勾股定理的实际运用
勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。
它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。
本文将从几个应用角度介绍勾股定理在实际生活中的运用。
一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。
举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。
此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。
二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。
通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。
三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。
通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。
四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。
天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。
五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。
图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。
综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。
它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。
通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。
因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。
勾股定理的运用

勾股定理的运用勾股定理是数学中的重要定理之一,被广泛运用于各个领域。
本文将从几个方面介绍勾股定理的运用。
一、勾股定理的基本概念勾股定理是指直角三角形中,直角边平方的和等于斜边平方。
即a+b=c,其中a、b为直角边,c为斜边。
勾股定理是数学中的基础定理之一,它不仅是数学学科中的重要内容,还广泛地应用于各个领域,如物理、化学、工程、金融等。
二、勾股定理在物理中的应用勾股定理在物理学中应用广泛,特别是在力学、电学和光学等领域。
在力学中,勾股定理可用于计算物体的速度、加速度、力等。
例如,当一个物体沿着斜面下滑时,可以使用勾股定理计算物体的速度和加速度。
在电学中,勾股定理可用于计算电路中的电阻、电容和电感等。
例如,当电路中有一个直角三角形的电容器时,可以使用勾股定理计算电容器的电容量。
在光学中,勾股定理可用于计算镜头的焦距。
例如,当一个光线通过一个凸透镜时,可以使用勾股定理计算镜头的焦距。
三、勾股定理在工程中的应用勾股定理在工程中也有广泛的应用。
特别是在建筑、航空航天、机械等领域。
在建筑中,勾股定理可用于计算建筑物的高度和长度。
例如,当建筑物的墙角为直角时,可以使用勾股定理计算建筑物的高度和长度。
在航空航天中,勾股定理可用于计算飞机的速度和高度。
例如,当飞机以一定的速度和高度飞行时,可以使用勾股定理计算飞机的速度和高度。
在机械中,勾股定理可用于计算机械的力和速度。
例如,当机械设备中有一个直角三角形的零件时,可以使用勾股定理计算零件的力和速度。
四、勾股定理在金融中的应用勾股定理在金融中的应用也很广泛。
特别是在投资、财务和保险等领域。
在投资中,勾股定理可用于计算投资的回报率和风险。
例如,当投资的回报率和风险呈直角三角形时,可以使用勾股定理计算投资的回报率和风险。
在财务中,勾股定理可用于计算财务报表的比率和比重。
例如,当财务报表中的比率和比重呈直角三角形时,可以使用勾股定理计算财务报表的比率和比重。
在保险中,勾股定理可用于计算保险的赔偿和风险。
勾股定理的实际测量案例分析

勾股定理的实际测量案例分析勾股定理是一种重要的三角形定理,常被应用于测量和实际问题的解决中。
本文将通过分析两个实际测量案例,展示勾股定理在实际中的应用,并探讨其优势和局限性。
案例一:建筑工地测量假设在一座建筑工地上,需要确定两个建筑物之间的距离,但由于其中一个建筑物的高度较大,无法直接进行测量。
在此情况下,可以运用勾股定理进行测量。
首先,选择一个参照点A,同时确定A点到两个建筑物的水平距离,记为AB和AC。
然后,测量参照点A到两个建筑物的垂直高度,分别记为AD和AE。
根据勾股定理可知,两个建筑物之间的直线距离BC等于根号下(BD^2+CD^2)。
通过测量和计算,可以得到建筑物之间的实际距离。
案例二:地理测量在地理测量中,人们经常需要测量山脉、河流等自然地物之间的距离和高度差。
勾股定理在此类问题中同样具有广泛应用。
假设需要测量河流两岸之间的距离,但由于河水的阻碍无法直接测量。
可以运用勾股定理进行测量。
首先,在两岸选择一个参照点A,同时确定A点到两岸的水平距离,记为AB和AC。
然后,测量参照点A到水面的垂直高度,记为AD。
根据勾股定理可知,两岸之间的直线距离BC等于根号下(BD^2+CD^2)。
通过测量和计算,可以得到两岸之间的实际距离。
此外,勾股定理还可以应用于计算山脉的高度差等问题。
在实际测量过程中,勾股定理具有一些优势。
首先,勾股定理简单易懂,计算方法相对简便。
其次,通过合理的测量和计算,可以得到较为准确的结果。
此外,勾股定理能够帮助解决一些无法直接测量的距离问题,通过间接测量得到实际距离。
然而,勾股定理在实际测量中也存在一定的局限性。
首先,勾股定理要求测量者具备一定的测量技能和准确的测量设备。
其次,测量过程中的误差会对最终结果产生一定的影响。
因此,在实际应用中,需要仔细选择测量点,并优化测量方法,以尽可能减小误差。
总结起来,勾股定理在实际测量中起到了重要的作用,并帮助解决了一些无法直接测量的距离问题。
勾股定理的应用

勾股定理的应用勾股定理是数学中的一条基本定理,也是数学与实际问题相结合的重要工具。
它被广泛应用于几何学、物理学、工程学等领域,为解决各种问题提供了简洁而有效的方法。
本文将从几个具体的应用角度,探讨勾股定理在实际问题中的作用。
1. 三角形问题勾股定理最常见的应用就是解决三角形问题。
在解析几何中,确定三角形的各个边长、角度、面积等问题,都可以通过勾股定理得到解决。
例如,已知一个直角三角形的两条边长,可以利用勾股定理计算出第三条边长。
在真实的测量和建模中,准确地计算三角形的属性是极为重要的,而勾股定理则是最常用的计算工具之一。
2. 导弹轨迹预测在导弹的制导与轨迹控制中,勾股定理被广泛用于预测导弹的飞行轨迹。
在给定导弹的出发点和目标点的坐标后,通过勾股定理可以计算出最短路径,并且确定导弹需调整的角度和加速度,以达到命中目标的效果。
勾股定理在空间导航中的应用,在军事和航天领域具有重要的意义。
3. 平面定位和测量勾股定理在平面定位和测量领域也发挥着重要的作用。
通过勾股定理,可以精确计算出两点之间的距离。
例如,现代的GPS技术就是基于勾股定理来确定接收器与卫星之间的距离,并基于此推算出接收器的位置坐标。
此外,测量工程中常用的三角测量法也离不开勾股定理的应用。
4. 建筑设计在建筑设计中,勾股定理被用于确定建筑物各个部分之间的位置关系和角度。
例如,设计一个房间的内角度,可以利用勾股定理来确定墙壁之间的直角,并确保结构的稳定性和准确性。
同时,勾股定理也可以用于计算墙壁的斜长、屋顶的高度等参数,为建筑设计提供便利和精确性。
5. 数字图像处理在数字图像处理中,利用勾股定理可以计算图像中两个像素点之间的距离。
这一应用广泛用于图像重建、边缘检测等算法中。
通过测量图像上的像素点之间的距离,可以准确还原出图像中的形状和结构,为图像处理提供了基础工具。
总结:勾股定理作为数学中的基本定理,在实际问题中有着广泛的应用。
本文从三角形问题、导弹轨迹预测、平面定位和测量、建筑设计以及数字图像处理等角度,阐述了勾股定理在各个领域中的重要性和应用方法。
勾股定理与生活

勾股定理与生活
勾股定理是数学中一个基本的定理,主要描述了在直角三角形中,两条直角边的平方和等于斜边的平方。
这个定理在生活中有非常广泛的应用:
1. 建筑和工程:在建筑和工程领域,勾股定理被用来确保结构的准确性和稳定性。
例如,工人会用它来检查墙壁、地板是否垂直或水平,或者在测量电线杆、塔等的高度时。
2. 装修设计:在室内设计中,比如确定家具的位置,计算最佳视角等,都会用到勾股定理。
3. 体育运动:在篮球、足球、田径等运动中,运动员利用勾股定理来判断投篮角度、传球距离等。
4. 导航和地理:在地图制作和导航系统中,勾股定理用于计算两点之间的最短距离。
5. 电子设备:手机、电脑等电子设备的屏幕尺寸,往往通过勾股定理来计算对角线长度。
6. 日常生活:比如测量窗户、门的尺寸,计算梯子的安全角度等,都会用到勾股定理。
7. 交通:驾驶员在倒车入库时,可以通过勾股定理判断车尾与障碍物的距离。
这些都是勾股定理在我们日常生活中的实际应用,体现了数学的实用性和普遍性。
勾股定理在生活中的运用

勾股定理在生活中的运用
学生小明最近遇到了几桩烦恼事,百思不得其解:
小明的烦恼一:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。
你同意他的想法吗?你能解释这是为什么吗?
支招:我们通常所说的29英寸或74厘米的电视机,是指其荧屏对角线的长度。
∵582+462=5480 ,742=5476,5480>5476,∴售货员没有搞错!
你能帮小明化解烦恼么?
小明的烦恼二:一块长约40米、宽约30米的长方形草坪,被几个不自觉的学生沿对角线踏出了一条斜“路”。
请问小明:
(1)他们知道走斜“路”比正路少走几步路?
(2)他们这样做,值得吗?
小明的烦恼三:在一棵高4m的树尖上有一只小鸟,它发现离该树12m且高为20m的一棵大树的顶端有一群小鸟,于是它立即飞往去与同伴会合,已知小鸟的飞行速度为4m/s,求小鸟至少需要几秒才能与同伴会合?
(附:小明的烦恼二的答案:(1)∵402+302=2500=502,∴斜路长50米,比正路少走40+30-50=20(米)。
(2)践踏绿地,不爱护环境,我们要坚决制止。
小明的烦恼三的答案:两棵树的高度差是20-4=16米,易知小鸟飞行的路线是以12、16为直角边的斜边,斜
边=2
216
12 =20, 20÷4=15(秒)。
答:小鸟至少需要15秒才能与同伴会合。
)。
《第2课时 勾股定理的实际应用》教案 (公开课)2022年湘教版数学

第2课时勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保存根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC =5米,那么AB=BC2-AC2=12米,6秒后,BC×6=10米,那么AB=BC2-AC2=53米,那么船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km 的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?假设不会,说明理由;假设会,求出A市受沙尘暴影响的时间.解析:过点A作AC⊥BF于C,然后求出∠ABC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12 AB,从而判断出A市受沙尘暴影响,设从D 点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A作AC⊥BF于C,由题意得,∠ABC=90°-60°=30°,∴AC =12AB=12×300=150(km),∵150<200,∴A市受沙尘暴影响,设从D点开始受影响,那么AD=200km.由勾股定理得,CD=AD2-AC2=2002-1502=507(km),∴受影响的距离为2CD=1007km,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半〞这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理在几何图形中的应用【类型一】利用勾股定理解决最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点M,需要爬行的最短距离是多少?解:分三种情况比拟最短距离:如图①(将正面与上面展开)所示,AM=102+〔20+5〕2=529,如图②(将正面与右侧面展开)所示,AM=202+〔10+5〕2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm;如图③(将正面与左侧面展开)所示,AM=〔20+10〕2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比拟取其最小值即可.【类型二】运用勾股定理与方程解决有关计算问题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C =3,那么AM的长是()A.1.5 B.2解析:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x =2,即AM B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】勾股定理与数轴如以下图,数轴上点A所表示的数为a,那么a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5C.方法总结:此题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2〞,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b+m=15,20b+m=35,解得⎩⎪⎨⎪⎧b=2,m=-5,即超过10t的局部按每吨2元收费,此时函数表达式为y=2x-5(x>10);(3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t多.设居民乙上月用水x t,那么居民甲上月用水(x+4)t.y甲=2(x+4)-5,y乙=2x,得[2(x+4)-5]+(2x-5)=46,解得x t,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x +9(140-x)=1000,解得x=65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x 越小,W越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得a=23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B(214,135),C,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D(498,135).设BC 的解析式为y1=k1x+b1,由题意得⎩⎪⎨⎪⎧135=214k1+b1,0k1+b1,∴⎩⎪⎨⎪⎧k1=-60,b1=450,∴y1=-60x+450,设ED的解析式为y2=k2x+b2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
应用勾股定理解实际问题

应用勾股定理解实际问题勾股定理是数学中最基础的定理之一,它描述了直角三角形边长之间的关系。
在实际生活中,勾股定理可以应用于多种场景,解决实际问题。
本文将探讨勾股定理在几个具体问题中的应用。
1. 应用一:测量直角三角形的边长勾股定理最常见的应用就是用来测量直角三角形的边长。
在我们日常生活中,经常会遇到需要测量一些不易直接测量的距离,比如高楼的高度、河流的宽度等等。
这时,我们可以利用勾股定理来求解。
假设我们需要测量一栋建筑物的高度,可以选择一个合适的地方A 站立,从眼睛位置向上仰望,然后测量自己与建筑物底部的距离为a。
接着,我们移动到地点B,使得站立在地点B时看到建筑物顶部,测量自己与建筑物底部的距离为b。
此时,我们可以利用勾股定理计算出建筑物的高度c,即c²=a²+b²。
2. 应用二:求解物体之间的距离在很多实际问题中,我们需要求解两个物体之间的距离。
例如,在导航软件中,我们需要确定两个地点之间的最短路径。
这时,我们可以应用勾股定理帮助我们计算出两个地点的距离。
假设有两个地点A和B,我们知道A点的横坐标为x₁,纵坐标为y₁,B点的横坐标为x₂,纵坐标为y₂。
我们可以通过计算AB两点间的距离来获得最短路径。
根据勾股定理,AB的距离可以表示为d=√((x₂-x₁)²+(y₂-y₁)²)。
3. 应用三:解决投影问题另一个常见的应用领域是求解投影问题。
在日常生活中,我们经常需要计算物体的投影长度,比如阳光下建筑物的影子长度、物体在倾斜地面上的投影长度等等。
勾股定理可以帮助我们解决这些问题。
假设有一个倾斜的平面,上面有一个物体A。
物体A的高度为h,离倾斜平面的水平距离为d。
我们可以利用勾股定理来计算物体A在倾斜平面上的投影长度l。
根据勾股定理,我们可以得到l=√(d²+h²)。
4. 应用四:解决角度问题勾股定理还可以应用于求解角度问题。
在导航、航海等领域中,经常需要精确测量物体的角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的实际运用
一.勾股定理:
(1)直角三角形两直角边的_______等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_____.
(2)我国古代把直角三角形中较短的直角边称为_____,较长的直角边称为________,斜边称为______.
二.直角三角形的判别条件
1.直角三角形的判别条件(也称为勾股定理的逆定理)
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(此判别条件也称为勾股定理的逆定理).如图所示,在△ABC中,如果AC2+BC2=AB2.那么△ABC就是以∠C为直角的直角三角形.
2.判断直角三角形的步骤
(1)确定最长边. (2)算出最长边的平方与另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
3.直角三角形的判别条件与勾股定理的联系和区别
(1)联系
都是和直角三角形有关的内容,都和三角形的三边有关系,都渗透了数形结合的思想.
(2)区别
勾股定理是由形到数,即由直角三角形得到三边之间的数量关系,是直角三角形的一个性质;而直角三角形的判别条件是由数到形,即由三边关系得到三角形的形状—直角三角形,是直角三角形的一种判别方法.
知识点一.确定几何体表面上的最短路线
1.解决几何体表面上两点之间最短路线问题的关键是把立体图形转化为平面图形,具体步骤是:(1)把立体图形展开成平面图形;(2)确定最短路线;(3)确定直角三角形;(4)根据直角三角形的边长,利用勾股定理求解
2.求立体图形表面上两点之间的最短路线长,主要涉及如下问题:
(1)圆柱形物体表面上两点之间的最短路线长,主要涉及如下问题:(1)圆
柱形污图表面两点之间的最短路线长;(2)长方体表面两点之间的最短路线长;(3)台阶表面两点之间的最短路线长.
例题1:如图所示,有一个圆柱形油罐,要从点A处环绕油罐建梯子,正好到
点A的正上方点B,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB
是5m)
知识点二.利用直角三角形的判别条件判断垂直
利用直角三角形的判别条件判断三角形是直角三角形也是判断垂直的一种方法.在实际生活中常常需要判断两直线是否垂直,解决此类问题的一般方法是将实
际问题转化为数学问题.首先,结合题意画出符合要求的三角形,再利用直角三角形的判别条件判断垂直.
例题2.如图所示,如果只给你一把带有刻度的直尺,你能否检验∠P是不是直角?简述你的作法,并说明理由.。