第十八章平行四边形

合集下载

第十八章《平行四边形》单元教案

第十八章《平行四边形》单元教案

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗?(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1平行四边形的对边相等.平行四边形的性质2平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°【答案】C2.在下列图形的性质中,平行四边形不一定具有的是()A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质.因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程.第2课时平行四边形的性质(2)理解并掌握平行四边形对角线互相平分的性质.重点平行四边形对角线互相平分的性质以及性质的应用.难点综合运用平行四边形的性质进行有关的论证和计算.一、复习导入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是360°);②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.探究:请学生在纸上画两个全等的平行四边形ABCD和平行四边形EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将四边形ABCD绕点O旋转180°,观察它是否还是和四边形EFGH重合.你能从中看出前面所提到的平行四边形的边、角关系吗?你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.二、新课教授【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.证明:在▱ABCD中,AB∥CD,∴∠1=∠2,∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(AAS).∴OE=OF,AE=CF(全等三角形的对应边相等).∵四边形ABCD是平行四边形,∴AB=CD(平行四边形的对边相等).∴AB-AE=CD-CF,即BE=FD.引申:若例1中的条件都不变,将EF转动到图①的位置,那么例1的结论是否成立?若将EF向两边延长与平行四边形的两条对边的延长线分别相交(图②和图③),例1的结论是否成立?说明你的理由.解略.【例2】教材第44页例2三、巩固练习1.▱ABCD中,∠A的余角与∠B的和是120°,则∠A=________,∠B=________.分析:平行四边形的邻角互补.【答案】75°105°2.平行四边形的周长等于56 cm,两邻边的长的比为3∶1,那么这个平行四边形较长的边长为________.分析:平行四边形的对边相等.【答案】21 cm3.▱ABCD的周长为60 cm,对角线交于点O,△AOB的周长比△BOC的周长大8 cm,则AB,BC的长分别是________.分析:平行四边形的对边相等,对角线互相平分.【答案】19 cm,11 cm4.▱ABCD的周长为50 cm,AB=15 cm,∠A=30°,则此平行四边形的面积为________.分析:平行四边形的对边相等,面积等于边与该边上的高的乘积.【答案】75 cm2四、课堂小结定义:两组对边分别平行的四边形是平行四边形.性质:(1)边的性质:对边平行且相等;(2)角的性质:对角相等,邻角互补;(3)对角线的性质:对角线互相平分.课堂中,我通过让学生说一说、找一找等多种活动,在同桌合作、小组合作等活动交流中,让学生充分感知四边形的特征,培养了学生的合作意识、交流的能力和动手操作的能力.在作业方面,让学生以小组为单位,在校园中寻找我们身边的四边形,让学生感受数学在生活中的应用,感受数学真正就在我们身边.18.1.2平行四边形的判定第1课时平行四边形的判定(1)使学生掌握用平行四边形的定义判定一个四边形是否是平行四边形的方法.重点平行四边形的判定方法及应用.难点平行四边形的判定定理与性质定理的灵活应用.一、复习导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理分别用命题的形式叙述出来.(即用“如果……那么……”的形式) 根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何判定一个四边形是否是平行四边形呢?除了定义,还有什么方法?平行四边形性质定理的逆命题是否成立?可以证明,这些逆命题都成立,于是得到平行四边形的判定定理:平行四边形的判定方法1两组对边分别相等的四边形是平行四边形.平行四边形的判定方法2两组对角分别相等的四边形是平行四边形.平行四边形的判定方法3对角线互相平分的四边形是平行四边形.下面我们以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明.如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD,求证:四边形ABCD是平行四边形.证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB,∴∠OAD=∠OCB,∴AD∥BC,同理AB∥DC,∴四边形ABCD是平行四边形.二、新课教授【例1】教材第46页例3【例2】已知:如图,E,F分别为平行四边形ABCD的两边AD,BC的中点,连接BE,DF.求证:∠1=∠2.证明:在△ABE和△CDF中,∠A=∠C,AB=CD,AE=CF,∴△ABE≌△CDF,∴BE=DF.又∵DE=BF,∴四边形BFDE是平行四边形,∴∠1=∠2.三、巩固练习1.下列条件中,能判断四边形是平行四边形的是()A.对角线互相垂直B.对角线相等C.对角线互相垂直且相等D.对角线互相平分【答案】D2.已知:如图,▱ABCD中,点E,F分别在CD,AB上,DF∥BE,EF交BD于点O.求证:EO=OF.【答案】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴DE∥BF.又DF∥BE,∴四边形DEBF为平行四边形,∴EO=OF.四、课堂小结1.平行四边形的三个判定定理.2.会用四边形的三个判定定理解决简单的问题.在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识.第2课时平行四边形的判定(2)理解并掌握平行四边形的判定定理.重点理解并掌握平行四边形的判定定理,做到熟练应用.难点理解并掌握平行四边形的判定定理,体会几何推理的思维方法.一、复习导入1.平行四边形的定义是什么?2.平行四边形具有哪些性质?3.平行四边形是如何判定的?教师板书,并画出一个平行四边形,如图.(帮助理解)学生活动:踊跃发言,相互讨论,回顾平行四边形的性质与判定定理.二、讲授新课师:通过前面的学习,我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.那么反过来,一组对边平行且相等的四边形是平行四边形吗?下面我们就来证明这个结论是否正确.如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC.∵AB∥CD,∴∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA,∴BC=DA,∴四边形ABCD的两组对边分别相等,它是平行四边形.于是我们又得到平行四边形的一个判定定理:一组对边平行且相等的四边形是平行四边形.三、例题讲解【例1】教材第47页例4【例2】已知:如图,在▱ABCD中,AE,CF分别是∠DAB,∠BCD的平分线.求证:四边形AFCE是平行四边形.证明:∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∵AE,CF分别平分∠DAB,∠BCD,∴∠DAE=∠BCF.又∵∠D=∠B,AD=BC,∴△DAE≌△BCF,∴DE=BF,AE=FC,∴EC=AF,∴四边形AFCE是平行四边形.【例3】已知:如图,▱ABCD中,E,F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.∵BE⊥AC于E,DF⊥AC于F,∴BE∥DF,且∠BEA=∠DFC=90°.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形).四、巩固练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形.()(2)两组对角分别相等的四边形是平行四边形.()(3)一组对边平行,另一组对边相等的四边形是平行四边形.()(4)一组对边平行且相等的四边形是平行四边形.()(5)对角线相等的四边形是平行四边形.()(6)对角线互相平分的四边形是平行四边形.()【答案】(1)√(2)√(3)×(4)√(5)×(6)√2.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO =BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.【答案】略五、课堂小结平行四边形性质判定⎩⎪⎨⎪⎧⎩⎪⎨⎪⎧两组对边分别平行两组对边分别相等一组对边平行且相等角——两组对角分别相等对角线——两条对角线互相平分经过这两节课的学习,学生基本掌握了几何证明题的解题方法,能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,要让学生学会反思做完的每一道题.第3课时 平行四边形的判定(3)1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点掌握并运用三角形中位线的性质解决问题. 难点三角形中位线性质的证明.(辅助线的添加方法)一、复习导入创设情境:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的? 二、讲授新课师:在前面学习平行四边形时,常把它分成几个三角形,利用三角形全等的性质研究平行四边形的有关问题.下面我们利用平行四边形来研究三角形的有关问题.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接DE ,像DE 这样,连接三角形两边中点的线段,我们称之为三角形的中位线,我们猜想,DE ∥BC ,DE =12BC.下面我们对它进行证明.如图,D ,E 分别是△ABC 的边AB ,AC 的中点.求证:DE ∥BC ,且DE =12BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE 延长一倍后,可以将证明DE =12BC 转化为证明延长后的线段与BC相等.又由于E 是AC 的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.证明:如图,延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF. ∵AE =EC ,DE =EF ,∴四边形ADCF 是平行四边形, ∴CF 綊DA. ∴CF 綊BD∴四边形DBCF 是平行四边形,∴DF 綊BC.又DE =12DF ,∴DE ∥BC ,且DE =12BC.通过上述证明,我们可以得到三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半. 三、例题讲解【例】已知:如图,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.证明:连接AC ,在△DAC 中, ∵AH =HD ,CG =GD ,∴HG ∥AC ,HG =12AC(三角形中位线的性质).同理EF ∥AC ,EF =12AC.∴HG ∥EF ,且HG =EF.∴四边形EFGH 是平行四边形.此题可得结论:顺次连接四边形四条边的中点,所得的四边形是平行四边形. 四、巩固练习1.如图,A ,B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出AC 和BC 的中点M ,N.如果测得MN =20 m ,那么A ,B 两点的距离是________m ,理由是________________________.【答案】40 MN 是△ABC 的中位线2.如图,△ABC 中,D ,E ,F 分别是AB ,AC ,BC 的中点.(1)若EF =5 cm ,则AB =________cm ;若BC =9 cm ,则DE =________cm ; (2)中线AF 与中位线DE 有什么特殊的关系?证明你的猜想. 【答案】(1)10 4.5 (2)AF 与DE 互相平分,证明略 五、课堂小结三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣.在问题情境中引出三角形的中位线,导入本节学习的课题;同时,为证明三角形的中位线定理埋下伏笔,也是有助于用运动的思想来思考数学问题.此时教学体现的是人人都能获得必需的数学.三角形的中位线的性质定理的简单应用,学生都能掌握,这个定理在实际生活中的应用是非常广泛的. 18.2 特殊的平行四边形18.2.1 矩形 第1课时 矩 形(1)掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.重点矩形的性质. 难点矩形的性质的灵活应用.一、复习导入1.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动的过程,如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本节课题及矩形的定义.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如门窗框、书桌面、教科书的封面、地砖等都有矩形的形象.探究:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质: 矩形的性质1 矩形的四个角都是直角. 矩形的性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC ,BD 相交于点O ,由性质2有AO =BO =CO =DO =12AC=12BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、新课教授【例1】教材第53页例1【例2】已知:如图,矩形ABCD中,AB长8 cm,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形的四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD=x cm,则对角线长(x+4) cm,在Rt△ABD中,由勾股定理,得x2+82=(x +4)2,解得x=6,即AD=6 cm.由AE·DB=AD·AB,解得AE=4.8 cm.三、巩固练习1.矩形的两条对角线的夹角为60°,对角线的长为15 cm,较短边的长为()A.12 cm B.10 cmC.7.5 cm D.5 cm【答案】C2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A,∠B的度数.【答案】∠A=60°,∠B=30°四、课堂小结1.掌握矩形的定义及性质.2.会用矩形的性质求相关的角的度数.本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,培养学生的学习能力及运用所学知识解决问题的能力,促进学生发展.第2课时矩形(2)通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的探究过程,掌握矩形的三种判定方法,并会运用它们解决相关问题.重点矩形的判定.难点矩形的判定定理及性质的综合应用.一、复习提问,引入新课师:什么叫做平行四边形?什么叫做矩形?生:两组对边分别平行的四边形叫做平行四边形.有一个角是直角的平行四边形叫做矩形.师:矩形有哪些性质?生:矩形的四个角都是直角,矩形的对角线相等.师:矩形是有一个角是直角的平行四边形,判定一个四边形是不是矩形,首先要看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”来判定是最重要和最基本的判定方法.除此之外,还有其他几种判定矩形的方法,下面我们就来研究这些方法.二、提出疑问,引导探索师:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来了两根长度相同的长木条和两根长度相同的短木条制作.你有什么方法可以检测他做的相框是否为矩形?生:可以用量角器量一下它的一个内角,若是90°,则这个相框为矩形.师:对,这是根据矩形的定义得到的,定义法突出是在平行四边形的基础上添加了一个条件(有一个角是直角),观察矩形和平行四边形,除了角的特性外,边和对角线还有特性吗?生:“边”没有特性,“对角线”是相等的.师:我们是否可以利用这一特性来判定四边形是不是矩形呢?请把这个判定用命题的形式写出来.生:对角线相等的平行四边形是矩形.师:这个命题是否正确?(分析命题的题设和结论,写出已知和结论,分析证明过程) 证明过程由学生板书完成.师(归纳板书):定理:对角线相等的平行四边形是矩形.师:对角线相等的四边形是矩形吗?生:不一定是矩形.师:画出反例,如下图所示的四边形,对角线相等,但它不是矩形(先画两条相等但不互相平分的相交线段,再顺次连接各端点得四边形).师生讨论,归纳矩形的判定方法:定义:有一个角是直角的平行四边形是矩形.定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.(除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.)三、例题讲解【例1】教材第54页例2【例2】如图,在△ABC中,AB=AC,点D是AC的中点,AE∥BC,过点D作直线EF∥AB,分别交AE,BC于E,F.求证:四边形AECF是矩形.证明:∵点D是AC的中点,∴AD=CD.∵AE∥BC,∴∠EAD=∠DCF.∴△ADE≌△CDF,∴AE=FC.∵AE∥BF,AB∥EF.∴四边形ABFE和四边形AFCE是平行四边形,∴AB=EF,又∵AB=AC,∴EF=AC,∴平行四边形AFCE是矩形.四、课堂练习已知:O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,AE=BF=CG=DH.求证:四边形EFGH为矩形.【答案】证明:∵四边形ABCD为矩形,∴AC=BD.∵AC,BD互相平分于O,∴AO=BO=CO=DO.∵AE=BF=CG=DH,∴EO=FO=GO=HO.∴四边形EFGH 是平行四边形且HF =EG , ∴四边形EFGH 为矩形. 五、课堂小结⎭⎪⎬⎪⎫一个角是直角的平行四边形对角线相等的平行四边形有三个角是直角的四边形是矩形本节课在引入时,我先提出一个实际生活问题,激发学生的求知欲望,再引导学生逆向思考问题,从而让学生提出“对角线相等的平行四边形是矩形”这一结论,最后通过逻辑推理证明命题的正确性,为以后学习其他特殊的四边形的判定打下了基础. 18.2.2 菱 形第1课时 菱 形(1)1.探索并掌握菱形的概念和它所具有的特殊性质,会进行简单的推理和运算. 2.能推导出菱形的面积等于它的两条对角线长的积的一半的性质.重点菱形的概念及性质. 难点菱形性质的灵活应用.一、创设情境,导入新课 活动:(四人一个小组)将一张硬纸片对折后再对折,然后剪成一个三角形,打开观察并讨论. 师:这是一个什么样的图形?为什么?(学生独立操作,教师演示) 生:是平行四边形,因为它的对角线是互相平分的.师:再观察一下,这个平行四边形的邻边之间有什么关系?为什么? 生:是相等的,因为它们是重合的.师(板书):菱形的定义:我们把有一组邻边相等的平行四边形叫做菱形.(强调菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等)二、探索研究,归纳性质活动:菱形具有什么性质呢?你能发现吗?1.折叠:上下对折,左右对折,你有什么发现? 2.旋转.结合学生探索、讨论、交流的情况,必要时教师对知识做适当梳理,板书菱形的性质. 菱形的性质1:菱形的四条边都相等.菱形的性质2:菱形的对角线互相垂直,并且每条对角线平分一组对角. 菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.师:这些性质我们是通过折叠、旋转观察得到的.如何用逻辑推理的方法证明它呢?已知:如图,在菱形ABCD 中,AC ,BD 相交于O. 求证:AC ⊥BD ,AC 平分∠BAD 和∠BCD. 证明:∵AB =AD ,BO =OD ,∴AC ⊥BD ,AC 平分∠BAD(等腰三角形三线合一). 同理:AC 平分∠BCD ,BD 平分∠ABC 和∠ADC. 三、继续探索,深化提高师:菱形的对角线将菱形分成几个三角形?它们都是什么三角形?有什么关系? 生:是四个全等的直角三角形.师:如果已知菱形的对角线的长度,能求出一个三角形的面积吗? 生:可以求出.师:进而就可以求出菱形的面积.试说明菱形的面积等于它的两条对角线线长的积的一半.已知:在菱形ABCD 中,对角线AC ,BD 相交于O 点.求证:在菱形ABCD 中,S 四边形ABCD =12AC ×BD.证明:在菱形ABCD 中,AC ,BD 是对角线,∴AC ⊥BD ,OB =OD =12BD ,S 四边形ABCD =S △ABC +S △ACD =12AC ×OB +12AC ×OD =12AC ×(OB +OD) =12AC ×BD. 即菱形的面积等于它的两条对角线长的积的一半.师:菱形是特殊的平行四边形,所以它的面积公式有两个. 菱形的面积=底×高;菱形的面积=12ab(a ,b 是两条对角线的长度).四、例题讲解【例1】菱形ABCD 的两条对角线AC ,BD 的长度分别为4 cm ,3 cm ,求菱形ABCD 的面积和周长.分析:用勾股定理可求得边长,进而求得周长.解:如图,由题可知AO =2,BO =32,∴AB =AO 2+BO 2=52,∴菱形ABCD 的周长。

第十八章平行四边形

第十八章平行四边形

平行四边形知识要求:1、掌握平行四边形、菱形、矩形、正方形的性质和判定;2、结合图形性质进行相关的角度和线段的计算。

3、结合几何图形证明。

知识重点:四边形性质的运用和判定是本章的重点。

知识难点:四边形性质的运用和判定是本章的难点。

考点:结合图形性质进行相关的角度和线段的计算及判定是考试的重点对象。

知识点:一、平行四边形1、定义:两组对边分别平行的四边形是平行四边形.符号:“”2、性质:对边相等、对角相等、对角线互相平分边:对边相等、平行角:对角相等、邻角互补对角线:平分周长:邻边之和*2面积:底*高平行四边形是中心对称图形,两条对角线的交点是对称中心例题1.已知平行四边形ABCD中,∠B=5∠A,则∠D= .例题2如图,在□ABCD中,已知AD=8cm, AB=6cm, DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm例题3如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADCEBAFCD3、判定:边: 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 角: 两组对角分别相等的四边形是平行四边形 对角线:两条对角线互相平分的四边形是平行四边形例题4. 在四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:① AB ∥CD ,A D ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中,一定能判定四边形ABCD 是平行四边形的条件共有 ( ) A .1组 B .2组 C .3组 D .4组例题5如图,在等边三角形ABC 中,BC=6cm,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,点F 从点B 出发沿射线BC 以2cm/s 的速度运动.如果点E 、F 同时出发,设运动时间为t(s)当t= s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.例题6.如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠ 例题7如图,EF ,是四边形ABCD 的对角线AC 上两点, AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.4、三角形的中位线:三角形的中位线平行与第三边,且等于第三边的一半. (与中线区别)例题8如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,∠A =50°,∠ADE =60°,则∠C 的度数为 ( )A B DE F CA.50°B.60°C.70°D.80°例题9一个周长为12cm的三角形,三条中位线围成的三角形周长是cm.二、菱形1、定义:有一组邻边相等的平行四边形叫做菱形.2、性质:对边相等、对角相等、对角线互相垂直平分且平分对角边:四边相等、对边平行角:对角相等、邻角互补对角线:垂直平分、平分对角周长:边长*4面积:对角线乘积的一半(底*高)菱形是中心对称图形,两条对角线的交点是对称中心,也是轴对称图形。

人教版初中数学八年级下册第十八章《平行四边形》教案

人教版初中数学八年级下册第十八章《平行四边形》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、重要性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(4)面积计算的灵活运用:学生在计算平行四边形面积时,有时难以确定底和高。
突破方法:通过讲解不同形状的平行四边形面积计算方法,让学生学会根据实际情况确定底和高,并运用到实际问题中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状像梯子斜靠在墙上的图形?”(如平行四边形)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
人教版初中数学八年级下册第十八章《平行四边形》教案
一、教学内容
人教版初中数学八年级下册第十八章《平行四边形》主要包括以下内容:
1.平行四边形的定义及性质:平行四边形的定义、对边平行且相等、Байду номын сангаас角相等、对角线互相平分。
2.特殊平行四边形:矩形、菱形、正方形的性质及判定方法。
3.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。
2.提升逻辑推理能力:在学习平行四边形的判定方法及性质证明过程中,培养学生严谨的逻辑思维和推理能力。

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

平行四边形章节知识梳理一.知识点:1、定义两组对边分别平行的四边形是平行四边形.定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.同学们要在理解的基础上熟记定义.2、性质平行四边形的有关性质和判定都是从边、角、对角对称性四个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:①=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一组邻边相等,两者缺一不可.(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:1.一组对边平行;2.一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.5.几种特殊四边形的有关性质(1)矩形:1.边:对边平行且相等;2.角:对角相等、邻角互补;3.对角线:对角线互相平分且相等;4.对称性:既是轴对称图形又是中心对称图形.(2)菱形:1.边:四条边都相等;2.角:对角相等、邻角互补;3.对角线:对角线互相垂直平分且每条对角线平分每组对角;4.对称性:既是轴对称图形又是中心对称图形.(3)正方形:1.边:四条边都相等;2.角:四角相等;3.对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;4.对称性:既是轴对称图形又是中心对称图形.6、几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一个角是直角的菱形;②有一组邻边相等的矩形;③对角线相等的菱形;④对角线互相垂直的矩形.7、几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③说明四边形ABCD 的四条边相等.(3)识别正方形的常用方法①先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.二、几种特殊四边形的面积问题(1)设矩形ABCD 的两邻边长分别为a,b ,则 S 矩形=ab .(2)设菱形ABCD 的一边长为a ,高为h ,则 S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则 S 菱形=2ab。

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。

本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。

本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。

学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。

这些内容是学习本章的重要基础。

本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。

“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。

“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。

18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。

人教版八年级数学下册知识点第十八章《平行四边形》

人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。

表示:平行四边形用“□”表示。

2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。

的顺序依次排列。

点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。

平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。

如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。

∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。

八年级下册数学第十八章 平行四边形的对角线性质

八年级下册数学第十八章  平行四边形的对角线性质

A.13 B.17
C.20 D.26
3.如图,若▱ABCD的周长为36 cm,过点D分别作AB, BC边上的高DE,DF,且DE=4 cm,DF=5 cm, ▱ABCD的面积为( A )cm2. A.40 B.32 C.36 D.50
4. 如图,已知▱ABCD与▱EBFD的顶点A,E,F,
C在一条直线上,求证:AE=CF.
的周长比△DOA的周长为5cm,求这个平行四边形各边的长.
解:∵四边形ABCD是平行四边形, ∴OB=OD,AB=CD,AD=BC. ∵△AOB的周长比△DOA的周长长5cm, ∴AB-AD=5cm. 又∵ ABCD的周长为60cm,∴AB+AD=30cm, 则AB=CD=17.5cm,AD=BC=12.5cm.
∴ AD=BC,AD∥BC,
∴ ∠1=∠2,∠3=∠4,
A
D
13
O
4 B
2 C
∴ △AOD≌△COB(ASA),
∴ OA=OC,OB=OD.
归纳小结
平行四边形的性质
平行四边形的对角线互相平分.
A
符号语言: ∵ 四边形ABCD是平行四边形,
O B
∴ OA=OC,OB=OD(平行四边形的对角线互相平分).
D
10
C
10
6 16
O
10
8
12
A
10
B
随堂演练
1. 如图,▱ABCD的对角线AC,BD相交于点O,则下列说法 一定正确的是( C ) A.AO=OD B.AO⊥OD C.OB=OD D.AO⊥AB
2.如图,▱ABCD的对角线AC,BD相交于点O,已知BC=8,
BD=12,AC=6,则△OBC的周长为( B )

初中数学人教八年级下册第十八章平行四边形-平行四边形的判定

初中数学人教八年级下册第十八章平行四边形-平行四边形的判定

=DO。又因为AE=CF,
所以AO-AE=
CO-CF,即 EO=FO。由
判定定理3即可得证。
已知:如图,E、F是 ABCD对角线 AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
证明: 连结BD,交AC于点O.
∵四边形ABCD是平行四边形
O
∴AO=CO,BO=
D∵AOE=CF
∴EO=FO
如图,如果一个四边形ABCD的对 角相等,即 ∠A=∠C,∠B=∠D,问四边 形ABCD是否为平行四边形?
解:由四边形的内角和定理,有 ∠A+∠B+∠C+∠D=360° 于是2∠A+2∠B=360° ∴即A∠DA∥+B∠CB=—326—0=° 180° 同理AB∥CD ∴四边形ABCD是平行四边形
于是我们证明了满足两组对角 分别相等条件的四边形也是平行四 边形,从而得到了平行四边形的判 定定理1。
返回
类似地,由平行四边形的两组对边 分别相等,我们还会想到:两组对边分 别相等的四边形是不是平行四边形呢?
如图,在四边形ABCD中,如 果AB=CD,BC=AD,问四边形 AΒιβλιοθήκη CD是否为平行四边形?4 1
2 3
∵AB=CD,BC=DA,AC=
C∴A△A. BC≌△CDA (SSS)
∴∠1=∠2 ∠3=∠4
∴AB∥CD BC∥AD
∴四边形ABCD是平行四边形
于是我们证明了满足两组对边 分别相等条件的四边形也是平行四 边形,从而得到了平行四边形的判 定定理2。
返回
问题 求证:对角线互相平分的四边
P143 A组 8、9、10.
谢谢使用本课件
再见
那么,上述命题的 逆命题是否也成立呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章《平行四边形》
一、单元主题:第十八章《平行四边形》
二、教材分析
1.内容特点:学生在小学阶段已经接触过这些特殊的四边形,这就为本章的学生做好了一定的知识铺垫。

在此要求进一步加强中小学知识之间的衔接和区别。

另外,在初二阶段,学生学习的三角形知识和轴对称知识,都与本章的内容有着千丝万缕的联系,要注意知识之间的相互转化。

同时要做好类比和对比教学。

2.知识结构:本章的主要内容是平行四边形和特殊的平行四边形的知识,教材首先介绍了平行四边形的概念、性质及判定,然后再平行四边形的基础上介绍了矩形的定义、性质定理、判定定理以及运用矩形的性质定理和判定定理解决问题的方法,接着介绍了菱形的定义、性质定理和判定定理,并在矩形和菱形的基础上介绍了正方形的定义、性质定理和判定定理,教材还以学生探究的形式给出了三角形中位线的定义及性质定理。

三、学情分析
本节课以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。

在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

四、单元学习目标
1.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系。

2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算。

3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离。

4.探索并证明三角形中位线定理。

5.通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力。

6.通过平行四边形、矩形、菱形、正方形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。

7.通过分析平行四边形与矩形、菱形、正方形概念之间的联系和区别,使学生进一步认识一般与特殊的关系。

五、教学重点、难点及关键
1.本章的重点:重点内容是平行四边形的概念、性质定理和判定定理。

2.本章的难点:难点是平行四边形与矩形、菱形、正方形等特殊平行四边形之间的区别和联系。

3.关键:平行四边形的概念和性质的形成过程。

六、教法
1、突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段。

2、进一步培养推理论证能力。

从培养学生的逻辑思维能力来说,平行四边形这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩
固和提高的阶段。

这一节内容比较简单,说理方法也相对比较单一,学生前面已经进行了一些推理证明的训练。

但这种训练只是初步,要进一步的巩固和提高。

教学中同样要重视推理论证的教学,进一步提高学生的思维能力。

3、注意联系实际。

四边形是人们日常生活和生产中应用较广的一种几何图形,尤其是平行四边形、矩形、菱形、正方形等特殊四边形用处更多,因此这部分内容与实际联系比较紧密。

在教材编写时,
也充分注意到这一点。

4、重视信息技术的应用。

七、学法
1.在探索性质和判定条件时,应积极动手操作和实验,在动手操作过程中进行猜测、验证和逻辑推理。

2.研究总结平行四边形的性质和判定方法时,可以从边、角、对角线几方面考虑,体会分类思想;在学习特殊的平行四边形的性质和判定时,采用类比迁移的思想方法。

3.在解题时,要注意方法的多样性,力求从不同角度去探索证明方法。

八、教具准备:课件三角板
九、教学实施
本章教学课时约需20课时,具体安排如下:
18.1 平行四边形 8课时
18.2 特殊的平行四边形 9课时
单元复习 3课时
课题:18.1.1平行四边形的性质(第1课时)
一、教学目标
知识与技能:探索并掌握平行四边形的概念及平行四边形对边相等、对角相等的
性质.
过程与方法:经历探索平行四边形有关概念和性质的过程,发展学生的探究意识
和合情推理的能力.
情感态度与价值观:培养学生严谨的思维习惯和勇于探索的思想意识,体会几何
知识的内涵与实际应用价值.
二、重难点、关键
重点:理解和掌握平行四边形的性质.
难点:平行四边形性质的应用.
关键:把握平行线、三角形等有关知识,应用于平行四边形的探究之中.
三、教学准备
教师准备:投影仪,收集有关生活中的平行四边形图案制成投影片.
四、学法
1.认知起点:对几何中的平行线、?三角形以及小学中的四边形有关知识的积累,以此为起点来认识平行四边形.
五、教学过程
(一)创设情境,导入新课
师:四边形我们并不陌生,在小学我们已经学过一些特殊的四边形,譬如,长方
形、正方形、平行四边形等.在本章的学习中,我们将进一步认识这些特殊的四边形.
师:四边形有很多种,该从哪一种四边形开始我们新的学习呢?让我们先来认识
平行四边形(板书:平行四边形).
(二)尝试指导,讲授新课
(师出示生活中的平行四边形图片)
师:(指图)通过观察这些图形,你能观察到什么?他们的共同特点是什么?
这些是一个个平行四边形,这种样子的图形在生活中是经常可以见到的.
师:在日常生活中,你还在哪儿看到过平行四边形?
生:……(让几名同学说,如果学生一时说不出,师可接着教学)
(以下师最好出示几张有藏民族文化特色的图片,指出其中的平行四边形)
师:再出示普通四边形、梯形、平行四边形,观察它们边的变化特点,引出平行四
边形的定义。

师:好了,现在谁来说说什么样的四边形叫做平行四边形?
生:……(让几名同学来说)
师:(指准图)看到没有?这组对边平行,这组对边也平行,所以我们把有两组对
边分别平行的四边形叫做平行四边形(板书:有两组对边分别平行的四边形叫做平行四边形).
师:如果我们在图中标上字母(边讲边在图中标上A,B,C,D),那么这个平行四边形可记作 ABCD(边讲边板书:记作 ABCD).
平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线.
平行四边形相对的边角做对边,相对的角叫做对角.
师:明确了概念,下面我们来看一看平行四边形有什么性质.
师:(指板书)首先从这个定义,我们可以立即得出平行四边形的一条性质,什么。

相关文档
最新文档