直流电机调速电路的设计
基于单片机的直流电机调速系统设计

直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)
直流电机调速系统的设计

直流电机调速系统的设计直流电机调速系统是控制直流电机转速的一个重要工程应用领域。
在很多工业领域中,直流电机的转速控制是非常重要的,因为直流电机的转速对于机械设备的运行效率和稳定性有着重要影响。
本文将详细介绍直流电机调速系统的设计原理和步骤。
一、直流电机调速系统的基本原理直流电机调速系统的基本原理是通过改变电机的电压和电流来控制电机的转速。
一般来说,直流电机的转速与电机的电压和负载有关,转速随电压增加而增加,转速随负载增加而减小。
因此,当我们需要调节直流电机的转速时,可以通过改变电机的电压和负载来实现。
二、直流电机调速系统的设计步骤1.确定设计要求:在设计直流电机调速系统之前,首先需要确定系统的设计要求,包括所需的转速范围、响应速度、控制精度和负载要求等。
这些设计要求将指导系统的设计和选择适当的控制器。
2.选择控制器:根据设计要求,选择适当的控制器。
常见的直流电机调速控制器有PID控制器、模糊控制器和自适应控制器等。
根据实际情况,选择最合适的控制器来实现转速调节。
3.选择传感器:为了实时监测电机的转速和位置,需要选择合适的传感器来进行测量。
常见的传感器有光电编码器、霍尔效应传感器和转速传感器等。
根据实际需求,选择合适的传感器进行安装和测量。
4.搭建电路:根据控制器的要求,搭建合适的电路来实现控制和测量功能。
通常需要安装电压和电流传感器来实时监测电机的电压和电流,并将测量结果反馈给控制器。
5.调试和测试:在电路搭建完成后,需要进行调试和测试来验证系统的性能。
首先调整控制器的参数,使得系统能够按照设计要求进行转速调节。
然后进行负载试验,测试系统在不同负载下的转速调节性能。
对系统进行调试和测试,可以发现问题并及时解决,确保系统能够正常工作。
6.性能优化:根据测试结果,对系统进行性能优化。
根据实际需求,调整控制器的参数和传感器的位置,改善系统的转速调节性能和响应速度。
优化后的系统将更好地满足设计要求。
三、直流电机调速系统的工程应用总结:本文详细介绍了直流电机调速系统的设计原理和步骤。
直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
直流电机调速系统设计与实现

直流电机调速系统设计与实现直流电机调速系统是一种常见的电机控制系统,通过调节电机的转速和输出功率,可以实现对机械设备的精准控制。
在工业生产和机械设备中得到广泛应用。
本文将介绍直流电机调速系统的设计和实现过程。
一、系统设计1. 电机选择:首先需要选择适合的直流电机作为调速系统的执行器。
根据需要的输出功率和转速范围,选择合适的电机型号和规格。
2. 电机驱动器选择:电机驱动器是控制电机转速的核心设备。
根据电机的额定电流和电压,选择合适的电机驱动器。
常见的电机驱动器包括PWM调速器、直流电机驱动模块等。
3. 控制器选择:控制器是调速系统的大脑,负责接收输入信号,并输出控制信号来调节电机转速。
常见的控制器包括单片机、PLC等。
4. 传感器选择:为了实现闭环控制,通常需要使用传感器来检测电机的转速和位置。
根据具体的需求选择合适的传感器,如编码器、霍尔传感器等。
5. 调速算法设计:根据应用需求,设计合适的调速算法。
常见的调速算法包括PID控制、模糊控制等。
二、系统实现1. 硬件连接:根据设计需求,将电机、电机驱动器、控制器和传感器等硬件设备连接起来。
确保电气连接正确无误。
2. 软件编程:根据设计的调速算法,编写控制程序。
在控制器上实现信号的采集、处理和输出,实现电机的闭环控制。
3. 参数调试:在系统搭建完成后,进行参数调试。
根据实际效果,调节PID参数等,使电机能够稳定运行并达到设计要求的转速和功率输出。
4. 性能测试:进行系统的性能测试,包括转速稳定性、响应速度等。
根据测试结果对系统进行优化和改进。
5. 系统应用:将设计好的直流电机调速系统应用到具体的机械设备中,实现精准的控制和调节。
根据实际应用情况,对系统进行进一步调优和改进。
通过以上设计和实现过程,可以建立一个稳定可靠的直流电机调速系统,实现对电机转速和功率的精确控制。
在工业生产和机械领域中得到广泛应用,提高了生产效率和设备的精度。
希望本文对直流电机调速系统的设计和实现有所帮助,让读者对这一领域有更深入的了解。
直流电机调速控制系统的设计

直流电机调速控制系统的设计首先,硬件设计是直流电机调速控制系统的基础。
设计者需要选择合适的电机驱动器,通常选择的是直流驱动器。
直流驱动器的选型要考虑到电机的额定功率、额定电流和额定电压等因素。
此外,还需要选择适合的控制电路,如电流反馈回路、速度反馈回路和位置反馈回路等。
其次,软件编程是直流电机调速控制系统的核心。
控制系统的编程部分需要涉及到控制算法的实现,通常采用PID控制算法。
PID控制算法是一种经典的控制算法,可以实现较好的调速性能。
在编程中,需要考虑到控制系统的响应速度、稳定性和抗干扰性等因素。
同时,还需要编写界面程序,实现与上位机的通信和数据传输等功能。
第三,传感器的选择也是直流电机调速控制系统的关键。
常见的传感器包括光电编码器、霍尔传感器和磁编码器等。
传感器的种类和参数选择要根据具体的应用需求确定。
例如,如果需要测量电机的转速,可以选择光电编码器;如果需要测量电机的位置,可以选择磁编码器。
最后,控制算法是直流电机调速控制系统的核心。
常用的控制算法包括开环控制和闭环控制。
开环控制是指通过事先设定的输入信号来控制电机转速,不考虑反馈信息。
闭环控制则是通过传感器测量的反馈信号来实时调节输入信号,以实现需要的转速。
对于直流电机调速控制系统的设计,可以按照以下步骤进行:1.确定应用需求,包括所需转速范围、转速精度要求等。
2.根据应用需求选择适合的电机、驱动器和传感器。
3.进行硬件设计,包括电路布局、传感器连接和驱动器安装等。
4.进行软件编程,包括控制算法的设计和实现、数据通信和界面设计等。
5.进行系统联调,包括对系统的各个组件进行测试和调试,确保系统工作正常。
6.进行性能测试,包括对系统的转速响应、稳定性和抗干扰性进行测试。
7.最后,进行系统的优化和调试,以达到最好的调速控制效果。
综上所述,直流电机调速控制系统的设计涉及到硬件选型、软件编程、传感器选择和控制算法等多个方面。
设计者需要综合考虑各个因素,根据实际应用需求进行系统设计,以实现最佳的调速控制效果。
直流电机调速电路设计

课程设计说明书直流电机调速电路的设计系、部:学生姓名:指导教师:专业:班级:完成时间:摘要将电子技术和控制技术引入传统的电力技术领域,利用半导体开关器件组成各种电力变换电路实现电能的变换和控制,构成了一门完整的学科,被国际电工委员会命名为电力电子学或称为电力电子技术,他是一门综合了电子技术,控制技术和电力技术的新兴交叉学科。
直流电机是电机的主要类型之一。
一台直流电机即可作为发电机使用,也可作为电动机使用,用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用。
直流电动机是人类最早发明和应用的有一种电机。
直流电动机是将直流电转换为的旋转机械。
他与交流电动机相比,虽然直流电动机因为结构复杂,维护困难,价格比较贵等缺点制约了它的发展,应用不如交流电动机广泛。
但由于直流电动机有优良的启动,调速和制动性能,因此在工业领域中仍占有一席之地。
关键词电力电子技术;直流电动机;机械能ABSTRACTWill the electronic technology and control technology into the traditional power technology, using semiconductor switching parts of all kinds of power transformation of electric power circuit implementation transformation and control, constitute a complete discipline, be door to the international electrotechnical commission named power electronics or called power electronic technology, he is a comprehensive electronic technology, control technology and the emerging interdisciplinary power technology. Dc motor is one of the main types of the motor. A dc motor as a generator can use, also can use as a motor, used as dc generators can get dc power, and as a dc motor, since it has good performance of speed adjustment, in many speed performa, is still widely used. Dc motor is the earliest human invention and application of a kind of motor. Current motor is converted to dc of rotating machine. He compared with ac motor, although dc motor for the complex structure, maintenance difficulties, price is more expensive shortcomings constrains its development, the application as ac motor widely. But because of dc motor with fine start, speed and braking performance, so in industry still has a place.Key words power electronic technology; dc motor; mechanical energy目录1 绪论 (5)1.1概述 (5)1.2直流电动机的基本理论 (5)1.2.1 直流电动机的工作原理 (5)1.2.2 直流电动机的调速 (6)1.3直流脉宽调速系统 (8)1.3.1 概述 (8)1.3.2 直流脉宽调速系统的工作原理 (8)2 系统设计方案 (10)2.1直流电动机调速电路 (10)2.1.1主要设计特点 (10)2.2.2 布线图 (10)2.1.3 注意事项 (11)3 元器件介绍 (12)3.1 SG2731 (12)3.1.1 SG2731结构及原理 (12)3.1.2 SG2731引脚及功能 (14)3.1.3 SG2731典型应用(电路参数见表3) (14)3.2 三极管C4466 和 A1693 (15)4 直流电动机调速电路的测试 (16)4.1直流电动机调速电路的测试 (16)4.1.1 测试步骤 (16)4.1.2 测试结果 (16)5 实验总结 (17)6参考文献 (18)7 致谢 (18)1 绪论1.1概述直流电机是电机的主要类型之一。
5v直流电机调速电路设计ad设计及其原理

5v直流电机调速电路设计ad设计及其原理
为了设计一个5V直流电机的调速电路,我们可以使用一个无刷直流电机(BLDC motor),以及一个电子调速器(ESC)来控制电机的转速。
基本原理是通过调整输入给电机的电压来改变电机的转速。
通常情况下,直流电机的转速与输入电压之间存在线性关系。
因此,我们可以通过调整输入电压的大小来实现对电机转速的调节。
以下是一个简单的5V直流电机调速电路设计及其原理:
1. 材料准备:
- 5V直流电机
- 电子调速器(ESC)
- Arduino或其他微控制器
- 电源(可选择5V电源)
2. 连接电机和电子调速器:
- 将电机的电源线连接到电源的正极,将电机的地线连接到电源的负极。
- 将电机的三个相线(A、B、C)连接到电子调速器的对应引脚。
3. 连接电子调速器和微控制器:
- 将电子调速器的信号线连接到微控制器的数字引脚。
这个信号线用于发送控制电机转速的指令。
4. 编程微控制器:
- 使用Arduino或其他微控制器来编写调速程序。
- 根据需要,使用PWM信号模拟模式或其他相应的驱动方式编程。
5. 控制电机转速:
- 在程序中,使用微控制器发送PWM信号控制电子调速器的输入电压。
通过调整PWM信号的占空比(即高电平持续时间占整个周期的比例)来调整电机的输出转速。
通过这样的设计,我们可以实现对5V直流电机的精确调速。
这种设计可以应用于许多需要对电机转速精确控制的场合,如机械设备、机器人、无人机等。
晶闸管直流电动机调速系统设计设计

晶闸管直流电动机调速系统设计目录1设计概述 (1)1.1 设计意义及要求 (1)1.2 方案分析 (1)1.2.1 可逆调速方案 (1)1.2.2 控制方案的选择 (2)2主电路的设计与分析 (3)2.1 整流电路 (3)2.2 斩波调速电路 (4)3控制电路的设计与分析 (5)3.1 触发电路的设计与分析 (6)3.2脉宽调制(PWM)控制的设计与分析 (6)3.2.1 欠压锁定功能 (7)3.2.2系统的故障关闭功能 (7)3.2.3软起动功能 (7)3.2.4 波形的产生及控制方式分析 (8)3.3 延时、驱动电路的设计 (8)3.4 ASR和ACR调节器设计 (9)3.4.1 ASR(速度调节器) (9)3.4.2 ACR(电流调节器) (10)结束语 (12)参考文献 (12)附录 (13)晶闸管直流电动机调速系统设计1设计概述1.1 设计意义及要求有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。
改变电枢电压的极性,或改变励磁磁通的方向,都能够改变直流电机的旋转方向。
当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,需要专用的可逆电力电子装置和自动控制系统1.2 方案分析1.2.1 可逆调速方案使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。
电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢且需要设计很复杂的电路,故在设计中不采用这种方式。
电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。
电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书直流电机调速电路的设计系、部:学生姓名:指导教师:专业:班级:完成时间:摘要将电子技术和控制技术引入传统的电力技术领域,利用半导体开关器件组成各种电力变换电路实现电能的变换和控制,构成了一门完整的学科,被国际电工委员会命名为电力电子学或称为电力电子技术,他是一门综合了电子技术,控制技术和电力技术的新兴交叉学科。
直流电机是电机的主要类型之一。
一台直流电机即可作为发电机使用,也可作为电动机使用,用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用。
直流电动机是人类最早发明和应用的有一种电机。
直流电动机是将直流电转换为的旋转机械。
他与交流电动机相比,虽然直流电动机因为结构复杂,维护困难,价格比较贵等缺点制约了它的发展,应用不如交流电动机广泛。
但由于直流电动机有优良的启动,调速和制动性能,因此在工业领域中仍占有一席之地。
关键词电力电子技术;直流电动机;机械能ABSTRACTWill the electronic technology and control technology into the traditional power technology, using semiconductor switching parts of all kinds of power transformation of electric power circuit implementation transformation and control, constitute a complete discipline, be door to the international electrotechnical commission named power electronics or called power electronic technology, he is a comprehensive electronic technology, control technology and the emerging interdisciplinary power technology. Dc motor is one of the main types of the motor. A dc motor as a generator can use, also can use as a motor, used as dc generators can get dc power, and as a dc motor, since it has good performance of speed adjustment, in many speed performa, is still widely used. Dc motor is the earliest human invention and application of a kind of motor. Current motor is converted to dc of rotating machine. He compared with ac motor, although dc motor for the complex structure, maintenance difficulties, price is more expensive shortcomings constrains its development, the application as ac motor widely. But because of dc motor with fine start, speed and braking performance, so in industry still has a place. Key words power electronic technology; dc motor; mechanical energy目录1 绪论 (5)1.1概述 (5)1.2直流电动机的基本理论 (5)1.2.1 直流电动机的工作原理 (5)1.2.2 直流电动机的调速 (6)1.3直流脉宽调速系统 (8)1.3.1 概述 (8)1.3.2 直流脉宽调速系统的工作原理 (8)2 系统设计方案 (10)2.1直流电动机调速电路 (10)2.1.1主要设计特点 (10)2.2.2 布线图 (10)2.1.3 注意事项 (11)3 元器件介绍 (12)3.1 SG2731 (12)3.1.1 SG2731结构及原理 (12)3.1.2 SG2731引脚及功能 (13)3.1.3 SG2731典型应用(电路参数见表3) (14)3.2 三极管C4466 和 A1693 (15)4 直流电动机调速电路的测试 (15)4.1直流电动机调速电路的测试 (15)4.1.1 测试步骤 (15)4.1.2 测试结果 (16)5 实验总结 (17)6参考文献 (18)7 致谢 (18)1 绪论1.1概述直流电机是电机的主要类型之一。
一台直流电机即可作为发电机使用,也可作为电动机使用,用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用。
直流电动机是人类最早发明和应用的有一种电机。
直流电动机是将直流电转换为机械能的旋转机械。
他与交流电动机相比,虽然直流电动机因为结构复杂,维护困难,价格比较贵等缺点制约了它的发展,应用不如交流电动机广泛。
但由于直流电动机有优良的启动,调速和制动性能,因此在工业领域中仍占有一席之地。
1.2直流电动机的基本理论1.2.1 直流电动机的工作原理固定部分有磁铁,这里称作主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。
为此必须增添一个叫做换向器的装置,换向器图1 直流电动机的工作原理配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转,这就是直流电动机的工作原理直流电动机的工作原理归结如下:将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。
电机内部有磁场存在。
载流的转子(即电枢)导体将受到电磁力f的作用,f=Bli.所有导体产生的电磁力作用于转子,使转子以n(转|\分)旋转,以便拖动机械负载1.2.2 直流电动机的调速改变直流电动机的转速n和其他参量的关系可表示式中 Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。
由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。
1. 改变电枢回路电阻调速各种直流电动机都可以通过改变电枢回路电阻来调速,当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。
其机械特性如图1(b)所示。
Rw的改变可用接触器或主令开关切换来实现。
这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。
调速性能如下:(1)调速方向是往下调。
(2)调速的平滑性取决于调速变阻器的调节方式。
(3)调速的稳定性差。
因为电阻增大后,机械特性硬度降低,静差率增大。
(4)调速的经济性差,因为初期投资虽然不大,但损耗增加,运行效率低。
(5)调速范围不大,因为低速时静差率的限制。
(6)调速时的允许负载为恒转矩负载。
2. 改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
降低电枢电压时,电动机机械特性平行下移。
负载不变时,交点也下移,速度也随之改变。
优点:调速后,转速稳定性不变、无级、平滑、损耗小。
缺点:只能下调,且专门设备,成本大。
(可控硅调压调速系统)下面分别介绍这两种调速系统。
3. 改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
由式(1)可看出,电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反之,则n降低。
与此同时,由于电动机的转矩Te是磁通Ф和电枢电流Ia的乘积(即Te=CTФIa),电枢电流不变时,随着磁通Ф的减小,其转速升高,转矩也会相应地减小。
所以,在这种调速方法中,随着电动机磁通Ф的减小,其转矩升高,转矩也会相应地降低。
在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。
这种调速方法的调速性能如下:(1)调速方向是往上调,因为励磁电流不能超过其额定值,因此只能减小励磁电流,从而使磁通减小,转速上升。
(2)调速的平滑性好,只要均匀的调励磁电流的大小便可以实现无能调速转速增加,静差率不变。
(3)调速的稳定性好,虽然励磁电流减小时,机械特性硬度下降,但因理想空载转速增加,静差率不变。
(4)调速的经济性较好,因为它是在功率较小的励磁电路内控制励磁电流的,功率损耗小,运行费用低。
但基本采用电压可调的直流电源供电,则需增加初期投入。
(5)调速的范围因为受机械强度、电枢电压的去磁作用和换向能力的限制,最高转速和换向能力的限制,最高转速一般只能达到额定转速的1-2倍,所以调速范围不大。
(6)调速时的允许负载为恒功率负载1.3直流脉宽调速系统1.3.1 概述直流脉宽调速系统是由脉宽调制变换器(简称PWM变换器)对直流电动机电枢供电的自动调速系统。
脉宽调制变换器是把脉冲宽度进行调制的一种直流斩波器,其基本原理已在电力电子技术中阐述。
自从全控式电力电子器件问世以来,应用于实践的脉宽调速系统,以它的线路简单,谐波少,损耗小,效率高和静、动态性能好等优势,引发了直流调速领域的一场革命。
将直流PWM调速推广到一般工业应用中取代晶闸管相控式整流器调速有着广阔的前景。
只是由于器件的发展,同时带来交流变压变频调速的更快速发展,使得直流PWM调速还没有来得及完全占领市场,几乎是刚刚兴起,就变成了传统领域。
不过,在一些仍需要使用直流电动机的场合,例如电动叉车、城市无轨电车、地铁机车等,直流PWM调速仍有用武之地。
1.3.2 直流脉宽调速系统的工作原理直流PWM调速系统主回路由二极管整流桥、滤波电容、缓冲电阻、斩波功率绝缘场效应管MOSFET及续流二极管组成,如图2所示。