第18章_平行四边形全章教(学)案(新人教版)

合集下载

人教版数学八年级下册第十七章平行四边形教案

人教版数学八年级下册第十七章平行四边形教案

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质(1)课型: 上课时间:课时:学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、忆一忆:1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?3.你能总结出平行四边形的定义吗?。

如图,平行四边形ABCD可以表示为:,几何表示定义:二、想一想:1、由定义可知平行四边形具有什么性质?2、自己亲自动手画一个平行四边形,观察一下,除了“两组对边分别平行”以外,它的边,角之间有什么关系?度量一下,是否和你的猜想一致?结论:平行四边形的性质:;。

你能证明你所得出的结论吗?证明:3、如图所示,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中AB 边长为8m ,其他三边的长各是多少?4、如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .三、练一练:1、课本练习;2.计算(1)在平行四边形ABCD 中,∠A=500,求∠B 、∠C 、∠D 的度数。

(2)在平行四边形ABCD 中,∠A=∠B+400,求∠A 的邻角的度数。

(3)平行四边形的两邻边的比是2:5,周长为28cm ,求四边形的各边的长。

(4)在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

5. 如图,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF .6.(选择)在下列选项中,平行四边形不一定具有的是( ).(A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是7.如图:在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个8.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,360求证:AB=CE四、拓展拓展:1.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶12.□ABCD 的周长为36 cm ,AB =BC ,则较长边的长为( ) A.15 cm B.7.5 cmC.21 cmD.10.5 cm 3. 平行四边形的周长为36 cm ,一组邻边之差为4 cm ,求平行四边形各边的长.4.如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长.五、小结与反思:18.1.1平行四边形的性质(2)课型: 上课时间: 课时:学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养推理论证能力和逻辑思维能力.学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:75一、 忆一忆:1、什么样的四边形是平行四边形?四边形与平行四边形的关系是:2、平行四边形的性质:①具有一般四边形的性质:②角:③边:二、活动活动:1. 在纸上画两个全等的ABCD 和EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将ABCD 绕点O 旋转,观察它还和EFGH 重合吗?你从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现OA 与OC 、OB 与OD 的关系吗?那么平行四边形还有什么性质呢?(阅读教材上面探究中的方框内容) 结论:平行四边形又一性质:2.将你得到的上述结论用全等的方法证明:(如图)已知:求证:证明:三、练一练:1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2. 已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD的面积.1803.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm . 4.ABCD 一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD 的周长是__ ___.5.如图,ABCD 的周长是36㎝,AB=8㎝,BC= ;当∠B=60°时,AD 、BC 的距离AE= ,ABCD 的面积= 。

【人教版】数学八下:第18章《平行四边形》全章名师说课稿

【人教版】数学八下:第18章《平行四边形》全章名师说课稿

【人教版】数学八下:第18章《平行四边形》全章名师说课稿一. 教材分析《人教版》数学八下第18章《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。

本章内容主要包括平行四边形的定义、性质、判定以及平行四边形的应用。

通过本章的学习,使学生能理解和掌握平行四边形的性质和判定方法,提高解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了三角形、四边形的基本知识,具备了一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,可能对平行四边形的性质和判定方法容易混淆,需要通过实例和练习来加深理解和掌握。

三. 说教学目标1.理解平行四边形的定义,掌握平行四边形的性质和判定方法。

2.能够运用平行四边形的性质和判定方法解决实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 说教学重难点1.平行四边形的性质和判定方法的掌握。

2.平行四边形在实际问题中的应用。

五. 说教学方法与手段1.采用讲授法,讲解平行四边形的定义、性质、判定方法。

2.利用多媒体演示,直观展示平行四边形的性质和判定过程。

3.运用例题和练习,让学生在实际问题中应用平行四边形的性质和判定方法。

4.小组讨论,培养学生合作学习的能力。

六. 说教学过程1.引入新课:通过复习三角形、四边形的基本知识,引导学生学习平行四边形。

2.讲解平行四边形的定义、性质、判定方法:通过多媒体演示和板书,详细讲解平行四边形的定义、性质、判定方法。

3.例题讲解:选取典型例题,讲解平行四边形的性质和判定方法在实际问题中的应用。

4.练习巩固:学生自主完成练习题,巩固对平行四边形的性质和判定方法的理解。

5.小组讨论:学生进行小组讨论,分享解题心得和方法。

6.课堂小结:总结本节课所学内容,强调平行四边形的性质和判定方法。

7.作业布置:布置相关练习题,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:1.对边平行且相等2.对角相等3.对边相等4.对角线互相平分5.两组对边分别平行的四边形是平行四边形6.两组对角分别相等的四边形是平行四边形7.对边平行且相等的四边形是平行四边形八. 说教学评价通过课堂讲解、练习完成情况、小组讨论参与度等方面,评价学生对平行四边形的性质和判定方法的掌握程度。

平行四边形整章导学案

平行四边形整章导学案

18.1平行四边形的小结1..如图3,若AC BD EF 两两互相平分于点 0,请写出图中的一对全等三角形(只需写一对即2. 已知平行四边形的面积是 144,相邻两边上的高分别为 8和9,则它的周长是 _________________ .3. 已知四边形 ABCC 中,AD// BC,分别添加下列条件,① AB// CD ,②AB = DC ③AD= BQ ④/ A =Z C,⑤/ B =Z C,能使四边形 ABCD 成为平行四边表的条件的序号是 ______________________________ .4. 如图4,已知口ABCD 勺对角线交点是 0 直线EF 过0点,且平行于 BC,直线GH 过0且平行于AB,则图中共有()个平行四边形。

5. 平行四边形ABCD 的两条对角线AC,BD 相交于0.(1) 图中有哪些三角形全等 ?有哪些相等的线段? (2)若平行四边形 ABCD 的周长是20cm, △ AOD 勺周长比△ AB0的周长大6cm.求AB,AD 的 长.7.如图在,一ABCD 中,对角线 AC 与BD 交于点O ,已知点E 、F 分别为AO 、OC 的中点, ?证明:四边形BFDE 是平行四边形.6.如图,在格点图中,以格点 试在图中画出来.A 、B 、C 、D 、E 、F 为顶点,你能画出多少个平行四边形?D&如图,在△ ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE , 则图中的平行四边形有哪些?说说你的理由.9.如图所示,已知在平行四边形ABCD中, E是边DA的延长线上一点,且AE=AD连结EC 分别交AB BD于点F、G 求证:AF=BF.B10、如图,在口ABCD中, E、F、G H分别是四条边上的点,且满足BE=DF,CG=AH连接EF、GH求证:EF与GH互相平分。

18.2特殊的平行四边形18.2.1 矩形(1)学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

△AOB的周长比△DOA的周长长5cm,求这个平行四边形
各边的长.
D
C
解:∵四边形ABCD是平行四边形,
O
∴OB=OD,AB=CD,AD=BC. A
B
∵△AOB的周长比△DOA的周长长5cm,∴AB-AD=5cm.
又∵ ABCD的周长为60cm,∴AB+AD=30cm.
则AB=CD=17.5cm,AD=BC=12.5cm. 提示:平行四边形被对角线分成四个小三角形,相邻两个 三角形的周长之差等于邻边边长之差.
∴∠BAE=∠DCF.
B
FC
又∵AE=CF,
∴ △ABE≌ △CDF.
∴BE=DF.
如图,小明用一根36m长的绳子围成了一个平行四边形的 场地,其中一条边AB长为8m,其他三条边各长多少?
A 8m B
D C
解:∵ 四边形ABCD是平行四边形, ∴AB=CD, AD=BC. ∵AB=8m, ∴CD=8m. 又AB+BC+CD+AD=36m, ∴ AD=BC=10m.
=S△AOB+S△COB=1 S
∴S四边形ANMB=S四边形CMND,
2
ABCD
.
即平行四边形ABCD被EF所分的两个四边形面积相等.
把一个平行四边形分成3个三角形,已知两个阴影三角形的面 积分别是9cm2和12cm2,求平行四边形的面积.
解:(9+12)×2 =21×2 =42(cm2)
答:平行四边形的面积是42cm2.
∴AB∥ CD , AD∥ BC.
∴四边形ABCD是平行四边形.
十一.利用两组对边分别相等识别平行四边形 如图,在Rt△MON中,∠MON=90°.求证:

第十八章平行四边形核心素养评估(教案)-2022-2023学年八年级下册数学(人教版)

第十八章平行四边形核心素养评估(教案)-2022-2023学年八年级下册数学(人教版)
五、教学反思
在本次《第十八章平行四边形》的教学过程中,我注意到了几个值得反思的方面。首先,学生在理解平行四边形的性质和判定方法时,普遍表现出一定的难度。这让我意识到,在今后的教学中,需要更加注重对这些核心概念的深入讲解和实例演示。通过具体的图形和案例,帮助学生更好地把握平行四边形的内涵。
其次,实践活动环节,学生们在分组讨论和实验操作过程中,积极性很高,但我也发现部分学生在操作过程中对平行四边形性质的应用还不够熟练。因此,我计划在接下来的教学中,增加一些类似的实践活动,让学生有更多机会亲自动手操作,提高他们对平行四边形性质的掌握程度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的性质和判定方法这两个重点。对于难点部分,如平行四边形的判定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器绘制平行四边形,演示其性质。
3.培养学生的数据分析能力,让学生在实际问题中运用平行四边形相关知识,进行数据计算和论证。
4.提高学生的应用意识和创新能力,将平行四边形知识应用于解决综合性、探索性问题,激发学生的几何探究兴趣。
5.培养学生的团队合作意识,通过小组讨论、合作探究,共同完成平行四边形相关问题的研究。

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。

人教版八年级数学下册知识点第十八章《平行四边形》

人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。

表示:平行四边形用“□”表示。

2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。

的顺序依次排列。

点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。

平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。

如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。

∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。

八年级数学下册 第十八章《平行四边形》教学设计 (新版)新人教版-(新版)新人教版初中八年级下册数学

八年级数学下册 第十八章《平行四边形》教学设计 (新版)新人教版-(新版)新人教版初中八年级下册数学

《平行四边形》一、内容和内容解析关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。

本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”.在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”.“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。

平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。

同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。

关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。

同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。

在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。

二、教学目标1、使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.2、通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.3、通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.4、通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.三、教学重点平行四边形的概念和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章平行四边形18.1.1 平行四边形及其性质(一)作课时间:一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析例1是教材P93的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P93例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.板书设计教学反思18.1.1 平行四边形的性质(二)作课时间一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2是教材P94的例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:360).①具有一般四边形的性质(角和是︒②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分180,别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转︒观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充) 已知:如图4-21, ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .证明:在 ABCD 中,AB ∥CD ,∴ ∠1=∠2.∠3=∠4.又 OA =OC(平行四边形的对角线互相平分),∴ △AOE ≌△COF (ASA ).∴ OE =OF ,AE=CF (全等三角形对应边相等).∵ ABCD ,∴ AB=CD (平行四边形对边相等).∴ AB —AE=CD —CF . 即 BE=FD .※【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.解略例2(教材P94的例2)已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.分析:由平行四边形的对边相等,可得BC 、CD 的长,在Rt △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略(参看教材P94).六、随堂练习1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在 ABCD中,AC=6、BD=4,则AB的围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计教学反思18.1.2(一)平行四边形的判定作课时间:一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点3.重点:平行四边形的判定方法及应用.4.难点:平行四边形的判定定理与性质定理的灵活应用.三、例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

相关文档
最新文档