归一问题与归总问题讲解

合集下载

小学数学:“归一问题、归总问题”解题方法,建议收藏

小学数学:“归一问题、归总问题”解题方法,建议收藏

小学数学:“归一问题、归总问题”解题方法,建议收藏1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学应用题类型——归一归总问题

小学应用题类型——归一归总问题

归一归总问题知识点拨知识点说明:一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样的速度,30分钟爬行多少分米?解析:本题属于正归一,有两种解题思想﹙方法一﹚归一思想:为了求出蜗牛30分钟爬多少分米,必须先求出1分钟爬多少分米﹙单一数﹚,“照这样的速度”说明小蜗牛每分钟爬行的速度是相等的,然后以这个数目为依据按要求算出结果。

三年级数学归一问题和归总问题

三年级数学归一问题和归总问题

一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。

通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。

本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。

二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。

在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。

1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。

学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。

1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。

在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。

三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。

通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。

2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。

学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。

2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。

在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。

四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。

在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。

归一归总问题【讲义】

归一归总问题【讲义】

归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数[小结]总工作量=每份的工作量(单一量)⨯份数 (正归一)例如⑴题份数=总工作量÷每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件(2)如果要生产6300个零件几小时可完成【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务同例5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

归一归总问题

归一归总问题

归一归总问题教学目标本讲主要学习归一及归总问题.通过本节课的学习,学生应了解归一及归总问题的类型,以及解决归一及归总问题的一般方法,掌握归一及归总问题的基本关系式,并会将这种方法应用到一些实际问题中.知识点说明:一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.例题讲解板块一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?÷⨯=(千米)。

四年级数学归一问题和归总问题

四年级数学归一问题和归总问题

四年级数学归一与归总应用题知识要点:1、归一问题:日常生活中要计算几个足球多少钱,就必须先知道每个足球的单价是多少钱;要计算几个人几天所做的工作总量,就必须先知道每人每天所做的工作量等等,一系列的这种应用题,归结为一个单位数量的问题叫归一问题。

2、归总问题:与归一问题对应的是归总问题,归一问题是要求出“单一量”,而归总问题是要求出“总量”。

所谓总量是指:总路程,总产量,工作总量,物品的总价等等,这种先求“总量”的应用题叫归总问题。

3、主要的数量关系式:单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间速度×时间=路程路程÷速度=时间路程÷时间=速度典型例题:例1、小红买了5支圆珠笔共付15元,现在她要退回去2支圆珠笔,售货员应找回多少元?例2、某工厂用9个工人4天能够做360个机器零件,照这样计算,12个人6天能够做多少个同样的机器零件?例3、6辆卡车4次能够运货96吨,2辆汽车8次能够运货48吨,现在用3辆卡车和1辆汽车同时运15次,能够运货多少吨?例4、假设买4个书包和6盒水彩笔需190元,而假设买2个书包和6盒水彩笔需要140元,求一个书包和一盒水彩笔的单价各是多少元?例5、小明上学每分钟走50米,12分钟到学校,假设他想提前4分钟到达学校,则小明每分钟比原来多行多少米?例6、修一条公路,原计划80人,用100天完成,现在这批工人工作30天后,又增加了20人,问剩下的部分再做多少天能够完成任务?例7、有一段公路,预计用30人每天工作8小时,18天能够修完。

后来要求加快速度,每天增加6个人,并且修路时间每天增加4小时,那么能够提前几天修完这条公路?课堂练习:1、一台磨面机5小时可磨玉米250千克,照这样计算,磨1750千克的玉米,需要几小时?2、百货商店卖出4箱暖瓶,每箱20个,每个15元,现在用卖暖瓶的钱能够去买6箱洗衣粉,每箱100包,每包洗衣粉多少元?3、一本书,原来预计共印180页,每页25行,每行30个字,后来改用小号字,每行36个字,每页能排30行。

归一、归总问题

归一、归总问题
归一:先求出1份数是多少? 归总:先求出总数是多少?
作业布置 1.商店运来一批苹果,每筐装25千克,需要12 个筐。如纺织女工5天织布20米。照这样计算,要 织布60米,需要几天可以织完?
如:一辆汽车每小时行驶60千米,到达目的地 要3小时,如果要在2小时到达,每小时要行驶 多少千米
巩固练习 1. 4台织布机8小时织布576米。照这样计算, 6台织布机2小时织布多少米?
2. 工厂运来一批煤,原计划每天烧6吨,可以烧 30天。实际每天节约1.5吨,这批煤可以烧多少 天?
归一与归总的区别
归一问题、归总问题
归一法:先求出单位数量,再以单位数量 为标准,计算出所求数量的解题方法。
如:1.一辆汽车3小时行驶150千米,照这 样计算,7小时可行驶多少千米?
2.修路队6小时修路180千米,照这样 计算,修240千米需要几小时?
归总法:已知单位数量和单位数量的个数,先求 出总数量,再按另一个单位数量或单位数量的个 数求出未知数量的解题方法。

归一归总问题【讲义】

归一归总问题【讲义】

归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量每份的工作量(单一量)份数 (正归一)份数总工作量每份的工作量(单一量) (反归一)每份的工作量(单一量) 总工作量份数[小结]总工作量每份的工作量(单一量)份数 (正归一)例如⑴题份数总工作量每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) 总工作量份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米?【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天?【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时?【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克?【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件?(2)如果要生产6300个零件几小时可完成?【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务?同例 5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件?【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲归一问题与归总问题
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?
1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?
95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?
分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?
630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?
18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?
2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?
25600÷320÷8=10(时)。

综合列式为
25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?
336÷4÷7=12(吨)。

(2)5趟运走420吨沙土需卡车多少辆?
420÷12÷5=7(辆)。

(3)需要增加多少辆卡车?
7-4=3(辆)。

综合列式为
420÷(336÷4÷7)÷5-4=3(辆)。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?
分析:(1)工程总量相当于1个人工作多少小时?
15×8=120(时)。

(2)12个人完成这项工程需要多少小时?
120÷12=10(时)。

解:15×8÷12=10(时)。

答:12人需10时完成。

例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。

若要4时到达,则每小时需要多行多少千米?
分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?
60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?
300÷4=75(千米)。

(3)每小时多行多少千米?
75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。

答:每小时需要多行15千米。

例7 修一条公路,原计划60人工作,80天完成。

现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析:(1)修这条公路共需要多少个劳动日(总量)?
60×80=4800(劳动日)。

(2)60人工作20天后,还剩下多少劳动日?
4800-60×20=3600(劳动日)。

(3)剩下的工程增加30人后还需多少天完成?
3600÷(60+30)=40(天)。

解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。

相关文档
最新文档