以1 个单位秒的速度向点C 运动,动点Q 从点C 开始沿射线CB 方向以2 个单位/秒的速度向点运动,P、Q 两点分别从点A、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,在整个运动过程中,线段PQ 的中点M 运动的轨迹长为.题16:如图,AD 是△ABC 的中线,点E 在边AB 上,且DE⊥AD,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,连接AF 交BC 于点G,如,那的值等于.题17:在直角梯形ABCD 中,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD=.题18:如图,在Rt△ABC 中,∠C=90°,AB=5,BC=3,点P、Q 分别在边BC、AC 上,PQ∥AB,把△PCQ 绕点P 旋转得到△PDE(点C、Q 分别与点D、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC,则CP 的长为.题19:如图,在△ABC 中,点D 是AB 的中点,如果把△BCD 沿直线CD翻折,使得点B 落在同一平面内的B′处,联结AB′,那么AB′的长为.题20:如图,Rt△ABC 中,∠C=90°,AC=6,BC=8,D 是AB 的中点,P 是直线BC 上一点,把△BDP 沿PD 所在的直线翻折后,点B 落在点Q 处,如果QD⊥BC,那么点P 和点B 间的距离等于.题21:如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D 是BC 的中点,将△ABD,将△ABD 沿AD 翻折得到△AED,连接CE,那么线段CE 的长等于.题22:如图,已知平行四边形ABCD 中,AC=BC,∠ACB=45°,将三角形ABC 沿着AC 翻折,点B 落在点E 处,联结DE,那的值为.题23:如图,将△ABC 的边AB 绕着点A 顺时针旋转α(0°<α<90°)得到AB′,边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC′,联结B′C′.当α+β=90°时,我们称△AB′C′是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a,那么它的“双旋三角形”的面积是(用含a 的代数式表示).题24:如图,将矩形ABCD 沿对角线AC 折叠,使点B 翻折到点E 处,如果DE:AC=1:3,那么AD:AB=.题25:如图,在△ABC 中,AB=AC=5,BC=6,点D 在边AB 上,且∠BDC=90°.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,那么线段DD1 的长为.参考答案一.填空题(共 25 小题)1.【分析】设 AC =3x ,AB =5x ,可求 BC =4x ,由旋转的性质可得 CB 1=BC =4x ,A 1B 1=5x ,∠ACB = ∠A 1CB 1,由题意可证△CEB 1∽△DEB ,可得 ,即可求解.【解答】解:∵∠ACB =90°,sin = ,∴设 AC =3x ,AB =5x ,∴BC ==4x ,∵将△ABC 绕顶点 C 顺时针旋转,得到△A 1B 1C ,∴CB 1=BC =4x ,A 1B 1=5x ,∠ACB =∠A 1CB 1,∵点 E 是 A 1B 1 的中点,∴CE =A 1B 1=2.5x =B 1E ,∴BE =BC ﹣CE =1.5x ,∵∠B =∠B 1,∠CEB 1=∠BED∴△CEB 1∽△DEB=2.【分析】分三种情形分别求解即可解决问题.【解答】解:由题意⊙O 的半径 r 2=4×9=36,∵r >0,∴r =6,当点 A 在 NO 的延长线上时,AM =6+4=10,AN =6+9=15,∴==,当点 A ″是 ON 与⊙O 的交点时,A ″M =2,A ″N =3,∴=,当点 A ′是⊙O 上异与 A ,A ″两点时,易证△OA ′M ∽△ONA ′,∴ = = = ,∴ 故答案为:综上所述=.故答案为.3.【分析】根据轴对称图形的性质得到这个正多边形是正十边形,求出正十边形的中心角,作AC 平分∠OAB 交OB 于C,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵正多边形的对称轴共有10 条,∴这个正多边形是正十边形,设这个正十边形的中心为O,则OA=OB=4,∠AOB==36°,∵OA=OB,∴∠OAB=∠B=72°,作AC 平分∠OAB 交OB 于C,则∠OAC=∠O,∠ACB=∠B,∴OC=CA=AB,△ABC∽△OAB,∴=,即AB2=4×(4﹣AB),解得﹣2,AB2=﹣2﹣2(舍去),∴AB=2﹣2,故答案为﹣2.4.【分析】作DF⊥BE 于F,CH⊥AD 于H,由题意,可得AD=AC=AB,∠CAD=∠BAC=30°,可得∠DCE=30°,∠E=45°,根据,可得,即+1,在Rt△CHE中,CH=HE=,AH=,根据AD=AH+HE﹣DE,可求出AD 的长,进而得出,AH=,E=AB 的长.【解答】解:如图,作DF⊥BE 于F,CH⊥AD 于H,∵将△ABC 绕着点A 逆时针旋转30°,记点C 的对应点为点D,AD、BC 的延长线相交于点E,∴AD=AC=AB,∠CAD=∠BAC=30°,∴∠ACB=∠ACD=∠ADC=75°,∴∠DCE=30°,∠E=45°,∵DE=,∴DF=EF=1,CF=,∴CE=+1,∴CH=HE=∴AD=AH+HE﹣D ,∴AB=.故答案为:.5.【分析】找出点M 关于直线l 在坐标轴上的对称点E、F,如图所示.求出点E、F 的坐标,然后分别求出ME、MF 中点坐标,最后分别求出时间t 的值.【解答】解:如图,过点M 作MF⊥直线l,交y 轴于点F,交x 轴于点E,则点E、F 为点M 在坐标轴上的对称点.过点M 作MD⊥x 轴于点D,则OD=3,MD=2.由直线l:y=﹣x+b 可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE 与△OEF 均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF 中点坐标为,).直线y=﹣x+b 过点(,),则=﹣+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME 中点坐标为(2,1).直线y=﹣x+b 过点(2,1),则1=﹣2+b,解得:b=3,∴t=3.故点M 关于l 的对称点,当t=2 时,落在y 轴上,当t=3 时,落在x 轴上.故答案为2 或3.6.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF 的长,即可求AA'的长.【解答】解:如图,过点C 作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC 中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF=∴AA'=故答案为7.【分析】作辅助线,构建平行线和直角三角形,先根据勾股定理计算AG 的长,证明△BCH∽△ABG,列比例式可得BH=4,CH=2,根据勾股定理计算EH 的长,从而得CE 的长,最后根据平行线分线段成比例定理得=.【解答】解:如图,过A 作AG⊥BC 于G,过B 作BH⊥CE,交EC 的延长线于H,延长BD 和CE 交于点F,∵AC=AB=5,∴BG=CG===2 ,∵FH∥AB,∴∠ABG=∠BCH,∵∠H=∠AGB=90°,∴△BCH∽△ABG,∴=,∴==,∴BH=4,CH=2,由折叠得:AB=BE=5,∴EH===3,CE=3﹣2=1,∵FH∥AB,∴∠F=∠ABD=∠EBD,∴EF=BE=5,∴FC=5+1=6,∵FC∥AB,∴=,故答案为:5:6.8.【分析】先求出,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ 交OB 于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BM=2,由勾股定理得出NP==2 ,ON=OM+NM=4,即可得出P 点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P 点的坐标;(2)当∠PQB=60°时,Q 点与A 点重合,OP=AP﹣OA=2,即可得出P 点的坐标;综上情况即可P 点的坐标.【解答】解,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ 与直线AB 所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1 所示:延长PQ 交OB 于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM 中==2,ON=OM+NM=4,∴P 点的坐标为,4);②如图2 所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P 点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3 所示:Q 点与A 点重合,由折叠得,OP=AP﹣OA=4 ﹣2=2,∴P 点的坐标为,0);综上所述:P 点的坐标为:(2 ,4)或(0,﹣2)或(﹣2 ,0).9.【分析】由DG=3,CD=6 可知△CDG 的三角函数关系,由△CDG 分别与△A'EG,△B'FC 相似,可求得CG,CB',由勾股定理△CFB'可求得BF 长度.【解答】解:∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案10.【分析】由题意,可得,所以CD=4,在Rt△FCD 中,∠DCF=90°,tan D=,,可得CF=3.【解答】解:∵如图,已知Rt△ABC 中,∠ACB=90°,AC=8,BC=6.∴AB=,∵将△ABC 绕点B 旋转得到△DBE,点A 的对应点D 落在射线BC 上,直线AC 交DE 于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD 中,∠DCF=90°,∴tan D=,,∴CF=3.故答案为:3.11.【分析】连接BD,证明Rt△EDB≌Rt△CBD,可得DE=BC=AD=a,因为EF=AD=a,根据DF =DE+EF 即可得出DF 的长.【解答】解:如图,连接BD,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF,且D、E、F 在同一条直线上,∴∠DEB=∠C=90°,BE=AB=CD,∵DB=BD,∴Rt△EDB≌Rt△CBD(HL),∴DE=BC=AD=a,∵EF=AD=a,∴DF=DE+EF=a+a=2a.故答案为:2a.12.【分析】由题意当点A′在线段BC 上且AA′平分∠BAC 时,△AA′B 和△AA′B′相似,作A′H⊥AB 于H.证明△AA′H≌△AA′C(AAS),推出,设A′C=A′H=x,根据勾股定理构建方程即可解决问题.【解答】解:由题意当点A′在线段BC 上且AA′平分∠BAC 时,△AA′B 和△AA′B′相似,作A′H⊥AB 于H.在Rt△ABC 中=,AB=6,∴BC=4,AC==2,∵∠A′AH=∠A′AC,∠AHA′=∠ACA′=90°,AA′=AA′,∴△AA′H≌△AA′C(AAS),∴A′C=A′H,AC=AH=2,设A′C=A′H=x,在Rt△A′BH 中)2,∴x=3﹣5,∴A′C=3﹣5,故答案为﹣5.13.【分析】连接EF,知EF 是⊙O 的直径,取EF 的中点O,连接OD,作OG⊥AF,知点G 是AF 的中点,据此可得AF=2,OG=AE=1,继而求得OF==,OD==,最后根据两圆的位置关系可得答案.【解答】解:如图,连接EF,∵四边形ABCD 是矩形,∴∠BAC=90°,则EF 是⊙O 的直径,取EF 的中点O,连接OD,作OG⊥AF,则点G 是AF 的中点,∴GF=AF=2,∴OG 是△AEF 的中位数,∴OG=AE=1,∴OF==,OD==,∵圆D 与圆O 有两个公共点,∴﹣<r<+,故答案为﹣<r<+.14.【分析】找出点M 关于直线l 在坐标轴上的对称点E、F,如图所示.求出点E、F 的坐标,然后分别求出ME、MF 中点坐标,最后分别求出时间t 的值.【解答】解:设直线l:y=﹣x+b.如图,过点M 作MF⊥直线l,交y 轴于点F,交x 轴于点E,则点E、F 为点M 在坐标轴上的对称点.过点M 作MD⊥x 轴于点D,则OD=3,MD=2.由直线l:y=﹣x+b 可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE 与△OEF 均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF 中点坐标为,).直线y=﹣x+b 过点,),则+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME 中点坐标为(2,1).直线y=﹣x+b 过点(2,1),则1=﹣2+b,解得:b=3,∴t=3.故点M 关于l 的对称点,当t=2 时,落在y 轴上,当t=3 时,落在x 轴上.故答案为:2 或3(答一个即可).15.【分析】先以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系,由题意知0≤t≤6,求得t=0及t=6 时M 的坐标,得到直线M1M2 的解析式为y=﹣2x+8.过点M2 作M2N⊥x 轴于点N,则M2N=6,M1N=3,M1M2=3,线段PQ 中点M 所经过的路径长为个单位长度.【解答】解:以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系:依题意,可知0≤t≤6,当t=0 时,点M1 的坐标为(4,0);当t=6 时,点M2 的坐标为(1,6),设直线M1M2 的解析式为y=kx+b,∴,解得:,∴直线M1M2 的解析式为y=﹣2x+8.设动点运动的时间为t 秒,则有点Q(0,2t),P(8﹣t,0),∴在运动过程中,线段PQ 中点M3 的坐标为,t),把代入y=﹣2x+8,得+8=t,∴点M3 在M1M2 直线上,过点M2 作M2N⊥x 轴于点N,则M2N=6,M1N=3,∴M1M2=3,∴线段PQ 中点M 所经过的路径长为个单位长度.故答案为.16.【分析】连接FC,证明△EDB≌△FDC,可得ED=DF,∠EBD=∠FCD,FC=BE,即FC∥AB,所以△CFG∽△BAG,可,所以AF,因为DE⊥AD,DE=DF,所以AE=AF,进而可得的值.【解答】解:如图,连接FC,∵将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,∴BD=CD,ED=FD,∵∠EDB=∠FDC,∴△EDB≌△FDC(SAS),∴ED=DF,∠EBD=∠FCD,FC=BE,∴FC∥AB,∴△CFG∽△BAG,∴,∴FG=AF,∵DE⊥AD,DE=DF,∴AE=AF,∴=.故答案为.17.【分析】过点C 作CF⊥AB 于点F,则四边形AFCD 为矩形,根据矩形的性质可得出BF=5,结合cos∠ABC=,可得出CF 的长度,进而可得出AD 的长度,在Rt△BAD 中利用勾股定理可求出BD 的长度,由折叠的性质可得出BP=BA=12,再由PD=BD﹣BP 即可求出PD 的长度.【解答】解:过点C 作CF⊥AB 于点F,则四边形AFCD 为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE 沿BE 翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为﹣12.18.【分析】连接AD,根据PQ∥AB 可知∠ADQ=∠DAB,再由点D 在∠BAC 的平分线上,得出∠DAQ =∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ 中根据勾股定理可知,AQ=12﹣4x,故可得出x 的值,进而得出结论;【解答】解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D 在∠BAC 的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△ABC 中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ 中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=4﹣4x,∴4﹣4x=2x,解得,∴CP=3x=2;故答案为2.19.【分析】如图,作AE⊥BC 于E,DK⊥BC 于K,连接BB′交CD 于H.只要证明∠AB′B=90°,求出AB、BB′,理由勾股定理即可解决问题;【解答】解:如图,作AE⊥BC 于E,DK⊥BC 于K,连接BB′交CD 于H.∵AB=AC,AE⊥BC,∴BE=EC=4,在Rt△ABE 中=,∴AE=6,AB==2,∵DK∥AE,BD=AD,∴BK=EK=2,∴DK=AE=3,在Rt△CDK 中=3,∵B、B′关于CD 对称,∴BB′⊥CD,BH=HB′∵S△BDC=•BC•DK=•CD•BH,∴BH=,∴BB′=,∵BD=AD=DB′,∴∠AB′B=90°,∴AB′=,故答案.20.【分析】在Rt△ACB 中,根据勾股定理可求AB 的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得AC,BD=AB,BE=BC,再在Rt△QEP 中,根据勾股定理可求QP,继而可求得答案.【解答】解:在Rt△ACB 中,∠C=90°,AC=6,BC=8,AB==10,由折叠的性质可得QD=BD,QP=BP,又∵QD⊥BC,∴DQ∥AC,∵D 是AB 的中点,∴DE=AC=3,BD=AB=5,BE=BC=4,①当点P 在DE 右侧时,∴QE=5﹣3=2,在Rt△QEP 中,QP2=(4﹣BP)2+QE2,即QP2=(4﹣QP)2+22,解得QP=2.5,则BP=2.5.②当点P 在DE 左侧时,同①知,BP=10故答案为:2.5 或10.21.【分析】如图连接BE 交AD 于O,作AH⊥BC 于H.首先证明AD 垂直平分线段BE,△BCE 是直角三角形,求出BC、BE,在Rt△BCE 中,利用勾股定理即可解决问题.【解答】解:如图连接BE 交AD 于O,作AH⊥BC 于H.在Rt△ABC 中,∵AC=8,AB=6,∴BC==10,∵CD=DB,∴AD=DC=DB=5,∵BC•AH=AB•AC,∴AH=,∵AE=AB,∴点A 在BE 的垂直平分线上.∵DE=DB=DC,∴点D 在BE 使得垂直平分线上,△BCE 是直角三角形,∴AD 垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE 中,EC==,故答案为.22.【分析】依据△ACF 和△DEF 都是等腰直角三角形,设EF=DF=1,则,设AF=CF=x,则AC=EC=1+x,在Rt△ACF 中,依据AF2+CF2=AC2,可得x2+x2=(x+1)2,解得,即可得到AC=2+ ,进而得==.【解答】解:如图,设AD 与CE 交于点F,由折叠可得,∠ACE=∠ACB=45°,而∠DAC=∠ACB=45°,∴∠AFC=90°,∠EFD=90°,AF=CF,由折叠可得,CE=AD,∴EF=DF,∴△ACF 和△DEF 都是等腰直角三角形,设EF=DF=1,则,设AF=CF=x,则AC=EC=1+x,∵Rt△ACF 中,AF2+CF2=AC2,∴x2+x2=(x+1)2,解得或(舍去),∴AC=2+,∴==.故答案为.23.【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B′C′是顶角为150°的等腰三角形,其中AB′=AC′=a.过C′作C′D⊥AB′于D,根据30°角所对的直角边等于斜边的一半得出AC′=a,然后根据S△AB′C′=AB′•C′D 即可求解.【解答】解:∵等边△ABC 的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC 的边AB 绕着点 A 顺时针旋转α(0°<α<90°)得到AB′,∴AB′=AB=a,∠B′AB=α,∵边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC′,∴AC′=AC=a,∠CAC′=β,∴∠B′AC′=∠B′AB+∠BAC+∠CAC′=α+60°+β=60°+90°=150°.如图,过C′作C′D⊥AB′于D,则∠D=90°,∠DAC′=30°,∴C′D=AC′=a,∴S△AB′C′=AB′•C′D=a•a=a2.故答案a2.24.【分析】根据翻折的性质可得∠BCA=∠ECA,再根据矩形的对边平行可得AD∥BC,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠ECA=∠DAC,设AD 与CE 相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF 和△DEF 相似,根据相似三角形对应边成比例求===,设DF=x,则AF=FC=3x,在Rt△CDF 中,利用勾股定理列式求出CD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC 折叠,点B 落在点E 处,∴∠BCA=∠ECA,AE=AB=CD,EC=BC=AD,∵矩形ABCD 的对边AD∥BC,∴∠DAC=∠BCA,∴∠ECA=∠DAC,设AD 与CE 相交于F,则AF=CF,∴AD﹣AF=CE﹣CF,即DF=EF,∴=,又∵∠AFC=∠DFE,∴△ACF∽△DEF,∴===,设DF=x,则AF=FC=3x,在Rt△CDF 中=2x,又∵BC=AD=AF+DF=4x,∴==.故答案.25.【分析】作AE⊥BC 于E.根据等腰三角形三线合一的性质得出BC=3,利用勾股定理求出AE=4.根据三角形的面积得出=,那么AD=.再根据旋转的性质可知AD=AD1,∠CAD=∠BAD1,那么△ABC∽△ADD1,利用相似三角形的性质可求出DD1.【解答】解:如图,作AE⊥BC 于E.∵AB=AC=5,BC=6,∴BE=EC=BC=3,∴AE==4.∵S△ABC=AB•CD=BC•AE,∴CD===,∴AD=.∵△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D1,∴AD=AD1,∠CAD=∠BAD1,∵AB=AC,∴△ABC∽△ADD1,∴,∴=,∴DD1=.故答案为.31。

2024届上海闵行区初三二模数学试卷及答案

2023学年第二学期初三年级学业质量调研数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.本次考试不能用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是(A )3π-;(B )1-;(C;(D.2.下列运算正确的是(A )2a a a +=;(B )2a a a = ;(C )()3328a a =;(D )()326a a -=.3.下列函数中,y 的值随着x 的值增大而增大的是(A )1y x=;(B )2y x =-+;(C )2y x =-;(D )1y x=-.4.某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是(A )150,150;(B )155,155;(C )150,160;(D )150,155.5.在Rt △ABC 中,∠CAB =90°,AB =5,AC =12,以点A ,点B ,点C 为圆心的⊙A ,⊙B ,⊙C 的半径分别为5、10、8,那么下列结论错误的是(A )点B 在⊙A 上;(B )⊙A 与⊙B 内切;(C )⊙A 与⊙C 有两个公共点;(D )直线BC 与⊙A 相切.6.在矩形ABCD 中,AB<BC ,点E 在边AB 上,点F 在边BC 上,联结DE 、DF 、EF ,AB=a ,BE=CF=b ,DE=c ,∠BEF =∠DFC ,以下两个结论:①()()222a b a b c ++-=;②a b +>.其中判断正确的是(A )①②都正确;(B )①②都错误;(C )①正确,②错误;(D )①错误,②正确.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:124=▲.A BCDE F(第6题图)8.单项式22xy 的次数是▲.9.不等式组2620x x <⎧⎨->⎩的解集是▲.10.计算:3(2)5(23)a b a b -++=r r r r▲.11.分式方程2111x x x =--的解是▲.12.已知关于x 的方程220x x m ++=没有实数根,那么m 的取值范围是▲.13.《九章算术》中记载:“今有牛五、羊二,直金十九两.牛二、羊五,直金十六两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x 两,1只羊值金y 两,那么可列方程组为▲.14.某校在实施全员导师活动中,对初三(1)班学生进行调查问卷,学生最期待的一项方式是:A 畅谈交流心得;B外出郊游骑行;C 开展运动比赛;D 互赠书签贺卡.根据问卷数据绘制统计图如下,扇形统计图中表示D 的扇形圆心角的度数为▲.为▲.16.已知二次函数的解析式为21y x bx =++,从数字0,1,2中随机选取一个数作为b 的值,得到的二次函数图像的顶点在坐标轴上的概率是▲.17.如图,在△ABC 中,BC 、AC 上的中线AE 、BD 相交于点F ,如果∠BAE =∠C ,那么AFAC的值为▲.18.在Rt △ABC 中,∠B =90°,AB =6,sin C =35,D 为边AB 上一动点,将DA 绕点D 旋转,使点A 落在边AC 上的点E 处,过点E 作EF ⊥DE 交边BC 于点F ,联结DF ,当△DEF 是等腰三角形时,线段CF 的长为▲.EBCAFD(第17题图)CBA(第18题图)项目人数16A 016B C D846128DCBA(第15题图)40%ABCD三、解答题:(本大题共7题,满分78分)19.(本题满分10分)112024|2|2- ++⎛⎫-⎪⎝⎭.20.(本题满分10分)先化简,再求值:22111121a a a a a a a -+++÷--+,其中a =21.(本题满分10分,每小题5分)如图,在△ABC 中,点D 在边BC 上,点G 在边AB 上,点E 、F 在边AC 上,GD //AC ,∠DGF=∠DEF ,∠B=∠GFE .(1)求证:四边形EDGF 是平行四边形;(2)求证:GF CDAB AC=.BA CDE F G(第21题图)22.(本题满分10分,第1小题4分,第2小题6分)某条东西方向道路双向共有三条车道,在早晚高峰经常会拥堵,数学研究小组希望改善道路拥堵情况,他们对该路段的交通量(辆/分钟)和时间进行了统计和分析,得到下列表格,并发现时间和交通量的变化规律符合一次函数的特征.时间x8时11时14时17时20时y 1自西向东交通量(辆/分钟)1016222834y 2自东向西交通量(辆/分钟)2522191613(1)请用一次函数分别表示y 1与x 、y 2与x 之间的函数关系.(不写定义域)(2)如图,同学们希望设置可变车道来改善拥堵状况,根据车流量情况改变可变车道的行车方向.单位时间内双向交通总量为12v y y =+总,车流量大的方向交通量为m v ,经查阅资料得:当23m v v 总≥,需要使可变车道行车方向与拥堵方向相同,以改善交通情况.该路段从8时至20时,如何设置可变车道行车方向以缓解交通拥堵,并说明理由.可变车道可变车道(第22题图1)(第22题图2)23.(满分12分,其中第(1)小题4分,第(2)小题8分)沪教版九年级第二学期的教材给出了正多边形的定义.......:各边相等、各角也相等的多边形叫做正多边形.同时还提到了一种用直尺和圆规作圆的内接正六边形和圆的内接正五边形的方法,但课本上并未证明.我们现开展下列探究活动.活动一:如图1,展示了一种用尺规作⊙O的内接正六边形的方法.①在⊙O上任取一点A,以A为圆心、AO为半径作弧,在⊙O上截得一点B;②以B为圆心,AO为半径作弧,在⊙O上截得一点C;再如此从点C逐次截得点D、E、F;③顺次联结AB、BC、CD、DE、EF、FA.(1)根据正多边形的定义.........,我们只需要证明▲,▲.(请用符号语言表示,不需要说明理由),就可证明六边形ABCDEF是正六边形.活动二:如图2,展示了一种用尺规作⊙O的内接正五边形的方法.①作⊙O的两条互相垂直的直径PQ和AF;②取半径OP的中点M;再以M为圆心、MA为半径作弧,和半径OQ相交于点N;③以点A为圆心,以AN的长为半径作弧,与⊙O相截,得交点B.如此连续截取3次,依次得分点C、D、E,顺次联结AB、BC、CD、DE、EA,那么五边形ABCDE是正五边形.(2)已知⊙O的半径为2,求边AB的长,并证明五边形ABCDE是正五边形.(参考数据:sin22.5︒=cos22.5︒=sin36︒=cos36︒=sin72︒=.)ABCDEP M O N QF(第23题图1)(第23题图2)AB CDEF.O24.(满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)在平面直角坐标系xOy 中,已知抛物线212y x bx c =++与x 轴相交于A (1-,0)、B 两点,且与y 轴交于点C (0,2-).(1)求抛物线的表达式;(2)如果点D 是x 正半轴上一点,∠ADC=2∠ACO ,且四边形AQCD 是菱形,请直接写出点D 和点Q 的坐标(不需要说明理由);(3)由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形,对于平面内的一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做“凸多边形”;否则叫做“凹多边形”.如果点E 是抛物线对称轴上的一个动点,纵坐标为t ,且四边形ACBE 是凹四边形(线段AE 与线段BC 不相交),求t 的取值范围.yxO(第24题图)25.(满分14分,其中第(1)小题9分,第(2)小题5分)如图,OB 是⊙O 的半径,弦AB 垂直于弦BC ,点M 是弦BC 的中点,过点M 作OB 的平行线,交⊙O 于点E 和点F .(1)如图1,当AB =BC 时.①求∠ABO 的度数;②联结OE ,求证:30OEF ∠=︒;(2)如图2,联结OE ,当AB BC ≤时,tan ∠OEF =x ,ABy BC=,求y 关于x 的函数关系式并直接写出定义域.A B CMOEFA BCMOEF(第25题图1)(第25题图2)(备用图)2023学年第二学期初中数学学科质量调研参考答案及评分标准一、选择题(本大题共6题,每题4分,满分24分)1.B ;2.C ;3.C ;4.D ;5.D ;6.A .二、填空题(本大题共12题,每题4分,满分48分)7.2;8.三;9.23x <<;10.1612a b +;11.1x =-;12.1m >;13.52192516.x y x y +=⎧⎨+=⎩,;14.90;15.2;16.23;17;18.257.三、解答题(本大题共8题,满分78分)19.解:原式122=-++-3=+20.解:(1)原式()211111(1)a a a a a a ++=+÷---()21111(1)1a a a a a a +-=+--+111aa a =+--11a a +=-.把a =11a a +-得,原式=3=+.21.证明:(1)∵GD ∥AC ,∴∠DGF+∠GFE =180°.∵∠DGF =∠DEF ,∴∠DEF+∠GFE =180°,∴GF ∥DE ,∴四边形EFGD 是平行四边形(2)∵GF ∥DE ,∴∠GFE =∠DEC .∵∠B =∠GFE ,∴∠B =∠DEC .∵∠C =∠C ,∴△DCE ∽△ACB ,∴DE CDAB AC=.∵四边形EFGD 是平行四边形,∴GF=DE .∴GF CDAB AC=.22.解:(1)设()11110y k x b k =+≠,把8x =,110y =;11x =,116y =分别代入得:11118101116k b k b +=⎧⎨+=⎩,.解得1126k b =⎧⎨=-⎩,.∴1y 与x 的函数关系式为126y x =-.设()22220y k x b k =+≠,把8x =,225y =;11x =,222y =分别代入得:22228251122k b k b +=⎧⎨+=⎩,.解得22133k b =-⎧⎨=⎩,.∴2y 与x 的函数关系式为233y x =-+.(2)1227v y y x =+=+总,情况1:当123y v 总≥时,即()226273x x -+≥,解得18x ≥.情况2:当223y v 总≥时,即()233273x x -++≥,解得9x ≤.故8时到9时,可变车道行车方向必须自东向西,18时到20时,可变车道行车方向必须自西向东,可变车道行车方向在9时到18时之间由自东向西变为自西向东均可以.23.(1)∠A =∠B =∠C =∠D =∠E =∠F ,AB =BC =CD =DE =EF =FA .(2)证明:联结OB ,作OH ⊥AB ,垂足为点H .由题意知:OP =2,12OM OP =,AF PQ ⊥,MN MA =,AN =AB =BC =CD =DE .∴90MOA ∠=︒,Rt △AMO中,AM =.∵112122OM OP ==⨯=,OA =OP =2,∴AM =.∴MN MA =,1ON MN MO =--.∵AF PQ ⊥,∴90NOA ∠=︒,Rt △ANO中,AN ===∴AN AB ==∵OA=OB ,OH ⊥AB,∴12AH AB ==,2AOB AOH ∠=∠.∴Rt △AHO 中,∠AHO =90°,2sin 2AH AOH AO ∠===.∵sin 36︒=∴∠AOH =36°,∠AOB =2∠AOH =72°.∵AB =BC =CD =DE ,∴∠AOB =∠BOC =∠COD =∠DOE =72°.∵∠AOB +∠BOC +∠COD +∠DOE +∠EOA =360°,∴∠AOE =72°.∴∠AOB =∠BOC =∠COD =∠DOE =∠EOA =72°,∴AB =BC =CD =DE =EA .∵∠AOB =72°,OA =OB ,∴∠OAB =∠OBA .∵∠AOB +∠OAB +∠OBA =180°.∴∠OAB =∠OBA =54°.同理可得:∠OBC =∠OCB =54°,∴∠ABC =108°,同理可得:∠BCD =108°,∠CDE =108°,∠DEA =108°,∠EAB =108°,∴∠ABC =∠BCD =∠CDE =∠DEA =∠EAB .∵AB =BC =CD =DE =EA ,∴五边形ABCDE 是正五边形.24.解:(1)∵抛物线212y x bx c =++经过点A (1-,0),C (0,2-),∴1022b c c ⎧-+=⎪⎨⎪=-⎩,.,解得322b c ⎧=-⎪⎨⎪=-⎩,.∴抛物线的表达式为213222y x x =--.(2)D (32,0),Q (52-,2-).(3)∵抛物线的表达式为213222y x x =--,∴对称轴为32x =,B (4,0).分两种情况讨论:设抛物线的对称轴32x =与直线BC 交点为F ,与直线AC 交点为G .(i )当点E 在直线32x =上且位于点D 与点F 之间(点E 不与点D 、F 重合)时,四边形ACBE 为凹四边形.∵B (4,0),C (0,2-),∴直线BC 的表达式为:122y x =-,∴点F 的坐标为(32,54-).∴54-<t <0.(ii )当点E 在直线32x =上且位于点G 下方时,四边形ACBE 为凹四边形.∵A (1-,0),C (0,2-),∴直线AC 的表达式为:22y x =--,∴点G 的坐标为(32,5-).∴t <5-.综上所述,54-<t <0或t <5-.25.解:(1)①联结OA ,OC .∵AB=BC ,∴∠AOB =∠BOC .∵OA =OB =OC ,∴∠BAO =∠ABO ,∠OBC =∠OCB .∵180AOB OAB OBA ∠+∠+∠=︒,180COB OCB OBC ∠+∠+∠=︒.∴∠ABO =∠CBO .∵AB BC ⊥,∴∠ABC =90°.∴∠ABO =45°.②设OC 与EF 交于点P .∵∠OBC =∠ABO =45°,∴∠BOC =90°.∵EF ∥OB ,∴∠OPE =90°.∵点M 是弦BC 的中点,EF ∥OB ,∴12OP OC =.∴12OP OE =.∵Rt △OPE 中,∠OPE =90°,∴∠OEF =30°.(2)过点M 作MG OB ⊥于点G ,过点O 作OH EF ⊥于点H .在Rt △OEH 中,∠OHE =90°,tan OH OEF x HE∠==.设HE =a ,则OH =ax,OE ===.∵点M 是弦BC 的中点,OM 经过圆心,∴OM BC ⊥.在Rt △OMB 中,∠OMB =90°,MG OB ⊥于点G .∴∠BOM +∠OBM =∠OBM +∠GMB =90°,∴∠BOM =∠GMB ,∠OGM =∠BGM ,情况(i )图情况(ii)图∴△OGM ∽△MGB ,∴OG GM GM GB=,2GM OG GB =g .∵EF ∥OB ,MG OB ⊥,OH EF ⊥,∴设GM OH ax ==,设OG =t ,则GB OB OG t =-=-.∴()()2ax t t =,2220t a x -+=.解得,t =.∴AB OM OG y BC BM GM ====AB ≤BC ,∴舍去较大值)∴0y x ⎛=< ⎝⎭.。

2023年上海市普陀区中考二模数学卷含答案

九年级第二学期数学自适应练习一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.中国是最早认识正数和负数的国家,魏晋时期的数学家刘徽就提出了负数的概念,如果将零下2℃记作2-℃,那么3℃表示()A.零上3℃B.零下3℃C.零上5℃D.零下5℃2.下列算式中,计算结果为6a 的是()A.33a a +B.23a a ⋅ C.()32a D.122a a ÷3.已知函数y kx =(k 是常数,0k ≠)的图像经过第一、三象限,下列说法中正确的是()A.0k <B.图像一定经过点(1,)kC.图像是双曲线D.y 的值随x 的值增大而减小4.某城市30天的空气质量状况统计如下:()A.平均数B.众数C.中位数D.方差5.如果用两根长度相同的细竹签作对角线,制作一个四边形的风筝,那么做成的风筝形状不可能是()A.矩形B.正方形C.等腰梯形D.直角梯形6.如图,ABC 中,60BAC ∠=︒,BO 、CO 分别平分ABC ∠、ACB ∠,2AO =,下面结论中不一定正确的是()A.120BOC ∠=︒ B.30BAO ∠=︒C.3OB = D.点O 到直线BC 的距离是1二、填空题:(本大题共12题,每题4分,满分48分)7.因式分解:24x -=__________.8.已知()23f x x =-,那么(3)f =________.9.方程x =的根是_______.10.如果关于x 的方程230x x m -+=有两个相等的实数根,那么m =__________.11.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度的近视眼镜镜片的焦距为0.25米,那么眼镜度数y 关于镜片焦距x 的函数解析式是________.12.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为________.13.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m 个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m =________.14.学校为了解本校初三年级学生上学的交通方式,随机抽取了本校20名初三学生进行调查,其中有2名学生是乘私家车上学,如图是收集数据后绘制的扇形图.如果该校初三年级有200名学生,那么骑自行车上学的学生大约有________人.15.如图,斜坡AB 的坡度1i =AH 的情况下将坡度变缓,调整后的斜坡AC 的坡度21:2.4i =,已知斜坡10AB =米,那么斜坡AC =________米.16.如图,AD BC ∥,AC 、BD 交于点O ,2BO OD =,设AD a = ,AB b =,那么向量OC 用向量a 、b表示为________.17.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =,以点E 为圆心、AE 为半径作E (如图),点F 在边BC 上,以点F 为圆心、CF 为半径作F .如果F 与E 外切,那么CF 的长是________.18.在ABC 中,90BAC ∠=︒,6AB =,4AC =,D 为AB 中点(如图),E 为射线CA 上一点,将ADE V 沿着DE 翻折得到A DE ' ,点A 的对应点为A ',如果90EA C '∠=︒,那么AE =________.三、解答题:(本大题共7题,满分78分)19.计算:2121(2023)184π-⎛⎫+-- ⎪⎝⎭.20.解不等式组:632,22(1)511,x x x x +⎧-≤⎪⎨⎪+<+⎩并把解集在数轴上表示出来.21.如图,在ABC 中,AD BC ⊥,垂足为点D ,DE AC ∥,4cos 5C =,10AC =,2BE AE =.(1)求BD 的长;(2)求BDE 的面积.22.购物节期间,A 、B 两家网店分别推出了促销活动,A 店活动:当购买的商品总金额在200元及以内,不享受折扣,当购买的商品总金额超过200元,超过200元的金额打a 折,A 店购物的实付总金额y (元)与商品总金额x (元)之间的函数关系如图所示;B 店活动:所有商品直接打七折.(1)当A 店购买的商品总金额超过200元时,求出y 与x 之间的函数解析式;(2)A 店推出的促销活动中:=a ________;(3)某公司计划购买某种型号的优盘,采购员发现A 店的单价要比B 店的单价贵1元,如果购买相同数量的优盘,在A 800元,而在B 店的实付总金额是819元.请求出A 店这种型号优盘的单价.23.已知:如图,四边形ABCD 中,AB CD ∥,90BAD ∠=︒,对角线AC 、BD 相交于点O ,点E 在边BC 上,AE BD ⊥,垂足为点F ,AB DC BF BD ⋅=⋅.(1)求证:四边形ABCD 为矩形;(2)过点O 作OG AC ⊥交AD 于点G ,求证:2EC DG =.24.在平面直角坐标系xOy 中(如图),已知抛物线22y ax x c =-+(0a ≠)与x 轴交于点()1,0A -和(3,0)B ,与y 轴交于点C .抛物线的顶点为点D .(1)求抛物线的表达式,并写出点D 的坐标;(2)将直线BC 绕点B 顺时针旋转,交y 轴于点E .此时旋转角EBC ∠等于ABD ∠.①求点E 的坐标;②二次函数2221y x bx b =++-的图象始终有一部分落在ECB 的内部,求实数b 的取值范围.25.如图,半圆O 的直径4AB =,点C 是 AB 上一点(不与点A 、B 重合),点D 是 BC 的中点,分别连接AC 、BD .(1)当AC 是圆O 的内接正六边形的一边时,求BD 的长;(2)设AC x =,BD y =,求y 与x 之间的函数解析式,并写出x 的取值范围;(3)定义:三角形一边上的中线把这个三角形分成两个小三角形,如果其中有一个小三角形是等腰三角形,且这条中线是这个小三角形的腰,那么这条中线就称为这个三角形的中腰线.分别延长AC 、BD 相交于点P ,连接PO .PO 是PAB 的中腰线,求AC 的长.九年级第二学期数学自适应练习一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】【1题答案】A 【2题答案】C 【3题答案】B 【4题答案】C 【5题答案】D 【6题答案】C二、填空题:(本大题共12题,每题4分,满分48分)【7题答案】(+2)(-2)x x 【8题答案】3【9题答案】2x =【10题答案】94【11题答案】100y x =【12题答案】8【13题答案】2【14题答案】30【15题答案】13【16题答案】2433b a+【17题答案】4116【18题答案】32或6三、解答题:(本大题共7题,满分78分)【19题答案】16-【20题答案】32x -<≤【21题答案】(1)16BD =(2)32【22题答案】(1)()3802005y x x =+>(2)6(3)40元【24题答案】(1)2=23y x x --,()1,4D -(2)①()0,1E ;②4b -<<【25题答案】(1)2BD =(2)y =()04x <<(3)AC 的长为1或3。

上海市2024年普陀区中考数学二模试卷

一、选择题1. 上海市2024年普陀区中考数学二模试卷是同类二次根式的是( )A.B.C.D.2. 下列运算正确的是( ) A . +=a a a 342B . −=a a 32C . ⋅=a a a 332D . ÷=a a a 323. 下列方程中,有两个不相等的实数根的是( ) A . =x 02B . −=x 102C . −+=x x 2202D . −+=x x 21024. 已知正比例函数=y kx (k 是常数,≠k 0)的图像经过点A (2,6),那么下列坐标所表示的点在这个正比例函数图像上的是( ) A . −−1,3)(B . −1,3)(C .(6,2)D . −6,2)(5. 已知ABC 中,AH 为边BC 上的高,在添加下列条件中的一个后,仍不能判断ABC 是等腰三角形的是( ) A . BH =HCB . ∠BAH =∠CAHC . ∠B =∠HACD . ABHAHCSS=6. 如图1,在ABC 中,∠ACB =90°,G 是ABC 的重心,点D 在边BC 上,⊥DG GC ,如果BD =5,CD =3,那么BCCG的值是( ) A.B.C.D.二、填空题7. 计算:=a332)(________________9. 不等式组⎩−>⎨⎧+>x x 120360的解集是______________10. 已知反比例函数=−xy k 1的图像位于第二、四象限,那么k 的取值范围是_______________ 11. 已知一个角的余角是这个角的两倍,那么这个角的补角是_______________度12. 现有四张分别是等边三角形、菱形、直角梯形、等腰梯形的纸片,从这四张纸片中任意抽取一张恰好是轴对称图形的概率是_______________13. 已知直线=+y x 24与直线y =1相交于点A ,那么点A 的横坐标是________________14. 在直角坐标平面内,将点A 先向右平移4个单位,再向上平移6个单位得到点B ,如果点A 和点B 恰好关于原点对称,那么点B 的坐标是_______________15. 学校为了解本校九年级学生阅读课外书籍的情况,对九年级全体学生进行“最喜欢阅读的课外书籍类型”的问卷调查(每人只选一个类型),如图2是收集数据后绘制的扇形图,如果喜欢阅读漫画类书籍所在扇形的圆心角是72°,喜欢阅读小说类书籍的学生有72人,那么该校九年级喜欢阅读科技类书籍的学生有__________________人16. 如图3,梯形ABCD 中,AD //BC ,过点A 作AE //DC 分别交BD 、BC 于点F 、E ,=BC BE 32,设 ,AD a AB b ==,那么向量FE 用向量,a b 表示为______________17. 已知正方形ABCD 的边长为4,点E 、F 在直线BC 上(点E 在点F 的左侧),∠EAF =45°,如果BE =1,那么CF 的长是______________18. 如图4,在ABC 中,AB =AC =5,=B 5cos 4,分别以点B 、C 为圆心,1为半径长作,B C ,D 为边BC 上一点,将ABD 和B 沿着AD 翻折得到'AB D 和'B ,点B 的对应点为点B ',AB '与边BC 相交,如果'B 与C 外切,那么BD =________________三、解答题19. 计算:⎝⎭⎪−++⎛⎫−4281221220. 解方程:−++=x x x x9326221. 如图5,在ABC 中,∠B =2∠C ,点D 在边BC 上,AB =AD =13,BC =23. (1)求BD 的长; (2)求tanC 的值.22. 甲外卖平台的外卖员小张看到乙外卖平台外卖员小王的月工资收入比自己高,于是想跳槽去乙外卖平台工作,如果不考虑其他因素,仅根据以下信息,请你帮助小张来决策是否需要跳槽到乙外卖平台,并说明理由.信息一:甲、乙两个外卖平台的税前月工资收入计算方式相同,如下:税前月工资收入=(每日底薪+每单提成⨯日均送单数)⨯月送单天数—当月违规扣款 (其中这两个外卖平台每个月的月送单天数均相同) 信息二:乙外卖平台外卖员小王的月工资单如下表:信息三:如图6-1,随机抽取了小张在甲外卖平台若干天的日均送单数绘制成条形图;如图6-2,根据小张在一年中每月的违规送单数绘制成条形图23. 已知:如图7,四边形ABCD 中,AB //CD ,点E 在边AD 上,CE 与BA 的延长线交于点F ,=AB EDFA AE. (1)求证:四边形ABCD 为平行四边形;(2)联结FD ,分别延长FD 、BC 交于点G ,如果=⋅FC FD FG 2,求证:⋅=⋅AD CG BF CD .24. 在平面直角坐标系xOy 中(如图8),已知抛物线=−+≠y a x m n a 02)()(与x 轴交于点A 、B ,抛物线的顶点P 在第一象限,且∠APB =90°.(1)当点P 的坐标为(4,3)时,求这个抛物线的表达式;(2)抛物线=−+≠y a x m n a 02)()(表达式中有三个待定系数,求待定系数a 与n 之间的数量关系; (3)以点P 为圆心,P A 为半径作P ,P 与直线=+y x n 2相交于点M 、N ,当点P 在直线=y x 21上时,用含a 的代数式表示MN 的长.25. 如图9,在梯形ABCD 中,AD //BC (AD <BC ),∠A =90°,BC =CD =6,将梯形ABCD 绕点C 按顺时针方向旋转,使点B 与点D 重合,此时点A 、D 的对应点分别是点E 、F . (1)当点F 正好落在AD 的延长线上时,求∠BCD 的度数; (2)联结AE ,设==AD x AE y ,. ①求y 关于x 的函数解析式;②定义:同中心同边数的两个正多边形称为双同正多边形,设∠BCF 是一个正多边形的中心角,联结BD ,请说明以线段BD 、AE 为边的正多边形是双同正多边形的理由,当这两个正多边形的面积比是4:5时,求双同正多边形的边数.一、选择题1. D2. C3. B4. A5. C6. 参考答案D二、填空题7. a 968. =x 3 9. −<<x 221 10. k <1 11. 150 12. 43 13. −2314.(2,3) 15. 27 16. 42a b +33 17. 38或5818. −44三、解答题 19.1020. =x 6 21.(1)10 (2)3222. 不需要 23.(1)证明略 (2)证明略 24.(1)=−−+y x 34312)( (2)+=an 10(3)=−aMN 2 25.(1)60°(2)①=y②十二条边。

2020上海初三数学二模1-18题汇总(答案)

20崇明一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式是最简二次根式的是( )A .12; B .0.3; C .8; D .6.2.如果a b >,那么下列结论中一定成立的是( )A .22a b ->-;B .22a b +>+;C .2ab b >;D .22a b >.3.已知一次函数(3)62y m x m =-++,如果y 随自变量x 的增大而减小,那么m 的取值范围为( )A .3m <;B .3m >;C .3m <-;D .3m >-.4.下列说法正确的是( )A .了解我区居民知晓“创建文明城区”的情况,适合全面调查;B .甲、乙两人跳高成绩的方差分别为23S =甲,24S =乙,说明乙的跳高成绩比甲稳定;C .一组数据2,2,3,4的众数是2,中位数是2.5;D .可能性是1%的事件在一次试验中一定不会发生. 5.如果一个正多边形的外角为锐角,且它的余弦值是32,那么它是( ) A .等边三角形;B .正六边形;C .正八边形;D .正十二边形.6.下列命题正确的是( )A .对角线相等的四边形是平行四边形;B .对角线相等的四边形是矩形;C .对角线互相垂直的平行四边形是菱形;D .对角线互相垂直且相等的四边形是正方形.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:32(3)a = . 8.因式分解:39a a -= . 9.方程2x x +=的解为 .10.如果方程260x x m -+=没有实数根,那么m 的取值范围是 .11.分别写有数字3、1-、13、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是 .12.将抛物线22y x =+向右平移3个单位,再向上平移2个单位后,那么所得新抛物线的解析式为 .13.已知点G 是ABC △的重心,如果AB a =,AC b =,那么向量AG 用向量a 和b 表示为.14.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制成如下不完整的统计图表.根据图表信息,那么扇形图中表示C 的圆心角的度数为 度.15.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为 元.16.如图,在ABC △中,AB AC =,30A =︒∠,直线a b ∥,点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E , 如果1145=︒∠,那么2∠的度数是 .20崇明一、选择题(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ;二、填空题(本大题共12题,每题4分,满分48分)7. 69a 8.(3)(3)a a a +-; 9.2x =; 10.9m >; 11.25; 12.2(3)4y x =-+; 13.1133a b +; 14.36;15.2000; 16.40°; 17.3; 18.12.(第14题图1) (第16题图)ABCDEab12(第14题图2)成绩等级扇形统计图AB C D25%成绩等级频数分布表 成绩等级频 数 A 24 B 10 CxD 220奉贤一、选择题(本大题共6题,每题4分,满分24分) 1.下列计算中,结果等于2m a 的是()(A )m m a a +; (B )2m a a ×; (C )()m m a ; (D )2()m a . 2.下列等式成立的是()(A )233()=; (B )233()-=-; (C )333=; (D )233(-)=-. 3.如果关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根,那么实数m 的值可以是() (A )0; (B )1; (C )2; (D )3.4.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数x (秒)及方差S 2(秒2)如表1所示. 如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是() 表1:(A )甲; (B )乙; (C )丙; (D )丁.5.四边形ABCD 的两条对角线AC 、BD 互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()(A )ABD BDC ∠=∠; (B )ABD BAC ∠=∠; (C )ABD CBD ∠=∠; (D )ABD BCA ∠=∠.6.如果线段AM 和线段AN 分别是△ABC 边BC 上的中线和高,那么下列判断正确的是() (A )AM AN >; (B )AM AN ≥; (C )AM AN <; (D )AM AN ≤. 二、填空题(本大题共12题,每题4分,满分48分)7.计算:3293a b a ÷= .8.如果代数式23x-在实数范围内有意义,那么实数x 的取值范围是 . 9.方程14x +=的解是 .10.二元一次方程x +2y =3的正整数解是 .11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M 的横坐标和纵坐标,那么点M 在双曲线4y x=上的概率是 . 12.如果函数)(0k kx y ≠=的图像经过第二、四象限,那么y 的值随x 的值增大而 .(填“增大”或“减小”)13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到 万亿.14.已知平行四边形ABCD ,E 是边AB 的中点.设AB a =,BC b =,那么DE = .(结果用a 、b 表示).15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线甲 乙 丙 丁 x 7 7 7.5 7.5 S 2 2.1 1.921.8图3D AB C 图2 A B P A 在线听课 B 在线答题 C 在线讨论 D 在线答疑 E 在线阅读 图1 E 10% A 20% D B 25% C 15%抽取的学生最感兴趣的学习方式的扇形图 答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图1).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为 人.16.如图2,一艘轮船由西向东航行,在A 处测得灯塔P 在北偏东60°的方向,继续向东航行40海里后到B 处,测得灯塔P 在北偏东30°的方向,此时轮船与灯塔之间的距离是 海里.17. 在矩形ABCD 中,AB =5,BC =12.如果分别以A 、C 为圆心的两圆外切,且圆A 与直线BC 相交,点D 在圆A 外,那么圆C 的半径长r 的取值范围是 .18.如图3,在Rt △ABC 中,∠ACB =90°,∠B =35°,CD 是斜边AB 上的中线,如果将△BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么∠CAE 的度数是 度.1.D ; 2.A ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分)7. 3ab ;8. 3x ¹; 9. 15x =; 10. 11x y =⎧⎨=⎩;11.13; 12. 减小; 13.106.1; 14.12a b - ; 15.360;16.40; 17.18r <<;18.125.[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列各数中,无理数是 A .12-;B .16;C .237; D .2π. 2.直线1y x =-+不经过 A .第一象限;B .第二象限;C .第三象限;D .第四象限.3.如果关于x 的方程x 2﹣4x +m =0有两个不相等的实数根,那么m 的取值范围为 A .4m ≤;B .4m <;C .4m ≥;D .4m >.4.如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是 A .8,7.5;B .8,7;C .7,7.5;D .7,7.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,下列说法中,错误..的是 A .∠ABC =90°; B .AC=BD ;C .OA=OB ;D .OA=AB .6.已知在△ABC 中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如下表),那 么交点O 是△ABC 的 A .外心;B .内切圆的圆心;C .重心;D .中心.示意图 作图步骤(1)分别以点B 、C 为圆心,大于12BC 长为半径作圆弧,两弧分别交于点M 、N ,联结MN 交BC 于点D ;(2)分别以点A 、C 为圆心,大于12AC 长为半径作圆 弧,两弧分别交于点P 、Q ,联结PQ 交AC 于点E ;(3)联结AD 、BE ,相交于点O二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:23)a (= .8.计算:2(13)-= . 9.方程21x -=的解为 .10.函数1x y x+=的定义域为 . 11.如果抛物线2(1)9y k x =-+在y 轴左侧的部分是上升的,那么k 的取值范围是 .AC D第5题图 B O 第4题图 A C D B E M NP QO12. 从一副52张没有大小王的扑克牌中任意抽取一张牌,抽到梅花的概率是 .13.某中学为了解初三学生的视力情况,对全体初三学生的视力进行了检测,将所得数据整理后画出频率分布直方图(如图),已知图中从左到右第一、二、三、五小组的频率分别为 0.05,0.1,0.25,0.1,如果第四小组的频数是180人,那么该校初三共有 位学生.14.某公司市场营销部的个人月收入y (元)与其每月的销售量x (件)成一次函数关系,其图像如图所示,根据图中给出的信息可知,当营销人员的销售量为0时,他的收入是 元. 15.如图,在梯形ABCD 中,AD ∥BC ,AB=BD=BC ,如果∠C =50°,那么∠ABD 的度数是 .16.如图,在△ABC 中,AD 为边BC 上的中线,DE ∥AB ,已知ED a =uu u r r ,BC b =uu u r r,那么用a r 、b r 表示AD u u u r= .17.如图,在正方形ABCD 中,AB =10,点E 在正方形内部,且AE ⊥BE ,cot ∠BAE =2,如果以E 为圆心,r 为半径的⊙E 与以CD 为直径的圆相交,那么r 的取值范围为 .18.如图,在Rt △ABC 中,∠C=90°,AC =6,BC =8,点D 、E 分别是边BC 、AB 上一点,DE ∥AC ,BD =52,把△BDE 绕着点B 旋转得到△BD ’E ’(点D 、E 分别与点D ’、E ’对应),如果点A 、D ’、E ’在同一直线上,那么AE ’的长为 .ACD第17题图BEC 第18题图A BDE第14题图 xO 13000 y100 200 8000CABD E第16题图AC D第15题图 B 第13题图视力3.954.25 4.55 4.855.15 5.45 组距 频率1.D 2.C 3.B 4.A 5.D 6.C二、填空题本大题共12题,每题4分,满分48分) 7.6a 8.31-9.x =1 10.1x ≥-且0x ≠ 11.1k <12.1413.36014.3000 15.20° 16.122a b +r r17.355355r -<<+ 18.3524或524【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列正整数中,属于素数的是 (A )2;(B )4;(C )6;(D )8.2.下列方程没有实数根的是(A )20x =;(B )20x x +=; (C )210x x ++=; (D )210x x +-=.3.一次函数21y x =-+的图像不经过 (A )第一象限; (B )第二象限; (C )第三象限;(D )第四象限.4.某班在统计全班33人的体重时,算出中位数与平均数都是54千克,但后来发现在计算时,将其中一名学生的体重50千克错写成了5千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 1
N
M C
B
A
B 1
18.(2010宝山区)如图4,⊙A 、⊙B 的圆心A 、B 都在直线l 上,⊙A 的半径为1cm ,⊙B
的半径为2cm ,圆心距AB =6cm. 现⊙A 沿直线l 以每秒1cm 的速度向右移动,设运动时间为t 秒,写出两圆相交时,t 的取值范围: ▲ .9753<<<<t t 或
18.(2010奉贤区)在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '的值为 ; 10或310
17. (2010虹口区)如图2,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在
AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长
为 24 .
18. (2010虹口区)已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取
2BF AF =,EF 交BD 于点G ,则
GB GD
= .25或2
3
18.如图4,在ABC ∆中,∠ACB =︒
90,AC =4,BC =3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 0.8 .
E
P
G
H
B
A C
D 图2
a
b
c
图1
18.(2010金山区二模卷)如图2,在△ABC 中,AD 是BC 上的中线,BC =4, ∠ADC =30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 1 .
18.(2010静安区二模卷)如图,半径为1且相外切的两个等圆都内切于半径为3的圆,
那么图中阴影部分的周长为 .
37
C /
D C
A
图2。

相关文档
最新文档