反比例函数图象和性质教学案例
人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。
本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。
通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。
但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。
同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。
三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。
2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。
3.能将反比例函数应用于实际问题中,提高解决问题的能力。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图象的绘制和分析。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。
六. 教学准备1.准备反比例函数的相关案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备反比例函数图象的素材,如图片、图表等。
七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。
让学生思考并讨论这些问题,引导学生发现其中的规律。
呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。
同时,教师给出反比例函数的定义,并解释反比例函数的性质。
操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。
反比例函数的图象与性质教案

反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。
反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重难点1) 重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键:教师画图中要规范,为学生树立一个可以学习的模板。
教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段:教师画图,学生模仿。
教具:三角板,小黑板。
学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。
)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。
二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例

在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。
初中数学八年级下册苏科版11.2反比例函数的图像与性质优秀教学案例

2.反比例函数的性质有哪些?
3.如何运用反比例函数解决实际问题?
(四)总结归纳
在学生小组讨论后,我会引导学生总结反比例函数的性质,并归纳出反比例函数的一般形式。同时,我会强调反比例函数在实际生活中的应用,让学生认识到学习反比例函数的重要性和实际意义。
(五)作业小结
在课堂的最后,我会布置相关的作业,让学生巩固所学知识。作业包括填空题、选择题和解答题,难度适中。在学生完成作业后,我会及时进行批改和反馈,帮助学生巩固知识,提高解题能力。同时,我还会鼓励学生在课后进行自主学习,深入探究反比例函数的知识,提高学生的综合素质。
(四)反思与评价
在教学过程中,我将引导学生进行反思与评价,让学生总结自己在学习过程中的收获和不足。例如,可以让学生回答以下问题:
1.你觉得反比例函数的性质是什么?
2.你认为自己在学习反比例函数的过程中遇到了哪些困难?是如何克服的?
3.你如何评价自己在学习反比例函数的表现?
四、教学内容与过程
(一)导入新课
2.反比例函数的图像有哪些特点?
3.反比例函数的性质有哪些?如何证明?
4.如何运用反比例函数解决实际问题?
(三)小组合作
在教学过程中,我将组织学生进行小组合作,共同探讨反比例函数的性质。例如,可以让学生分组讨论以下问题:
1.反比例函数的图像有哪些特点?
2.反比例函数的性质有哪些?
3.如何运用反比例函数解决实际问题?
在教学过程中,我将以实际问题为载体,引导学生通过观察、分析、归纳等方法,探索反比例函数的图像与性质。同时,注重培养学生的动手操作能力、逻辑思维能力和数学建模能力,使他们在学习过程中体验到数学的乐趣,提高他们对数学学科的兴趣和自信心。
反比例函数的图象和性质(教案)

反比例函数的图象和性质(1)【课型】 新授课 【教学目标】1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法 【教学重点】理解并掌握反比例函数的图象和性质. 【教学难点】正确画出图象,通过观察、分析,归纳出反比例函数的性质 【教学过程】 一、探求新知1、提出问题:(1)一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?(2)画函数图象的方法是什么?其一般步骤有哪些?应注意什么? (3)反比例函数的图象是什么样呢?例1、画出反比例函数y 6=与y 6-=的图象.小;② 当k <0时,图象的两支分别位于二、四象限,在每个象限内y 随x 的增大而增大;③ 图象的两个分支都无限接近x 轴、y 轴,但都与x 轴、y 轴不相交;④ k 越大,图象的弯曲度越小,曲线越平直,越远离坐标轴;⑤ 图象关于直线y =±x 对称.注:双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论,不能一概而论.二、例题分析例2.见教材P48,用描点法画图,注意强调: (1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例3.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件解:∵ 32)1(--=m xm y 是反比例函数∴ m 2-3=-1,且m -1≠0又∵ 图象在第二、四象限∴ m -1<0解得2±=m 且m <1 ∴ 2-=m例4.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B三、课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为四、课后作业1.课本习题第2、3题.2.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,求m 的取值范围. 3. 反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是4. 已知反比例函数y a x a=--()226,当x >0时,y 随x 的增大而增大,求该函数关系式. 五、课堂小结1、反比例函数的图象及性质.2、双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论.3、在解决函数问题时,注意数形结合. 【课后反思】。
26.1.2反比例函数的图像与性质(教案)

-理解反比例函数图像与性质之间的关系,特别是\( x \)接近0时,\( y \)值的变化;
-将反比例函数图像与实际情境联系起来,进行数学建模;
-解决涉及反比例函数的实际问题时,如何提取关键信息,建立数学模型。
举例:在分析反比例函数图像时,难点在于让学生理解当\( x \)接近0时,\( y \)值会无限增大,图像呈现出渐进线。此时,教师可通过动态演示或实际案例(如速度与时间的关系),帮助学生形象理解这一难点。
此外,课堂总结时,我询问了学生们的疑问,他们提出了一些很好的问题,这表明他们在课堂上确实有所思考。我感到欣慰的同时,也意识到自己在解答问题时需要更加耐心和细致,确保每个学生都能跟上课堂节奏。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在描述一些变量关系时非常重要,如在经济学、物理学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间的关系为例,当速度固定时,行驶的距离与时间成反比,从而引入反比例函数的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教例函数的定义及其表达形式,强调\( k \neq 0 \)的条件;
-反比例函数图像的特点,包括图像在坐标轴上的分布、对称性等;
反比例函数的图象和性质教案(完美版)

在线分享文档:麦群超反比例函数的图象和性质【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】 经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】 理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题 我们知道,一次函数y = 6x 的图象是一条直线,那么反比例函数y =6x 的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x 和y =12x的图象; 【教学说明】将全班同学分成两大组,分别完成问题y =6x 、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x ≠0,故在x <0和x >0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x <0和x >0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.在线分享文档让每个人平等地提升自我:麦群超 问题2 反比例函数y =-6x 和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x 和y =-6x的图象呢?同学间相互交流. 【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知. 【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减 小),曲线越来越接近x 轴(或y 轴),但这两条曲线永不相交;(2) y = 6x 和y =-6x 及y =12x 和y =-12x 的图象分别关于x 轴对称,也关于y 轴对称. 思考 观察函数y = 6x 和y =-6x 以及y =12x 和y =-12x 的图象. (1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y 随x 的变化如何变化? 【归纳结论】反比例函数y =k x 的图象及其性质: (1)反比例函数y=k x (k 为常数,且k 0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =m x 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值. 【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)在线分享文档地提升自我By :麦群超(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、运用新知,深化理解 1 .若反比例函数 y =21m x -的图象的一个分支在第三象限,则m 的取值范围是 . 2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4x 【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论, 加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分. 【答案】1.m >122. C 五、师生互动,课堂小结 本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题”中选取.在线分享文档让每个人平等2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k >0时,双曲线的两个分支在一、三象限;k <0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y =k x (k 0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的图象和性质》教学设计案例
一、内容和内容解析
函数是初中数学的核心内容之一,是实现代数与几何沟通的桥梁。
反比例函数是初中阶段要求学习的三种函数的第二种。
是在学习了一次函数的图象、性质和反比例函数概念,并掌握研究函数的一般方法后,来研究反比例函数的图象和性质。
它在研究方法上更具有一般性和代表性,是一次函数的延续和二次函数的基础,在初中函数的学习中起着承上启下的作用。
本节课通过画反比例函数图象,利用函数的图象来研究函数的性质,是学习函数的一般方法。
因此,我们应让学生会画反比例函数的图象,并能根据图象探索反比例函数的性质,并在理解性质的基础上能够灵活运用。
二、目标和目标解析
1、会用描点法画函数图象,理解反比例函数的性质,掌握反比例函数的变化规律,并能灵活运用解决问题。
让学生经历动手操作—猜想—验证这一数学活动过程,发展学生的推理和归纳能力。
2、在探索反比例函数性质的过程中,让学生经历从特殊到一般,从具体到抽象的过程,寻找规律,自我归纳得到结论。
3、在探究反比例函数的图象和性质的过程中培养学生合作交流的学习习惯,在反比例函数的学习和应用过程中积累解题经验,体验成功的喜悦。
增强学生学数学、用数学的兴趣。
三、教学诊断分析
1、尽管学生在学习一次函数时对函数的变化关系有了较丰富的体验和感受,也具备了一定的探索能力和归纳能力,但在本节课中,学生通过列表、描点、连线画出有别于一次函数图象的双曲线,以及由反比例函数的图象归纳总结出反比例函数的性质会有一定的挑战性。
教学时教师要当好学生学习的组织者、引导者、合作者,让学生成为学习的主人,主动探究得到这些知识更能激发学生今后的学习热情。
2、八年级学生好奇心强,求知欲高,已初步具有对数学活动进行探究的能力。
但分析思考的能力参差不齐,两极分化开始形成,个别差异相对明显。
例如在画反比例函数图象时,表中自变量的取值应该怎样选取,是部分学生感到困惑的地方,而对于反比例函数的增减性,前提是“在每个象限内”的理解不够透彻。
教学时注重提示函数解析式与函数图象之间的本质联系,要让学生明确“y随x的增大而增大(减小)”的代数分析法和图象分析法,并通过数形结合加深对知识的理解,搭建好数向形转化的桥梁。
3、大多数学生在数学学习中不善于总结新知识的获取方法,例如在接触到反比例函数后,以一次函数的研究方法为基础,对初中学段函数的学习套路(定义—图象—性质—应用)加以概括。
因此学习时教师通过类比正比例函数的图象和性质,引导学生总结出研究函数的一般方法。
鉴于此,本节课的教学重难点定为:
教学难点:正确画出图象,观察、分析图象归纳反比例函数的性质;
教学重点:理解并掌握反比例函数的图象和性质。
四,教学媒体:多媒体、幻灯片
五、教学过程设计
(一) 创设悬念,引入新课。
【播放视频片段】展示问题:
1、“环保”始终是两会的热点问题,为贯彻两会精神,我校打算把一块荒地改变成绿地,若这块长方形绿地的面积为6,一边长y和另一边长x之间的关系可以用怎样的函数解析式表示?y是x的什么函数?
2、反比例函数y=k/x ( k≠0, k为常数)的图象又会是什么样子呢?
3、你还记得作函数图象的一般步骤吗?
[设计意图] 通过创设问题情境,引导学生复习函数图象的知识,激发学生参与课堂学习的热情,为学生画反比例函数图象奠定基础。
(二) 自主探索,获取新知。
1、尝试画反比例函数y=6/x 的函数图象。
2、展示y=6/x 的部分作图,分析学生作错的原因。
3、让学生画反比例函数y=6/x ,y=3/x ,y=-3/x 的函数图象。
4、观察反比例函数y=6/x 和y=-6/x 以及反比例函数y=3/x ,y=-3/x 的图象思考: ① 你能发现它们的共同特征吗?
② 图象形状是什么样的?函数图象是连续的吗?无限延伸吗?会与坐标轴相交吗? ③ 每个函数的图象分别位于哪个象限?函数图象位于哪个象限的决定因素是什么? ④ 在每一象限内,y 随x 变化而怎样变化?
[设计意图]通过画反比例函数的图象,使学生进一步了解描点法画函数图象的基本步骤,培养学生动手操作能力,并让学生通过对反比例函数图象的观察、分析、总结出反比例函数的性质,有利于加深学生对性质的理解和掌握,使学生经历从特殊到一般的过程,体验知识产生、形成的过程,激发学生求知欲望,逐步培养学生抽象概括能力。
(三) 剖析图象,验证性质。
1、【多媒体动画演示】:在同一坐标下感知反比例函数的轴对称性,思考下列问题: ① 在同一坐标系里反比例函数y=6/x 和y=-6/x 有什么关系? ② 你能根据反比例数学y=k/x 的图象画出y=-k/x 的图象吗?
③ 结合反比例函数y=3/x 的图象与y=-3/x 的关系引导学生画y=-3/x 的图象。
④ 分析每支图象升降趋势。
[设计意图] 通过多媒体演示直观形象地得出y=k/x 与y=-k/x 的同一坐标系的位置关系以及如何利用这种关系画反比例函数图象,让学生初步感知双曲线特征,同时也使同学们从中感悟图形美。
2、【多媒体展示】:归纳反比例函数图象和性质并与一次函数比较完成表格:
[设计意图] 以表格的形式展现反比例函数的性质,更清楚、直观,便于学生记忆、掌握。
加深学生对性质的理解,为后面的灵活应用性质解题打好基础。
(四) 巩固应用,内化新知。
【多媒体展示】:
1下列函数是反比例函数的是( )
(A )y=x+1 (B )y=6x (C )y=x (D )3xy=1
2、已知
y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________,那么它在每个象
限内,y 随x 的增大而 月,当3-=x 时,=y _____________。
3、如图,这是下列四个函数中哪一个函数的图像( )
(A) y=3x+1 (B) y=4x
3、请写出一个图象分布在二四象限的反比例函数解析式 。
5、写出一个与x y 5
-
=的图象关于x 轴对称的反比例函数解析式 。
6、反比例函数)x
y 10
=的图象经过点(-2,m),则m= 。
(五) 小结梳理,布置作业:
(学生小结,共同完善) 【多媒体展示】:
正比例函数
类比 反比例函数
数形结合
双曲线 图像 性质 分类讨论
解决问题
作业:P46/T3 六、目标检测设计
1、已知反比例函数x
k
y =
的图象如图所求,则k 0 在图象的每一支上,y 值随x 在增大而 。
2、请你写出一个反比例函数的解析式: , 使它的图象在第二、四象限。
3、对于函数x y 3
=
,当x>0时,y 0,这部分图象在第 象限。
4、在x y 8-=中,若点(a,4)和点(2,b)在它的图象上,则x
ab
y =的图象在第 象限,
在每一象限内,y 随x 的减小而 。
5、两点P(-1,y 1),Q(1,y 2)在函数x
y 2
=
图像上,则y 1 y 2。
6、指出当k>0时,下列图象中哪些可能是y=kx 与x
k
y =(k≠0)在同一坐标系中的图象( )
7、过双曲线x
k
y
=
上任一点P 向
x 轴作垂线,垂足为A 连接OP 则△OPA 的面积与k有何关系?。